multi-containers-0.2: A few multimap variants.
MaintainerZiyang Liu <free@cofree.io>
Safe HaskellSafe-Inferred
LanguageHaskell2010

Data.Multimap.Set.Internal

Description

 
Synopsis

Multimap type

newtype SetMultimap k a Source #

Constructors

SetMultimap (Map k (Set a), Size) 

Instances

Instances details
Eq2 SetMultimap Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> SetMultimap a c -> SetMultimap b d -> Bool #

Ord2 SetMultimap Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> SetMultimap a c -> SetMultimap b d -> Ordering #

Show2 SetMultimap Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> SetMultimap a b -> ShowS #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [SetMultimap a b] -> ShowS #

Foldable (SetMultimap k) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

fold :: Monoid m => SetMultimap k m -> m #

foldMap :: Monoid m => (a -> m) -> SetMultimap k a -> m #

foldMap' :: Monoid m => (a -> m) -> SetMultimap k a -> m #

foldr :: (a -> b -> b) -> b -> SetMultimap k a -> b #

foldr' :: (a -> b -> b) -> b -> SetMultimap k a -> b #

foldl :: (b -> a -> b) -> b -> SetMultimap k a -> b #

foldl' :: (b -> a -> b) -> b -> SetMultimap k a -> b #

foldr1 :: (a -> a -> a) -> SetMultimap k a -> a #

foldl1 :: (a -> a -> a) -> SetMultimap k a -> a #

toList :: SetMultimap k a -> [a] #

null :: SetMultimap k a -> Bool #

length :: SetMultimap k a -> Int #

elem :: Eq a => a -> SetMultimap k a -> Bool #

maximum :: Ord a => SetMultimap k a -> a #

minimum :: Ord a => SetMultimap k a -> a #

sum :: Num a => SetMultimap k a -> a #

product :: Num a => SetMultimap k a -> a #

Eq k => Eq1 (SetMultimap k) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

liftEq :: (a -> b -> Bool) -> SetMultimap k a -> SetMultimap k b -> Bool #

Ord k => Ord1 (SetMultimap k) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

liftCompare :: (a -> b -> Ordering) -> SetMultimap k a -> SetMultimap k b -> Ordering #

Show k => Show1 (SetMultimap k) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> SetMultimap k a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [SetMultimap k a] -> ShowS #

(Eq k, Eq a) => Eq (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

(==) :: SetMultimap k a -> SetMultimap k a -> Bool #

(/=) :: SetMultimap k a -> SetMultimap k a -> Bool #

(Data k, Data a, Ord a, Ord k) => Data (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SetMultimap k a -> c (SetMultimap k a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (SetMultimap k a) #

toConstr :: SetMultimap k a -> Constr #

dataTypeOf :: SetMultimap k a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (SetMultimap k a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (SetMultimap k a)) #

gmapT :: (forall b. Data b => b -> b) -> SetMultimap k a -> SetMultimap k a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SetMultimap k a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SetMultimap k a -> r #

gmapQ :: (forall d. Data d => d -> u) -> SetMultimap k a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SetMultimap k a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SetMultimap k a -> m (SetMultimap k a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SetMultimap k a -> m (SetMultimap k a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SetMultimap k a -> m (SetMultimap k a) #

(Ord k, Ord a) => Ord (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

compare :: SetMultimap k a -> SetMultimap k a -> Ordering #

(<) :: SetMultimap k a -> SetMultimap k a -> Bool #

(<=) :: SetMultimap k a -> SetMultimap k a -> Bool #

(>) :: SetMultimap k a -> SetMultimap k a -> Bool #

(>=) :: SetMultimap k a -> SetMultimap k a -> Bool #

max :: SetMultimap k a -> SetMultimap k a -> SetMultimap k a #

min :: SetMultimap k a -> SetMultimap k a -> SetMultimap k a #

(Ord k, Ord a, Read k, Read a) => Read (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

(Show k, Show a) => Show (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

showsPrec :: Int -> SetMultimap k a -> ShowS #

show :: SetMultimap k a -> String #

showList :: [SetMultimap k a] -> ShowS #

(Ord k, Ord a) => Semigroup (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

