Package maintainers and Hackage trustees are allowed to edit certain bits
of package metadata after a release, without uploading a new tarball.
Note that the tarball itself is never changed, just the metadata that is
stored separately. For more information about metadata revisions, please
refer to the
Hackage Metadata Revisions FAQ.
No. 
Time 
User 
SHA256 
r2 (newsynth0.2r2) 
20141006T16:12:21Z 
PeterSelinger 
e4dc60779a14f470d4b21df051d0f855016a5fb9cefc7fb2aa9e1e7c5d990c24


Changed description
from A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient singlequbit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancillafree Clifford+/T/ approximation of
/z/rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multiqubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
MatsumotoAmano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and Ï\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multiqubit unitary operators into one and twolevel
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easytouse command line tool for
singlequbit approximate synthesis.
to A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient singlequbit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancillafree Clifford+/T/ approximation of
/z/rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multiqubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
MatsumotoAmano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and π\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multiqubit unitary operators into one and twolevel
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easytouse command line tool for
singlequbit approximate synthesis.

r1 (newsynth0.2r1) 
20141006T16:10:18Z 
PeterSelinger 
ad6eb2e28bc92bbc32560bdda3946f0b442de8b10b3f5120c38056d09dd59253


Changed description
from A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient singlequbit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancillafree Clifford+/T/ approximation of
/z/rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multiqubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
MatsumotoAmano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and π\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multiqubit unitary operators into one and twolevel
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easytouse command line tool for
singlequbit approximate synthesis.
to A library of algorithms for exact and approximate synthesis of
quantum circuits over the Clifford+T gate set. This includes, among
other things:
* "Quantum.Synthesis.GridSynth": an efficient singlequbit
approximate synthesis algorithm. From N. J. Ross and P. Selinger,
\"Optimal ancillafree Clifford+/T/ approximation of
/z/rotations\", <http://arxiv.org/abs/1403.2975>.
* "Quantum.Synthesis.MultiQubitSynthesis": multiqubit exact
synthesis algorithms. From B. Giles and P. Selinger, \"Exact
synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
* "Quantum.Synthesis.CliffordT": the computation of
MatsumotoAmano normal forms. From K. Matsumoto and K. Amano,
\"Representation of Quantum Circuits with Clifford and Ï\/8
Gates\", <http://arxiv.org/abs/0806.3834>.
* "Quantum.Synthesis.RotationDecomposition": an algorithm for
decomposing multiqubit unitary operators into one and twolevel
unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
I. L. Chuang, \"Quantum Computation and Quantum Information\",
Cambridge University Press, 2002.
This package also provides an easytouse command line tool for
singlequbit approximate synthesis.

r0 (newsynth0.2r0) 
20140313T00:20:10Z 
PeterSelinger 
658dcae2c3f6d9b2fe27ecc1232f3298fbe0ee183cd92912306ac5c58ffeb22b


