module Michelson.Typed.Util
( DfsSettings (..)
, CtorEffectsApp (..)
, ceaBottomToTop
, dfsInstr
, dfsFoldInstr
, dfsModifyInstr
, linearizeLeft
, linearizeLeftDeep
, dfsValue
, dfsFoldValue
, dfsModifyValue
, isStringValue
, isBytesValue
, allAtomicValues
) where
import Prelude hiding (Ordering(..))
import Data.Default (Default(..))
import qualified Data.Foldable as F
import qualified Data.Map as M
import qualified Data.Set as S
import qualified Text.Show
import Michelson.Text (MText)
import Michelson.Typed.Aliases
import Michelson.Typed.Instr
import Michelson.Typed.Value
data DfsSettings x = DfsSettings
{ DfsSettings x -> Bool
dsGoToValues :: Bool
, DfsSettings x -> CtorEffectsApp x
dsCtorEffectsApp :: CtorEffectsApp x
} deriving stock (Int -> DfsSettings x -> ShowS
[DfsSettings x] -> ShowS
DfsSettings x -> String
(Int -> DfsSettings x -> ShowS)
-> (DfsSettings x -> String)
-> ([DfsSettings x] -> ShowS)
-> Show (DfsSettings x)
forall x. Int -> DfsSettings x -> ShowS
forall x. [DfsSettings x] -> ShowS
forall x. DfsSettings x -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [DfsSettings x] -> ShowS
$cshowList :: forall x. [DfsSettings x] -> ShowS
show :: DfsSettings x -> String
$cshow :: forall x. DfsSettings x -> String
showsPrec :: Int -> DfsSettings x -> ShowS
$cshowsPrec :: forall x. Int -> DfsSettings x -> ShowS
Show)
data CtorEffectsApp x = CtorEffectsApp
{ CtorEffectsApp x -> Text
ceaName :: Text
, CtorEffectsApp x
-> forall (i :: [T]) (o :: [T]).
Semigroup x =>
x -> x -> Instr i o -> (Instr i o, x)
ceaApplyEffects
:: forall i o. Semigroup x => x -> x -> Instr i o -> (Instr i o, x)
}
instance Show (CtorEffectsApp x) where
show :: CtorEffectsApp x -> String
show CtorEffectsApp{..} = Text -> String
forall b a. (Show a, IsString b) => a -> b
show Text
ceaName
ceaBottomToTop :: CtorEffectsApp x
ceaBottomToTop :: CtorEffectsApp x
ceaBottomToTop = $WCtorEffectsApp :: forall x.
Text
-> (forall (i :: [T]) (o :: [T]).
Semigroup x =>
x -> x -> Instr i o -> (Instr i o, x))
-> CtorEffectsApp x
CtorEffectsApp
{ ceaName :: Text
ceaName = "Apply after"
, ceaApplyEffects :: forall (i :: [T]) (o :: [T]).
Semigroup x =>
x -> x -> Instr i o -> (Instr i o, x)
ceaApplyEffects =
\effBefore :: x
effBefore effAfter :: x
effAfter instr :: Instr i o
instr -> (Instr i o
instr, x
effBefore x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
effAfter)
}
instance Default (DfsSettings x) where
def :: DfsSettings x
def = $WDfsSettings :: forall x. Bool -> CtorEffectsApp x -> DfsSettings x
DfsSettings
{ dsGoToValues :: Bool
dsGoToValues = Bool
False
, dsCtorEffectsApp :: CtorEffectsApp x
dsCtorEffectsApp = CtorEffectsApp x
forall x. CtorEffectsApp x
ceaBottomToTop
}
dfsInstr ::
forall x inp out. Semigroup x
=> DfsSettings x
-> (forall i o. Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr :: DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr settings :: DfsSettings x
settings@DfsSettings{..} step :: forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step i :: Instr inp out
i =
case Instr inp out
i of
Seq i1 :: Instr inp b
i1 i2 :: Instr b out
i2 -> (Instr inp b -> Instr b out -> Instr inp out)
-> Instr inp b -> Instr b out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]) (i1 :: [T]) (o1 :: [T]) (i2 :: [T])
(o2 :: [T]).