(<>) :: SetMultimap k a -> SetMultimap k a -> SetMultimap k a #

sconcat :: NonEmpty (SetMultimap k a) -> SetMultimap k a #

stimes :: Integral b => b -> SetMultimap k a -> SetMultimap k a #

(Ord k, Ord a) => Monoid (SetMultimap k a) Source # 
Instance details

Defined in Data.Multimap.Set.Internal

Methods

mempty :: SetMultimap k a #

mappend :: SetMultimap k a -> SetMultimap k a -> SetMultimap k a #

mconcat :: [SetMultimap k a] -> SetMultimap k a #

type Size = Int Source #

Construction

empty :: SetMultimap k a Source #

O(1). The empty multimap.

size empty === 0

singleton :: k -> a -> SetMultimap k a Source #

O(1). A multimap with a single element.

singleton 1 'a' === fromList [(1, 'a')]
size (singleton 1 'a') === 1

fromMap :: Map k (Set a) -> SetMultimap k a Source #

O(k). A key is retained only if it is associated with a non-empty set of values.

From Unordered Lists

fromList :: (Ord k, Ord a) => [(k, a)] -> SetMultimap k a Source #

O(n*log n) where n is the length of the input list. Build a multimap from a list of key/value pairs.

fromList ([] :: [(Int, Char)]) === empty
fromList [(1, 'b'), (2, 'a'), (1, 'b')] === fromList [(1, 'b'), (2, 'a')]

Insertion

insert :: (Ord k, Ord a) => k -> a -> SetMultimap k a -> SetMultimap k a Source #

O(log m * log k). If the key exists in the multimap, the new value will be inserted into the set of values for the key. It is a no-op if the value already exists in the set.

insert 1 'a' empty === singleton 1 'a'
insert 1 'a' (fromList [(1, 'b'), (2, 'a')]) === fromList [(1, 'a'), (1, 'b'), (2, 'a')]
insert 1 'a' (fromList [(1, 'a'), (2, 'c')]) === fromList [(1, 'a'), (2, 'c')]

Deletion/Update

delete :: Ord k => k -> SetMultimap k a -> SetMultimap k a Source #

O(log k). Delete a key and all its values from the map.

delete 1 (fromList [(1,'a'),(1,'b'),(2,'c')]) === singleton 2 'c'

deleteWithValue :: (Ord k, Ord a) => k -> a -> SetMultimap k a -> SetMultimap k a Source #

O(log m * log k). Remove the first occurrence of the value associated with the key, if exists.

deleteWithValue 1 'c' (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(1,'b'),(2,'c')]
deleteWithValue 1 'c' (fromList [(2,'c'),(1,'c')]) === singleton 2 'c'

deleteMax :: Ord k => k -> SetMultimap k a -> SetMultimap k a Source #

O(log m * log k). Remove the maximal value associated with the key, if exists.

deleteMax 3 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(1,'b'),(2,'c')]
deleteMax 1 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(2,'c')]

deleteMin :: Ord k => k -> SetMultimap k a -> SetMultimap k a Source #

O(log m * log k). Remove the minimal value associated with the key, if exists.

deleteMin 3 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(1,'b'),(2,'c')]
deleteMin 1 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'b'),(2,'c')]

adjust :: (Ord k, Ord a) => (a -> a) -> k -> SetMultimap k a -> SetMultimap k a Source #

O(m * log m * log k), assuming the function a -> a takes O(1). Update values at a specific key, if exists.

Since values are sets, the result may be smaller than the original multimap.

adjust ("new " ++) 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"new a"),(1,"new b"),(2,"c")]
adjust (const "z") 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"z"),(2,"c")]

adjustWithKey :: (Ord k, Ord a) => (k -> a -> a) -> k -> SetMultimap k a -> SetMultimap k a Source #

O(m * log m * log k), assuming the function k -> a -> a takes O(1). Update values at a specific key, if exists.

