Maintainer | Ziyang Liu <free@cofree.io> |
---|---|
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Synopsis
- newtype SetMultimap k a = SetMultimap (Map k (Set a), Size)
- type Size = Int
- empty :: SetMultimap k a
- singleton :: k -> a -> SetMultimap k a
- fromMap :: Map k (Set a) -> SetMultimap k a
- fromList :: (Ord k, Ord a) => [(k, a)] -> SetMultimap k a
- insert :: (Ord k, Ord a) => k -> a -> SetMultimap k a -> SetMultimap k a
- delete :: Ord k => k -> SetMultimap k a -> SetMultimap k a
- deleteWithValue :: (Ord k, Ord a) => k -> a -> SetMultimap k a -> SetMultimap k a
- deleteMax :: Ord k => k -> SetMultimap k a -> SetMultimap k a
- deleteMin :: Ord k => k -> SetMultimap k a -> SetMultimap k a
- adjust :: (Ord k, Ord a) => (a -> a) -> k -> SetMultimap k a -> SetMultimap k a
- adjustWithKey :: (Ord k, Ord a) => (k -> a -> a) -> k -> SetMultimap k a -> SetMultimap k a
- update :: (Ord k, Ord a) => (a -> Maybe a) -> k -> SetMultimap k a -> SetMultimap k a
- updateWithKey :: (Ord k, Ord a) => (k -> a -> Maybe a) -> k -> SetMultimap k a -> SetMultimap k a
- alter :: Ord k => (Set a -> Set a) -> k -> SetMultimap k a -> SetMultimap k a
- alterWithKey :: Ord k => (k -> Set a -> Set a) -> k -> SetMultimap k a -> SetMultimap k a
- lookup :: Ord k => k -> SetMultimap k a -> Set a
- (!) :: Ord k => SetMultimap k a -> k -> Set a
- member :: Ord k => k -> SetMultimap k a -> Bool
- notMember :: Ord k => k -> SetMultimap k a -> Bool
- null :: SetMultimap k a -> Bool
- notNull :: SetMultimap k a -> Bool
- size :: SetMultimap k a -> Int
- union :: (Ord k, Ord a) => SetMultimap k a -> SetMultimap k a -> SetMultimap k a
- unions :: (Foldable f, Ord k, Ord a) => f (SetMultimap k a) -> SetMultimap k a
- difference :: (Ord k, Ord a) => SetMultimap k a -> SetMultimap k a -> SetMultimap k a
- map :: Ord b => (a -> b) -> SetMultimap k a -> SetMultimap k b
- mapWithKey :: Ord b => (k -> a -> b) -> SetMultimap k a -> SetMultimap k b
- foldr :: (a -> b -> b) -> b -> SetMultimap k a -> b
- foldl :: (a -> b -> a) -> a -> SetMultimap k b -> a
- foldrWithKey :: (k -> a -> b -> b) -> b -> SetMultimap k a -> b
- foldlWithKey :: (a -> k -> b -> a) -> a -> SetMultimap k b -> a
- foldMapWithKey :: Monoid m => (k -> a -> m) -> SetMultimap k a -> m
- foldr' :: (a -> b -> b) -> b -> SetMultimap k a -> b
- foldl' :: (a -> b -> a) -> a -> SetMultimap k b -> a
- foldrWithKey' :: (k -> a -> b -> b) -> b -> SetMultimap k a -> b
- foldlWithKey' :: (a -> k -> b -> a) -> a -> SetMultimap k b -> a
- elems :: SetMultimap k a -> [a]
- keys :: SetMultimap k a -> [k]
- assocs :: SetMultimap k a -> [(k, a)]
- keysSet :: SetMultimap k a -> Set k
- toList :: SetMultimap k a -> [(k, a)]
- toAscList :: SetMultimap k a -> [(k, a)]
- toDescList :: SetMultimap k a -> [(k, a)]
- toMap :: SetMultimap k a -> Map k (Set a)
- filter :: (a -> Bool) -> SetMultimap k a -> SetMultimap k a
- filterWithKey :: (k -> a -> Bool) -> SetMultimap k a -> SetMultimap k a
- filterKey :: (k -> Bool) -> SetMultimap k a -> SetMultimap k a
- filterM :: (Ord k, Ord a, Applicative t) => (a -> t Bool) -> SetMultimap k a -> t (SetMultimap k a)
- filterWithKeyM :: (Ord k, Ord a, Applicative t) => (k -> a -> t Bool) -> SetMultimap k a -> t (SetMultimap k a)
- mapMaybe :: Ord b => (a -> Maybe b) -> SetMultimap k a -> SetMultimap k b