(Instr i1 o1 -> Instr i2 o2 -> Instr i o)
-> Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 Instr inp b -> Instr b out -> Instr inp out
forall (a :: [T]) (s :: [T]) (c :: [T]).
Instr a s -> Instr s c -> Instr a c
Seq Instr inp b
i1 Instr b out
i2
WithLoc loc :: InstrCallStack
loc i1 :: Instr inp out
i1 -> (Instr inp out -> Instr inp out)
-> Instr inp out -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (InstrCallStack -> Instr inp out -> Instr inp out
forall (a :: [T]) (b :: [T]).
InstrCallStack -> Instr a b -> Instr a b
WithLoc InstrCallStack
loc) Instr inp out
i1
InstrWithNotes notes :: PackedNotes out
notes i1 :: Instr inp out
i1 -> (Instr inp out -> Instr inp out)
-> Instr inp out -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (PackedNotes out -> Instr inp out -> Instr inp out
forall (b :: [T]) (a :: [T]).
PackedNotes b -> Instr a b -> Instr a b
InstrWithNotes PackedNotes out
notes) Instr inp out
i1
InstrWithVarNotes varNotes :: NonEmpty VarAnn
varNotes i1 :: Instr inp out
i1 -> (Instr inp out -> Instr inp out)
-> Instr inp out -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (NonEmpty VarAnn -> Instr inp out -> Instr inp out
forall (a :: [T]) (b :: [T]).
NonEmpty VarAnn -> Instr a b -> Instr a b
InstrWithVarNotes NonEmpty VarAnn
varNotes) Instr inp out
i1
FrameInstr p :: Proxy s
p i1 :: Instr a b
i1 -> (Instr a b -> Instr inp out) -> Instr a b -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (Proxy s -> Instr a b -> Instr (a ++ s) (b ++ s)
forall (a :: [T]) (b :: [T]) (s :: [T]).
(KnownList a, KnownList b) =>
Proxy s -> Instr a b -> Instr (a ++ s) (b ++ s)
FrameInstr Proxy s
p) Instr a b
i1
Nested i1 :: Instr inp out
i1 -> (Instr inp out -> Instr inp out)
-> Instr inp out -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 Instr inp out -> Instr inp out
forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
Nested Instr inp out
i1
DocGroup dg :: DocGrouping
dg i1 :: Instr inp out
i1 -> (Instr inp out -> Instr inp out)
-> Instr inp out -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (DocGrouping -> Instr inp out -> Instr inp out
forall (inp :: [T]) (out :: [T]).
DocGrouping -> Instr inp out -> Instr inp out
DocGroup DocGrouping
dg) Instr inp out
i1
IF_NONE i1 :: Instr s out
i1 i2 :: Instr (a : s) out
i2 -> (Instr s out -> Instr (a : s) out -> Instr ('TOption a : s) out)
-> Instr s out
-> Instr (a : s) out
-> (Instr ('TOption a : s) out, x)
forall (i :: [T]) (o :: [T]) (i1 :: [T]) (o1 :: [T]) (i2 :: [T])
(o2 :: [T]).
(Instr i1 o1 -> Instr i2 o2 -> Instr i o)
-> Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 Instr s out -> Instr (a : s) out -> Instr ('TOption a : s) out
forall (s :: [T]) (s' :: [T]) (a :: T).
Instr s s' -> Instr (a : s) s' -> Instr ('TOption a : s) s'
IF_NONE Instr s out
i1 Instr (a : s) out
i2
IF_LEFT i1 :: Instr (a : s) out
i1 i2 :: Instr (b : s) out
i2 -> (Instr (a : s) out
-> Instr (b : s) out -> Instr ('TOr a b : s) out)
-> Instr (a : s) out
-> Instr (b : s) out
-> (Instr ('TOr a b : s) out, x)
forall (i :: [T]) (o :: [T]) (i1 :: [T]) (o1 :: [T]) (i2 :: [T])
(o2 :: [T]).
(Instr i1 o1 -> Instr i2 o2 -> Instr i o)
-> Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 Instr (a : s) out -> Instr (b : s) out -> Instr ('TOr a b : s) out
forall (a :: T) (s :: [T]) (s' :: [T]) (b :: T).
