Metadata revisions for newsynth-0.2

Package maintainers and Hackage trustees are allowed to edit certain bits of package metadata after a release, without uploading a new tarball. Note that the tarball itself is never changed, just the metadata that is stored separately. For more information about metadata revisions, please refer to the Hackage Metadata Revisions FAQ.

No. Time User SHA256
-r2 (newsynth-0.2-r2) 2014-10-06T16:12:21Z PeterSelinger e4dc60779a14f470d4b21df051d0f855016a5fb9cefc7fb2aa9e1e7c5d990c24
  • Changed description from

    A library of algorithms for exact and approximate synthesis of
    quantum circuits over the Clifford+T gate set. This includes, among
    other things:
    
    * "Quantum.Synthesis.GridSynth": an efficient single-qubit
    approximate synthesis algorithm. From N. J. Ross and P. Selinger,
    \"Optimal ancilla-free Clifford+/T/ approximation of
    /z/-rotations\", <http://arxiv.org/abs/1403.2975>.
    
    * "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
    synthesis algorithms. From B. Giles and P. Selinger, \"Exact
    synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
    87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
    
    * "Quantum.Synthesis.CliffordT": the computation of
    Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
    \"Representation of Quantum Circuits with Clifford and π\/8
    Gates\", <http://arxiv.org/abs/0806.3834>.
    
    * "Quantum.Synthesis.RotationDecomposition": an algorithm for
    decomposing multi-qubit unitary operators into one- and two-level
    unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
    I. L. Chuang, \"Quantum Computation and Quantum Information\",
    Cambridge University Press, 2002.
    
    This package also provides an easy-to-use command line tool for
    single-qubit approximate synthesis.
    to
    A library of algorithms for exact and approximate synthesis of
    quantum circuits over the Clifford+T gate set. This includes, among
    other things:
    
    * "Quantum.Synthesis.GridSynth": an efficient single-qubit
    approximate synthesis algorithm. From N. J. Ross and P. Selinger,
    \"Optimal ancilla-free Clifford+/T/ approximation of
    /z/-rotations\", <http://arxiv.org/abs/1403.2975>.
    
    * "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
    synthesis algorithms. From B. Giles and P. Selinger, \"Exact
    synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
    87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
    
    * "Quantum.Synthesis.CliffordT": the computation of
    Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
    \"Representation of Quantum Circuits with Clifford and π\/8
    Gates\", <http://arxiv.org/abs/0806.3834>.
    
    * "Quantum.Synthesis.RotationDecomposition": an algorithm for
    decomposing multi-qubit unitary operators into one- and two-level
    unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
    I. L. Chuang, \"Quantum Computation and Quantum Information\",
    Cambridge University Press, 2002.
    
    This package also provides an easy-to-use command line tool for
    single-qubit approximate synthesis.

-r1 (newsynth-0.2-r1) 2014-10-06T16:10:18Z PeterSelinger ad6eb2e28bc92bbc32560bdda3946f0b442de8b10b3f5120c38056d09dd59253
  • Changed description from

    A library of algorithms for exact and approximate synthesis of
    quantum circuits over the Clifford+T gate set. This includes, among
    other things:
    
    * "Quantum.Synthesis.GridSynth": an efficient single-qubit
    approximate synthesis algorithm. From N. J. Ross and P. Selinger,
    \"Optimal ancilla-free Clifford+/T/ approximation of
    /z/-rotations\", <http://arxiv.org/abs/1403.2975>.
    
    * "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
    synthesis algorithms. From B. Giles and P. Selinger, \"Exact
    synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
    87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
    
    * "Quantum.Synthesis.CliffordT": the computation of
    Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
    \"Representation of Quantum Circuits with Clifford and π\/8
    Gates\", <http://arxiv.org/abs/0806.3834>.
    
    * "Quantum.Synthesis.RotationDecomposition": an algorithm for
    decomposing multi-qubit unitary operators into one- and two-level
    unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
    I. L. Chuang, \"Quantum Computation and Quantum Information\",
    Cambridge University Press, 2002.
    
    This package also provides an easy-to-use command line tool for
    single-qubit approximate synthesis.
    to
    A library of algorithms for exact and approximate synthesis of
    quantum circuits over the Clifford+T gate set. This includes, among
    other things:
    
    * "Quantum.Synthesis.GridSynth": an efficient single-qubit
    approximate synthesis algorithm. From N. J. Ross and P. Selinger,
    \"Optimal ancilla-free Clifford+/T/ approximation of
    /z/-rotations\", <http://arxiv.org/abs/1403.2975>.
    
    * "Quantum.Synthesis.MultiQubitSynthesis": multi-qubit exact
    synthesis algorithms. From B. Giles and P. Selinger, \"Exact
    synthesis of multiqubit Clifford+/T/ circuits\", Physical Review A
    87, 032332, 2013, <http://arxiv.org/abs/1212.0506>.
    
    * "Quantum.Synthesis.CliffordT": the computation of
    Matsumoto-Amano normal forms. From K. Matsumoto and K. Amano,
    \"Representation of Quantum Circuits with Clifford and π\/8
    Gates\", <http://arxiv.org/abs/0806.3834>.
    
    * "Quantum.Synthesis.RotationDecomposition": an algorithm for
    decomposing multi-qubit unitary operators into one- and two-level
    unitaries. See e.g. Section 4.5.1 of M. A. Nielsen and
    I. L. Chuang, \"Quantum Computation and Quantum Information\",
    Cambridge University Press, 2002.
    
    This package also provides an easy-to-use command line tool for
    single-qubit approximate synthesis.

-r0 (newsynth-0.2-r0) 2014-03-13T00:20:10Z PeterSelinger 658dcae2c3f6d9b2fe27ecc1232f3298fbe0ee183cd92912306ac5c58ffeb22b