- mapMaybeWithKey :: Ord b => (k -> a -> Maybe b) -> SetMultimap k a -> SetMultimap k b
- mapEither :: (Ord b, Ord c) => (a -> Either b c) -> SetMultimap k a -> (SetMultimap k b, SetMultimap k c)
- mapEitherWithKey :: (Ord b, Ord c) => (k -> a -> Either b c) -> SetMultimap k a -> (SetMultimap k b, SetMultimap k c)
- lookupMin :: SetMultimap k a -> Maybe (k, Set a)
- lookupMax :: SetMultimap k a -> Maybe (k, Set a)
- lookupLT :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a)
- lookupGT :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a)
- lookupLE :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a)
- lookupGE :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a)
Multimap type
newtype SetMultimap k a Source #
SetMultimap (Map k (Set a), Size) |
Instances
Construction
empty :: SetMultimap k a Source #
O(1). The empty multimap.
size empty === 0
singleton :: k -> a -> SetMultimap k a Source #
O(1). A multimap with a single element.
singleton 1 'a' === fromList [(1, 'a')] size (singleton 1 'a') === 1
fromMap :: Map k (Set a) -> SetMultimap k a Source #
O(k). A key is retained only if it is associated with a non-empty set of values.
From Unordered Lists
fromList :: (Ord k, Ord a) => [(k, a)] -> SetMultimap k a Source #
O(n*log n) where n is the length of the input list. Build a multimap from a list of key/value pairs.
fromList ([] :: [(Int, Char)]) === empty fromList [(1, 'b'), (2, 'a'), (1, 'b')] === fromList [(1, 'b'), (2, 'a')]
Insertion
insert :: (Ord k, Ord a) => k -> a -> SetMultimap k a -> SetMultimap k a Source #
O(log m * log k). If the key exists in the multimap, the new value will be inserted into the set of values for the key. It is a no-op if the value already exists in the set.
insert 1 'a' empty === singleton 1 'a' insert 1 'a' (fromList [(1, 'b'), (2, 'a')]) === fromList [(1, 'a'), (1, 'b'), (2, 'a')] insert 1 'a' (fromList [(1, 'a'), (2, 'c')]) === fromList [(1, 'a'), (2, 'c')]
Deletion/Update
delete :: Ord k => k -> SetMultimap k a -> SetMultimap k a Source #
O(log k). Delete a key and all its values from the map.
delete 1 (fromList [(1,'a'),(1,'b'),(2,'c')]) === singleton 2 'c'
deleteWithValue :: (Ord k, Ord a) => k -> a -> SetMultimap k a -> SetMultimap k a Source #
O(log m * log k). Remove the first occurrence of the value associated with the key, if exists.
deleteWithValue 1 'c' (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(1,'b'),(2,'c')] deleteWithValue 1 'c' (fromList [(2,'c'),(1,'c')]) === singleton 2 'c'
deleteMax :: Ord k => k -> SetMultimap k a -> SetMultimap k a Source #
O(log m * log k). Remove the maximal value associated with the key, if exists.
deleteMax 3 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(1,'b'),(2,'c')] deleteMax 1 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(2,'c')]
deleteMin :: Ord k => k -> SetMultimap k a -> SetMultimap k a Source #
O(log m * log k). Remove the minimal value associated with the key, if exists.
deleteMin 3 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'a'),(1,'b'),(2,'c')] deleteMin 1 (fromList [(1,'a'),(1,'b'),(2,'c')]) === fromList [(1,'b'),(2,'c')]
adjust :: (Ord k, Ord a) => (a -> a) -> k -> SetMultimap k a -> SetMultimap k a Source #
O(m * log m * log k), assuming the function a -> a
takes O(1).
Update values at a specific key, if exists.