Instr (a : s) s' -> Instr (b : s) s' -> Instr ('TOr a b : s) s'
IF_LEFT Instr (a : s) out
i1 Instr (b : s) out
i2
IF_CONS i1 :: Instr (a : 'TList a : s) out
i1 i2 :: Instr s out
i2 -> (Instr (a : 'TList a : s) out
-> Instr s out -> Instr ('TList a : s) out)
-> Instr (a : 'TList a : s) out
-> Instr s out
-> (Instr ('TList a : s) out, x)
forall (i :: [T]) (o :: [T]) (i1 :: [T]) (o1 :: [T]) (i2 :: [T])
(o2 :: [T]).
(Instr i1 o1 -> Instr i2 o2 -> Instr i o)
-> Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 Instr (a : 'TList a : s) out
-> Instr s out -> Instr ('TList a : s) out
forall (a :: T) (s :: [T]) (s' :: [T]).
Instr (a : 'TList a : s) s'
-> Instr s s' -> Instr ('TList a : s) s'
IF_CONS Instr (a : 'TList a : s) out
i1 Instr s out
i2
IF i1 :: Instr s out
i1 i2 :: Instr s out
i2 -> (Instr s out -> Instr s out -> Instr ('TBool : s) out)
-> Instr s out -> Instr s out -> (Instr ('TBool : s) out, x)
forall (i :: [T]) (o :: [T]) (i1 :: [T]) (o1 :: [T]) (i2 :: [T])
(o2 :: [T]).
(Instr i1 o1 -> Instr i2 o2 -> Instr i o)
-> Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 Instr s out -> Instr s out -> Instr ('TBool : s) out
forall (s :: [T]) (s' :: [T]).
Instr s s' -> Instr s s' -> Instr ('TBool : s) s'
IF Instr s out
i1 Instr s out
i2
MAP i1 :: Instr (MapOpInp c : s) (b : s)
i1 -> (Instr (MapOpInp c : s) (b : s) -> Instr (c : s) out)
-> Instr (MapOpInp c : s) (b : s) -> (Instr (c : s) out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 Instr (MapOpInp c : s) (b : s) -> Instr (c : s) out
forall (c :: T) (b :: T) (s :: [T]).
(MapOp c, KnownT b) =>
Instr (MapOpInp c : s) (b : s) -> Instr (c : s) (MapOpRes c b : s)
MAP Instr (MapOpInp c : s) (b : s)
i1
ITER i1 :: Instr (IterOpEl c : out) out
i1 -> (Instr (IterOpEl c : out) out -> Instr (c : out) out)
-> Instr (IterOpEl c : out) out -> (Instr (c : out) out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 Instr (IterOpEl c : out) out -> Instr (c : out) out
forall (c :: T) (s :: [T]).
IterOp c =>
Instr (IterOpEl c : s) s -> Instr (c : s) s
ITER Instr (IterOpEl c : out) out
i1
LOOP i1 :: Instr out ('TBool : out)
i1 -> (Instr out ('TBool : out) -> Instr ('TBool : out) out)
-> Instr out ('TBool : out) -> (Instr ('TBool : out) out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 Instr out ('TBool : out) -> Instr ('TBool : out) out
forall (s :: [T]). Instr s ('TBool : s) -> Instr ('TBool : s) s
LOOP Instr out ('TBool : out)
i1
LOOP_LEFT i1 :: Instr (a : s) ('TOr a b : s)
i1 -> (Instr (a : s) ('TOr a b : s) -> Instr ('TOr a b : s) (b : s))
-> Instr (a : s) ('TOr a b : s)
-> (Instr ('TOr a b : s) (b : s), x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 Instr (a : s) ('TOr a b : s) -> Instr ('TOr a b : s) (b : s)
forall (a :: T) (s :: [T]) (b :: T).
Instr (a : s) ('TOr a b : s) -> Instr ('TOr a b : s) (b : s)
LOOP_LEFT Instr (a : s) ('TOr a b : s)
i1
DIP i1 :: Instr a c
i1 -> (Instr a c -> Instr (b : a) (b : c))
-> Instr a c -> (Instr (b : a) (b : c), x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 Instr a c -> Instr (b : a) (b : c)
forall (a :: [T]) (c :: [T]) (b :: T).