Since values are sets, the result may be smaller than the original multimap.

adjustWithKey (\k x -> show k ++ ":new " ++ x) 1 (fromList [(1,"a"),(1,"b"),(2,"c")])
  === fromList [(1,"1:new a"),(1,"1:new b"),(2,"c")]

update :: (Ord k, Ord a) => (a -> Maybe a) -> k -> SetMultimap k a -> SetMultimap k a Source #

O(m * log m * log k), assuming the function a -> Maybe a takes O(1). The expression (update f k map) updates the values at key k, if exists. If f returns Nothing for a value, the value is deleted.

let f x = if x == "a" then Just "new a" else Nothing in do
  update f 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"new a"),(2, "c")]
  update f 1 (fromList [(1,"b"),(1,"c"),(2,"c")]) === singleton 2 "c"

updateWithKey :: (Ord k, Ord a) => (k -> a -> Maybe a) -> k -> SetMultimap k a -> SetMultimap k a Source #

O(m * log m * log k), assuming the function k -> a -> Maybe a takes O(1). The expression (updateWithKey f k map) updates the values at key k, if exists. If f returns Nothing for a value, the value is deleted.

let f k x = if x == "a" then Just (show k ++ ":new a") else Nothing in do
  updateWithKey f 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"1:new a"),(2,"c")]
  updateWithKey f 1 (fromList [(1,"b"),(1,"c"),(2,"c")]) === singleton 2 "c"

alter :: Ord k => (Set a -> Set a) -> k -> SetMultimap k a -> SetMultimap k a Source #

O(log k), assuming the function Set a -> Set a takes O(1). The expression (alter f k map) alters the values at k, if exists.

let (f, g) = (const Set.empty, Set.insert 'c') in do
  alter f 1 (fromList [(1, 'a'), (2, 'b')]) === singleton 2 'b'
  alter f 3 (fromList [(1, 'a'), (2, 'b')]) === fromList [(1, 'a'), (2, 'b')]
  alter g 1 (fromList [(1, 'a'), (2, 'b')]) === fromList [(1, 'c'), (1, 'a'), (2, 'b')]
  alter g 1 (fromList [(1, 'c'), (2, 'b')]) === fromList [(1, 'c'), (2, 'b')]
  alter g 3 (fromList [(1, 'a'), (2, 'b')]) === fromList [(1, 'a'), (2, 'b'), (3, 'c')]

alterWithKey :: Ord k => (k -> Set a -> Set a) -> k -> SetMultimap k a -> SetMultimap k a Source #

O(log k), assuming the function k -> Set a -> Set a takes O(1). The expression (alterWithKey f k map) alters the values at k, if exists.

let (f, g) = (const (const Set.empty), Set.insert . show) in do
  alterWithKey f 1 (fromList [(1, "a"), (2, "b")]) === singleton 2 "b"
  alterWithKey f 3 (fromList [(1, "a"), (2, "b")]) === fromList [(1, "a"), (2, "b")]
  alterWithKey g 1 (fromList [(1, "a"), (2, "b")]) === fromList [(1, "1"), (1, "a"), (2, "b")]
  alterWithKey g 3 (fromList [(1, "a"), (2, "b")]) === fromList [(1, "a"), (2, "b"), (3, "3")]

Query

Lookup

lookup :: Ord k => k -> SetMultimap k a -> Set a Source #

O(log k). Lookup the values at a key in the map. It returns an empty set if the key is not in the map.

(!) :: Ord k => SetMultimap k a -> k -> Set a infixl 9 Source #

O(log k). Lookup the values at a key in the map. It returns an empty set if the key is not in the map.

fromList [(3, 'a'), (5, 'b'), (3, 'c')] ! 3 === Set.fromList "ac"
fromList [(3, 'a'), (5, 'b'), (3, 'c')] ! 2 === Set.empty

member :: Ord k => k -> SetMultimap k a -> Bool Source #

O(log k). Is the key a member of the map?

A key is a member of the map if and only if there is at least one value associated with it.

member 1 (fromList [(1, 'a'), (2, 'b'), (2, 'c')]) === True
member 1 (deleteMax 1 (fromList [(2, 'c'), (1, 'c')])) === False

notMember :: Ord k => k -> SetMultimap k a -> Bool Source #

O(log k). Is the key not a member of the map?