Since values are sets, the result may be smaller than the original multimap.
adjust ("new " ++) 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"new a"),(1,"new b"),(2,"c")] adjust (const "z") 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"z"),(2,"c")]
adjustWithKey :: (Ord k, Ord a) => (k -> a -> a) -> k -> SetMultimap k a -> SetMultimap k a Source #
O(m * log m * log k), assuming the function k -> a -> a
takes O(1).
Update values at a specific key, if exists.
Since values are sets, the result may be smaller than the original multimap.
adjustWithKey (\k x -> show k ++ ":new " ++ x) 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"1:new a"),(1,"1:new b"),(2,"c")]
update :: (Ord k, Ord a) => (a -> Maybe a) -> k -> SetMultimap k a -> SetMultimap k a Source #
O(m * log m * log k), assuming the function a ->
takes O(1). The expression (Maybe
a
) updates the
values at key update
f k mapk
, if exists. If f
returns Nothing
for a value, the
value is deleted.
let f x = if x == "a" then Just "new a" else Nothing in do update f 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"new a"),(2, "c")] update f 1 (fromList [(1,"b"),(1,"c"),(2,"c")]) === singleton 2 "c"
updateWithKey :: (Ord k, Ord a) => (k -> a -> Maybe a) -> k -> SetMultimap k a -> SetMultimap k a Source #
O(m * log m * log k), assuming the function k -> a ->
takes O(1). The expression (Maybe
a
) updates the
values at key updateWithKey
f k mapk
, if exists. If f
returns Nothing
for a value, the
value is deleted.
let f k x = if x == "a" then Just (show k ++ ":new a") else Nothing in do updateWithKey f 1 (fromList [(1,"a"),(1,"b"),(2,"c")]) === fromList [(1,"1:new a"),(2,"c")] updateWithKey f 1 (fromList [(1,"b"),(1,"c"),(2,"c")]) === singleton 2 "c"
alter :: Ord k => (Set a -> Set a) -> k -> SetMultimap k a -> SetMultimap k a Source #
O(log k), assuming the function
takes O(1).
The expression (Set
a -> Set
a
) alters the values at k, if exists.alter
f k map
let (f, g) = (const Set.empty, Set.insert 'c') in do alter f 1 (fromList [(1, 'a'), (2, 'b')]) === singleton 2 'b' alter f 3 (fromList [(1, 'a'), (2, 'b')]) === fromList [(1, 'a'), (2, 'b')] alter g 1 (fromList [(1, 'a'), (2, 'b')]) === fromList [(1, 'c'), (1, 'a'), (2, 'b')] alter g 1 (fromList [(1, 'c'), (2, 'b')]) === fromList [(1, 'c'), (2, 'b')] alter g 3 (fromList [(1, 'a'), (2, 'b')]) === fromList [(1, 'a'), (2, 'b'), (3, 'c')]
alterWithKey :: Ord k => (k -> Set a -> Set a) -> k -> SetMultimap k a -> SetMultimap k a Source #
O(log k), assuming the function k ->
takes O(1).
The expression (Set
a -> Set
a
) alters the values at k, if exists.alterWithKey
f k map
let (f, g) = (const (const Set.empty), Set.insert . show) in do alterWithKey f 1 (fromList [(1, "a"), (2, "b")]) === singleton 2 "b" alterWithKey f 3 (fromList [(1, "a"), (2, "b")]) === fromList [(1, "a"), (2, "b")] alterWithKey g 1 (fromList [(1, "a"), (2, "b")]) === fromList [(1, "1"), (1, "a"), (2, "b")] alterWithKey g 3 (fromList [(1, "a"), (2, "b")]) === fromList [(1, "a"), (2, "b"), (3, "3")]
Query
Lookup
lookup :: Ord k => k -> SetMultimap k a -> Set a Source #
O(log k). Lookup the values at a key in the map. It returns an empty set if the key is not in the map.
(!) :: Ord k => SetMultimap k a -> k -> Set a infixl 9 Source #
O(log k). Lookup the values at a key in the map. It returns an empty set if the key is not in the map.
fromList [(3, 'a'), (5, 'b'), (3, 'c')] ! 3 === Set.fromList "ac" fromList [(3, 'a'), (5, 'b'), (3, 'c')] ! 2 === Set.empty
member :: Ord k => k -> SetMultimap k a -> Bool Source #
O(log k). Is the key a member of the map?
