{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE LiberalTypeSynonyms #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE TypeFamilies #-}
module Generics.MultiRec.FoldK where
import Generics.MultiRec.Base
import Generics.MultiRec.HFunctor
import Control.Monad hiding (foldM)
type Algebra' phi f r = forall ix. phi ix -> f (K0 r) ix -> r
type Algebra phi r = Algebra' phi (PF phi) r
type AlgebraF' phi f g r = forall ix. phi ix -> f (K0 r) ix -> g r
type AlgebraF phi g r = AlgebraF' phi (PF phi) g r
fold :: (Fam phi, HFunctor phi (PF phi)) =>
Algebra phi r -> phi ix -> ix -> r
fold f p = f p . hmap (\ p (I0 x) -> K0 (fold f p x)) p . from p
foldM :: (Fam phi, HFunctor phi (PF phi), Monad m) =>
AlgebraF phi m r -> phi ix -> ix -> m r
foldM f p x = hmapM (\ p (I0 x) -> liftM K0 (foldM f p x)) p (from p x) >>= f p
type CoAlgebra' phi f r = forall ix. phi ix -> r -> f (K0 r) ix
type CoAlgebra phi r = CoAlgebra' phi (PF phi) r
type CoAlgebraF' phi f g r = forall ix. phi ix -> r -> g (f (K0 r) ix)
type CoAlgebraF phi g r = CoAlgebraF' phi (PF phi) g r
unfold :: (Fam phi, HFunctor phi (PF phi)) =>
CoAlgebra phi r -> phi ix -> r -> ix
unfold f p = to p . hmap (\ p (K0 x) -> I0 (unfold f p x)) p . f p
unfoldM :: (Fam phi, HFunctor phi (PF phi), Monad m) =>
CoAlgebraF phi m r -> phi ix -> r -> m ix
unfoldM f p x = f p x >>= liftM (to p) . hmapM (\ p (K0 x) -> liftM I0 (unfoldM f p x)) p
type ParaAlgebra' phi f r = forall ix. phi ix -> f (K0 r) ix -> ix -> r
type ParaAlgebra phi r = ParaAlgebra' phi (PF phi) r
type ParaAlgebraF' phi f g r = forall ix. phi ix -> f (K0 r) ix -> ix -> g r
type ParaAlgebraF phi g r = ParaAlgebraF' phi (PF phi) g r
para :: (Fam phi, HFunctor phi (PF phi)) =>
ParaAlgebra phi r -> phi ix -> ix -> r
para f p x = f p (hmap (\ p (I0 x) -> K0 (para f p x)) p (from p x)) x
paraM :: (Fam phi, HFunctor phi (PF phi), Monad m) =>
ParaAlgebraF phi m r -> phi ix -> ix -> m r
paraM f p x = hmapM (\ p (I0 x) -> liftM K0 (paraM f p x)) p (from p x) >>= \ r -> f p r x
infixr 5 &
infixr :->
type AlgPart f b ix = f (K0 b) ix -> b
type (f :-> g) b ix = f b ix -> g b ix
(&) :: (AlgPart a :-> AlgPart b :-> AlgPart (a :+: b)) c ix
(f & g) (L x) = f x
(f & g) (R x) = g x
tag :: AlgPart a c ix -> AlgPart (a :>: ix) c ix'
tag f (Tag x) = f x
con :: AlgPart a b ix -> AlgPart (C c a) b ix
con f (C x) = f x