A key is a member of the map if and only if there is at least one value associated with it.

notMember 1 (fromList [(1, 'a'), (2, 'b'), (2, 'c')]) === False
notMember 1 (deleteMin 1 (fromList [(2, 'c'), (1, 'c')])) === True

Size

null :: SetMultimap k a -> Bool Source #

O(1). Is the multimap empty?

Data.Multimap.Set.null empty === True
Data.Multimap.Set.null (singleton 1 'a') === False

notNull :: SetMultimap k a -> Bool Source #

O(1). Is the multimap non-empty?

notNull empty === False
notNull (singleton 1 'a') === True

size :: SetMultimap k a -> Int Source #

The total number of values for all keys.

size is evaluated lazily. Forcing the size for the first time takes up to O(k) and subsequent forces take O(1).

size empty === 0
size (singleton 1 'a') === 1
size (fromList [(1, 'a'), (2, 'b'), (2, 'c'), (2, 'b')]) === 3

Combine

Union

union :: (Ord k, Ord a) => SetMultimap k a -> SetMultimap k a -> SetMultimap k a Source #

Union two multimaps, unioning values for duplicate keys.

union (fromList [(1,'a'),(2,'b'),(2,'c')]) (fromList [(1,'d'),(2,'b')])
  === fromList [(1,'a'),(1,'d'),(2,'b'),(2,'c')]

unions :: (Foldable f, Ord k, Ord a) => f (SetMultimap k a) -> SetMultimap k a Source #

Union a number of multimaps, unioning values for duplicate keys.

unions [fromList [(1,'a'),(2,'b'),(2,'c')], fromList [(1,'d'),(2,'b')]]
  === fromList [(1,'a'),(1,'d'),(2,'b'),(2,'c')]

Difference

difference :: (Ord k, Ord a) => SetMultimap k a -> SetMultimap k a -> SetMultimap k a Source #

Difference of two multimaps.

If a key exists in the first multimap but not the second, it remains unchanged in the result. If a key exists in both multimaps, a set difference is performed on their values.

difference (fromList [(1,'a'),(2,'b'),(2,'c')]) (fromList [(1,'d'),(2,'b'),(2,'a')])
  === fromList [(1,'a'),(2,'c')]

Traversal

Map

map :: Ord b => (a -> b) -> SetMultimap k a -> SetMultimap k b Source #

O(n * log m), assuming the function a -> b takes O(1). Map a function over all values in the map.

Since values are sets, the result may be smaller than the original multimap.

Data.Multimap.Set.map (++ "x") (fromList [(1,"a"),(2,"b")]) === fromList [(1,"ax"),(2,"bx")]
Data.Multimap.Set.map (const "c") (fromList [(1,"a"),(1,"b"),(2,"b")]) === fromList [(1,"c"),(2,"c")]

mapWithKey :: Ord b => (k -> a -> b) -> SetMultimap k a -> SetMultimap k b Source #

O(n * log m), assuming the function k -> a -> b takes O(1). Map a function over all values in the map.

Since values are sets, the result may be smaller than the original multimap.

mapWithKey (\k x -> show k ++ ":" ++ x) (fromList [(1,"a"),(2,"b")]) === fromList [(1,"1:a"),(2,"2:b")]

Folds

foldr :: (a -> b -> b) -> b -> SetMultimap k a -> b Source #

O(n). Fold the values in the map using the given right-associative binary operator.

Data.Multimap.Set.foldr ((+) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11

foldl :: (a -> b -> a) -> a -> SetMultimap k b -> a Source #

O(n). Fold the values in the map using the given left-associative binary operator.

Data.Multimap.Set.foldl (\len -> (+ len) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11

foldrWithKey :: (k -> a -> b -> b) -> b -> SetMultimap k a -> b Source #

O(n). Fold the key/value pairs in the map using the given right-associative binary operator.

foldrWithKey (\k a len -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15

foldlWithKey :: (a -> k -> b -> a) -> a -> SetMultimap k b -> a Source #

O(n). Fold the key/value pairs in the map using the given left-associative binary operator.

foldlWithKey (\len k a -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15

foldMapWithKey :: Monoid m => (k -> a -> m) -> SetMultimap k a -> m Source #

O(n). Fold the key/value pairs in the map using the given monoid.

foldMapWithKey (\k x -> show k ++ ":" ++ x) (fromList [(1, "a"), (1, "c"), (2, "b")]) === "1:a1:c2:b"

Strict Folds

foldr' :: (a -> b -> b) -> b -> SetMultimap k a -> b Source #

O(n). A strict version of foldr. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.