A key is a member of the map if and only if there is at least one value associated with it.
member 1 (fromList [(1, 'a'), (2, 'b'), (2, 'c')]) === True member 1 (deleteMax 1 (fromList [(2, 'c'), (1, 'c')])) === False
notMember :: Ord k => k -> SetMultimap k a -> Bool Source #
O(log k). Is the key not a member of the map?
A key is a member of the map if and only if there is at least one value associated with it.
notMember 1 (fromList [(1, 'a'), (2, 'b'), (2, 'c')]) === False notMember 1 (deleteMin 1 (fromList [(2, 'c'), (1, 'c')])) === True
Size
null :: SetMultimap k a -> Bool Source #
O(1). Is the multimap empty?
Data.Multimap.Set.null empty === True Data.Multimap.Set.null (singleton 1 'a') === False
notNull :: SetMultimap k a -> Bool Source #
O(1). Is the multimap non-empty?
notNull empty === False notNull (singleton 1 'a') === True
size :: SetMultimap k a -> Int Source #
The total number of values for all keys.
size
is evaluated lazily. Forcing the size for the first time takes up to
O(k) and subsequent forces take O(1).
size empty === 0 size (singleton 1 'a') === 1 size (fromList [(1, 'a'), (2, 'b'), (2, 'c'), (2, 'b')]) === 3
Combine
Union
union :: (Ord k, Ord a) => SetMultimap k a -> SetMultimap k a -> SetMultimap k a Source #
Union two multimaps, unioning values for duplicate keys.
union (fromList [(1,'a'),(2,'b'),(2,'c')]) (fromList [(1,'d'),(2,'b')]) === fromList [(1,'a'),(1,'d'),(2,'b'),(2,'c')]
unions :: (Foldable f, Ord k, Ord a) => f (SetMultimap k a) -> SetMultimap k a Source #
Union a number of multimaps, unioning values for duplicate keys.
unions [fromList [(1,'a'),(2,'b'),(2,'c')], fromList [(1,'d'),(2,'b')]] === fromList [(1,'a'),(1,'d'),(2,'b'),(2,'c')]
Difference
difference :: (Ord k, Ord a) => SetMultimap k a -> SetMultimap k a -> SetMultimap k a Source #
Difference of two multimaps.
If a key exists in the first multimap but not the second, it remains unchanged in the result. If a key exists in both multimaps, a set difference is performed on their values.
difference (fromList [(1,'a'),(2,'b'),(2,'c')]) (fromList [(1,'d'),(2,'b'),(2,'a')]) === fromList [(1,'a'),(2,'c')]
Traversal
Map
map :: Ord b => (a -> b) -> SetMultimap k a -> SetMultimap k b Source #
O(n * log m), assuming the function a -> b
takes O(1).
Map a function over all values in the map.
Since values are sets, the result may be smaller than the original multimap.
Data.Multimap.Set.map (++ "x") (fromList [(1,"a"),(2,"b")]) === fromList [(1,"ax"),(2,"bx")] Data.Multimap.Set.map (const "c") (fromList [(1,"a"),(1,"b"),(2,"b")]) === fromList [(1,"c"),(2,"c")]
mapWithKey :: Ord b => (k -> a -> b) -> SetMultimap k a -> SetMultimap k b Source #
O(n * log m), assuming the function k -> a -> b
takes O(1).
Map a function over all values in the map.
Since values are sets, the result may be smaller than the original multimap.
mapWithKey (\k x -> show k ++ ":" ++ x) (fromList [(1,"a"),(2,"b")]) === fromList [(1,"1:a"),(2,"2:b")]
Folds
foldr :: (a -> b -> b) -> b -> SetMultimap k a -> b Source #
O(n). Fold the values in the map using the given right-associative binary operator.
Data.Multimap.Set.foldr ((+) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11
foldl :: (a -> b -> a) -> a -> SetMultimap k b -> a Source #
O(n). Fold the values in the map using the given left-associative binary operator.
Data.Multimap.Set.foldl (\len -> (+ len) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11
foldrWithKey :: (k -> a -> b -> b) -> b -> SetMultimap k a -> b Source #
O(n). Fold the key/value pairs in the map using the given right-associative binary operator.
foldrWithKey (\k a len -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15
foldlWithKey :: (a -> k -> b -> a) -> a -> SetMultimap k b -> a Source #
O(n). Fold the key/value pairs in the map using the given left-associative binary operator.
foldlWithKey (\len k a -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15
foldMapWithKey :: Monoid m => (k -> a -> m) -> SetMultimap k a -> m Source #
O(n). Fold the key/value pairs in the map using the given monoid.
foldMapWithKey (\k x -> show k ++ ":" ++ x) (fromList [(1, "a"), (1, "c"), (2, "b")]) === "1:a1:c2:b"
Strict Folds
foldr' :: (a -> b -> b) -> b -> SetMultimap k a -> b Source #
O(n). A strict version of foldr
. Each application of the
operator is evaluated before using the result in the next application.
This function is strict in the starting value.
Data.Multimap.Set.foldr' ((+) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11
foldl' :: (a -> b -> a) -> a -> SetMultimap k b -> a Source #
O(n). A strict version of foldl
. Each application of the
operator is evaluated before using the result in the next application.
This function is strict in the starting value.
Data.Multimap.Set.foldl' (\len -> (+ len) . length) 0 (fromList [(1, "hello"), (1, "world"), (2, "!")]) === 11
foldrWithKey' :: (k -> a -> b -> b) -> b -> SetMultimap k a -> b Source #
O(n). A strict version of foldrWithKey
. Each application of the
operator is evaluated before using the result in the next application.
This function is strict in the starting value.
foldrWithKey' (\k a len -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15
foldlWithKey' :: (a -> k -> b -> a) -> a -> SetMultimap k b -> a Source #
O(n). A strict version of foldlWithKey
. Each application of the
operator is evaluated before using the result in the next application.
This function is strict in the starting value.
foldlWithKey' (\len k a -> length (show k) + length a + len) 0 (fromList [(1, "hello"), (1, "world"), (20, "!")]) === 15
Conversion
elems :: SetMultimap k a -> [a] Source #
O(n). Return all elements of the multimap in ascending order of their keys. Elements of each key appear in ascending order.
elems (fromList [(2,'a'),(1,'b'),(3,'d'),(3,'c'),(1,'b')]) === "bacd" elems (empty :: SetMultimap Int Char) === []
keys :: SetMultimap k a -> [k] Source #
O(k). Return all keys of the multimap in ascending order.
keys (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'b')]) === [1,2,3] keys (empty :: SetMultimap Int Char) === []
assocs :: SetMultimap k a -> [(k, a)] Source #
An alias for toAscList
.
keysSet :: SetMultimap k a -> Set k Source #
O(k). The set of all keys of the multimap.
keysSet (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'b')]) === Set.fromList [1,2,3] keysSet (empty :: SetMultimap Int Char) === Set.empty
Lists
toList :: SetMultimap k a -> [(k, a)] Source #
Convert the multimap into a list of key/value pairs.
toList (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'a')]) === [(1,'a'),(1,'b'),(2,'a'),(3,'c')]
Ordered lists
toAscList :: SetMultimap k a -> [(k, a)] Source #
Convert the multimap into a list of key/value pairs in ascending order of keys. Elements of each key appear in ascending order.
toAscList (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'a')]) === [(1,'a'),(1,'b'),(2,'a'),(3,'c')]
toDescList :: SetMultimap k a -> [(k, a)] Source #
Convert the multimap into a list of key/value pairs in descending order of keys. Elements of each key appear in descending order.
toDescList (fromList [(2,'a'),(1,'b'),(3,'c'),(1,'a')]) === [(3,'c'),(2,'a'),(1,'b'),(1,'a')]
Maps
Filter
filter :: (a -> Bool) -> SetMultimap k a -> SetMultimap k a Source #
O(n), assuming the predicate function takes O(1). Retain all values that satisfy the predicate. A key is removed if none of its values satisfies the predicate.