Data.Multimap.Set.foldr' ((+) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11

foldl' :: (a -> b -> a) -> a -> SetMultimap k b -> a Source #

O(n). A strict version of foldl. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.

Data.Multimap.Set.foldl' (\len -> (+ len) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11

foldrWithKey' :: (k -> a -> b -> b) -> b -> SetMultimap k a -> b Source #

O(n). A strict version of foldrWithKey. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.

foldrWithKey' (\k a len -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15

foldlWithKey' :: (a -> k -> b -> a) -> a -> SetMultimap k b -> a Source #

O(n). A strict version of foldlWithKey. Each application of the operator is evaluated before using the result in the next application. This function is strict in the starting value.

foldlWithKey' (\len k a -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15

Conversion

elems :: SetMultimap k a -> [a] Source #

O(n). Return all elements of the multimap in ascending order of their keys. Elements of each key appear in ascending order.

elems (fromList [(2,'a'),(1,'b'),(3,'d'),(3,'c'),(1,'b')]) === "bacd"
elems (empty :: SetMultimap Int Char) === []

keys :: SetMultimap k a -> [k] Source #

O(k). Return all keys of the multimap in ascending order.

keys (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'b')]) === [1,2,3]
keys (empty :: SetMultimap Int Char) === []

assocs :: SetMultimap k a -> [(k, a)] Source #

An alias for toAscList.

keysSet :: SetMultimap k a -> Set k Source #

O(k). The set of all keys of the multimap.

keysSet (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'b')]) === Set.fromList [1,2,3]
keysSet (empty :: SetMultimap Int Char) === Set.empty

Lists

toList :: SetMultimap k a -> [(k, a)] Source #

Convert the multimap into a list of key/value pairs.

toList (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'a')]) === [(1,'a'),(1,'b'),(2,'a'),(3,'c')]

Ordered lists

toAscList :: SetMultimap k a -> [(k, a)] Source #

Convert the multimap into a list of key/value pairs in ascending order of keys. Elements of each key appear in ascending order.

toAscList (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'a')]) === [(1,'a'),(1,'b'),(2,'a'),(3,'c')]

toDescList :: SetMultimap k a -> [(k, a)] Source #

Convert the multimap into a list of key/value pairs in descending order of keys. Elements of each key appear in descending order.

toDescList (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'a')]) === [(3,'c'),(2,'a'),(1,'b'),(1,'a')]

Maps

toMap :: SetMultimap k a -> Map k (Set a) Source #

O(1). Convert the multimap into a regular map.

Filter

filter :: (a -> Bool) -> SetMultimap k a -> SetMultimap k a Source #

O(n), assuming the predicate function takes O(1). Retain all values that satisfy the predicate. A key is removed if none of its values satisfies the predicate.

Data.Multimap.Set.filter (> 'a') (fromList [(1,'a'),(1,'b'),(2,'a')]) === singleton 1 'b'
Data.Multimap.Set.filter (< 'a') (fromList [(1,'a'),(1,'b'),(2,'a')]) === empty

filterWithKey :: (k -> a -> Bool) -> SetMultimap k a -> SetMultimap k a Source #

O(n), assuming the predicate function takes O(1). Retain all key/value pairs that satisfy the predicate. A key is removed if none of its values satisfies the predicate.

filterWithKey (\k a -> even k && a > 'a') (fromList [(1,'a'),(1,'b'),(2,'a'),(2,'b')]) === singleton 2 'b'

filterKey :: (k -> Bool) -> SetMultimap k a -> SetMultimap k a Source #

O(k), assuming the predicate function takes O(1). Retain all keys that satisfy the predicate.

filterM :: (Ord k, Ord a, Applicative t) => (a -> t Bool) -> SetMultimap k a -> t (SetMultimap k a) Source #

Generalized filter.