Data.Multimap.Set.filter (> 'a') (fromList [(1,'a'),(1,'b'),(2,'a')]) === singleton 1 'b' Data.Multimap.Set.filter (< 'a') (fromList [(1,'a'),(1,'b'),(2,'a')]) === empty
filterWithKey :: (k -> a -> Bool) -> SetMultimap k a -> SetMultimap k a Source #
O(n), assuming the predicate function takes O(1). Retain all key/value pairs that satisfy the predicate. A key is removed if none of its values satisfies the predicate.
filterWithKey (\k a -> even k && a > 'a') (fromList [(1,'a'),(1,'b'),(2,'a'),(2,'b')]) === singleton 2 'b'
filterKey :: (k -> Bool) -> SetMultimap k a -> SetMultimap k a Source #
O(k), assuming the predicate function takes O(1). Retain all keys that satisfy the predicate.
filterM :: (Ord k, Ord a, Applicative t) => (a -> t Bool) -> SetMultimap k a -> t (SetMultimap k a) Source #
Generalized filter
.
let f a | a > 'b' = Just True | a < 'b' = Just False | a == 'b' = Nothing in do filterM f (fromList [(1,'a'),(1,'b'),(2,'a'),(2,'c')]) === Nothing filterM f (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')]) === Just (fromList [(1,'c'),(2,'c')])
filterWithKeyM :: (Ord k, Ord a, Applicative t) => (k -> a -> t Bool) -> SetMultimap k a -> t (SetMultimap k a) Source #
Generalized filterWithKey
.
| Generalized filterWithKey
.
let f k a | even k && a > 'b' = Just True | odd k && a < 'b' = Just False | otherwise = Nothing in do filterWithKeyM f (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')]) === Nothing filterWithKeyM f (fromList [(1,'a'),(3,'a'),(2,'c'),(4,'c')]) === Just (fromList [(2,'c'),(4,'c')])
mapMaybe :: Ord b => (a -> Maybe b) -> SetMultimap k a -> SetMultimap k b Source #
mapMaybeWithKey :: Ord b => (k -> a -> Maybe b) -> SetMultimap k a -> SetMultimap k b Source #
mapEither :: (Ord b, Ord c) => (a -> Either b c) -> SetMultimap k a -> (SetMultimap k b, SetMultimap k c) Source #
mapEitherWithKey :: (Ord b, Ord c) => (k -> a -> Either b c) -> SetMultimap k a -> (SetMultimap k b, SetMultimap k c) Source #
O(n * log m), assuming the function k -> a ->
takes O(1).
Map key/value pairs and separate the Either
b cLeft
and Right
results.
mapEitherWithKey (\k a -> if even k && a < 'b' then Left a else Right a) (fromList [(1,'a'),(1,'c'),(2,'a'),(2,'c')]) === (fromList [(2,'a')],fromList [(1,'a'),(1,'c'),(2,'c')])
Min/Max
lookupMin :: SetMultimap k a -> Maybe (k, Set a) Source #
O(log n). Return the smallest key and the associated values. Returns Nothing
if the map is empty.
lookupMin (fromList [(1,'a'),(1,'c'),(2,'c')]) === Just (1, Set.fromList "ac") lookupMin (empty :: SetMultimap Int Char) === Nothing
lookupMax :: SetMultimap k a -> Maybe (k, Set a) Source #
O(log n). Return the largest key and the associated values. Returns Nothing
if the map is empty.
lookupMax (fromList [(1,'a'),(1,'c'),(2,'c')]) === Just (2, Set.fromList "c") lookupMax (empty :: SetMultimap Int Char) === Nothing
lookupLT :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #
O(log n). Return the largest key smaller than the given one, and the associated values, if exist.
lookupLT 1 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing lookupLT 4 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")
lookupGT :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #
O(log n). Return the smallest key larger than the given one, and the associated values, if exist.
lookupGT 5 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing lookupGT 2 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")
lookupLE :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #
O(log n). Return the largest key smaller than or equal to the given one, and the associated values, if exist.
lookupLE 0 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing lookupLE 1 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (1, Set.fromList "a") lookupLE 4 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")
lookupGE :: Ord k => k -> SetMultimap k a -> Maybe (k, Set a) Source #
O(log n). Return the smallest key larger than or equal to the given one, and the associated values, if exist.
lookupGE 6 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Nothing lookupGE 5 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (5, Set.fromList "c") lookupGE 2 (fromList [(1,'a'),(3,'b'),(3,'c'),(5,'c')]) === Just (3, Set.fromList "bc")