let f a | a > 'b' = Just True
        | a < 'b' = Just False
        | a == 'b' = Nothing
 in do
   filterM f (fromList [(1,'a'),(1,'b'),(2,'a'),(2,'c')]) === Nothing
   filterM f (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')]) === Just (fromList [(1,'c'),(2,'c')])

filterWithKeyM :: (Ord k, Ord a, Applicative t) => (k -> a -> t Bool) -> SetMultimap k a -> t (SetMultimap k a) Source #

Generalized filterWithKey. | Generalized filterWithKey.

let f k a | even k && a > 'b' = Just True
          | odd k && a < 'b' = Just False
          | otherwise = Nothing
 in do
   filterWithKeyM f (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')]) === Nothing
   filterWithKeyM f (fromList [(1,'a'),(3,'a'),(2,'c'),(4,'c')]) === Just (fromList [(2,'c'),(4,'c')])

mapMaybe :: Ord b => (a -> Maybe b) -> SetMultimap k a -> SetMultimap k b Source #

O(n * log m), assuming the function a -> Maybe b takes O(1). Map values and collect the Just results.

mapMaybe (\a -> if a == "a" then Just "new a" else Nothing) (fromList [(1,"a"),(1,"b"),(2,"a"),(2,"c")])
  === fromList [(1,"new a"),(2,"new a")]

mapMaybeWithKey :: Ord b => (k -> a -> Maybe b) -> SetMultimap k a -> SetMultimap k b Source #

O(n * log m), assuming the function k -> a -> Maybe b takes O(1). Map key/value pairs and collect the Just results.

mapMaybeWithKey (\k a -> if k > 1 && a == "a" then Just "new a" else Nothing) (fromList [(1,"a"),(1,"b"),(2,"a"),(2,"c")])
  === singleton 2 "new a"

mapEither :: (Ord b, Ord c) => (a -> Either b c) -> SetMultimap k a -> (SetMultimap k b, SetMultimap k c) Source #

O(n * log m), assuming the function a -> Either b c takes O(1). Map values and separate the Left and Right results.

mapEither (\a -> if a < 'b' then Left a else Right a) (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')])
  === (fromList [(1,'a'),(2,'a')],fromList [(1,'c'),(2,'c')])

mapEitherWithKey :: (Ord b, Ord c) => (k -> a -> Either b c) -> SetMultimap k a -> (SetMultimap k b, SetMultimap k c) Source #

O(n * log m), assuming the function k -> a -> Either b c takes O(1). Map key/value pairs and separate the Left and Right results.

mapEitherWithKey (\k a -> if even k && a < 'b' then Left a else Right a) (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')])
  === (fromList [(2,'a')],fromList [(1,'a'),(1,'c'),(2,'c')])

Min/Max

lookupMin :: SetMultimap k a -> Maybe (k, Set a) Source #

O(log n). Return the smallest key and the associated values. Returns Nothing if the map is empty.

lookupMin (fromList [(1,'a'),(1,'c'),(2,'c')]) === Just (1, Set.fromList "ac")
lookupMin (empty :: SetMultimap Int Char) === Nothing

lookupMax :: SetMultimap k a -> Maybe (k, Set a) Source #

O(log n). Return the largest key and the associated values. Returns Nothing if the map is empty.

lookupMax (fromList [(1,'a'),(1,'c'),(2,'c')]) === Just (2, Set.fromList "c")
lookupMax (empty :: SetMultimap Int Char) === Nothing

lookupLT :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #

O(log n). Return the largest key smaller than the given one, and the associated values, if exist.

lookupLT 1 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing
lookupLT 4 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")

lookupGT :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #

O(log n). Return the smallest key larger than the given one, and the associated values, if exist.

lookupGT 5 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing
lookupGT 2 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")

lookupLE :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #

O(log n). Return the largest key smaller than or equal to the given one, and the associated values, if exist.

lookupLE 0 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing
lookupLE 1 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (1, Set.fromList "a")
lookupLE 4 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")

lookupGE :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #

O(log n). Return the smallest key larger than or equal to the given one, and the associated values, if exist.

lookupGE 6 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing
lookupGE 5 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (5, Set.fromList "c")
lookupGE 2 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")