Instr a c -> Instr (b : a) (b : c)
DIP Instr a c
i1
DIPN s :: Sing n
s i1 :: Instr s s'
i1 -> (Instr s s' -> Instr inp out) -> Instr s s' -> (Instr inp out, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (Sing n -> Instr s s' -> Instr inp out
forall (n :: Peano) (inp :: [T]) (out :: [T]) (s :: [T])
(s' :: [T]).
(ConstraintDIPN n inp out s s', NFData (Sing n)) =>
Sing n -> Instr s s' -> Instr inp out
DIPN Sing n
s) Instr s s'
i1
PUSH v :: Value' Instr t
v -> (Instr inp out, x)
-> Maybe (Instr inp out, x) -> (Instr inp out, x)
forall a. a -> Maybe a -> a
fromMaybe (Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i) do
Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard Bool
dsGoToValues
let
valueStep :: forall t . Value t -> (Value t, Maybe x)
valueStep :: Value t -> (Value t, Maybe x)
valueStep = \case
VLam lambda :: RemFail Instr '[inp] '[out]
lambda -> (Instr '[inp] '[out] -> Value' Instr ('TLambda inp out))
-> (x -> Maybe x)
-> (Instr '[inp] '[out], x)
-> (Value' Instr ('TLambda inp out), Maybe x)
forall (p :: * -> * -> *) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap (RemFail Instr '[inp] '[out] -> Value' Instr ('TLambda inp out)
forall (inp :: T) (out :: T) (instr :: [T] -> [T] -> *).
(KnownT inp, KnownT out,
forall (i :: [T]) (o :: [T]). Show (instr i o),
forall (i :: [T]) (o :: [T]). Eq (instr i o),
forall (i :: [T]) (o :: [T]). NFData (instr i o)) =>
RemFail instr '[inp] '[out] -> Value' instr ('TLambda inp out)
VLam (RemFail Instr '[inp] '[out] -> Value' Instr ('TLambda inp out))
-> (Instr '[inp] '[out] -> RemFail Instr '[inp] '[out])
-> Instr '[inp] '[out]
-> Value' Instr ('TLambda inp out)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Instr '[inp] '[out] -> RemFail Instr '[inp] '[out]
forall (i :: [T]) (o :: [T]).
HasCallStack =>
Instr i o -> RemFail Instr i o
analyzeInstrFailure) x -> Maybe x
forall a. a -> Maybe a
Just ((Instr '[inp] '[out], x) -> (Value t, Maybe x))
-> (Instr '[inp] '[out], x) -> (Value t, Maybe x)
forall a b. (a -> b) -> a -> b
$
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr '[inp] '[out]
-> (Instr '[inp] '[out], x)
forall x (inp :: [T]) (out :: [T]).
Semigroup x =>
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr DfsSettings x
settings forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step (RemFail Instr '[inp] '[out] -> Instr '[inp] '[out]
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
RemFail instr i o -> instr i o
rfAnyInstr RemFail Instr '[inp] '[out]
lambda)
otherV :: Value t
otherV -> (Value t
otherV, Maybe x
forall a. Maybe a
Nothing)
let
(innerV :: Value' Instr t
innerV, innerXMaybe :: Maybe x
innerXMaybe) = (forall (t' :: T). Value t' -> (Value t', Maybe x))
-> Value' Instr t -> (Value' Instr t, Maybe x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue forall (t' :: T). Value t' -> (Value t', Maybe x)
valueStep Value' Instr t
v
x
innerX <- Maybe x
innerXMaybe
let (outerI :: Instr inp (t : inp)
outerI, outerX :: x
outerX) = Instr inp (t : inp) -> (Instr inp (t : inp), x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step (Instr inp (t : inp) -> (Instr inp (t : inp), x))
-> Instr inp (t : inp) -> (Instr inp (t : inp), x)
forall a b. (a -> b) -> a -> b
$ Value' Instr t -> Instr inp (t : inp)
forall (t :: T) (s :: [T]).
ConstantScope t =>
Value' Instr t -> Instr s (t : s)
PUSH Value' Instr t
innerV
pure $ CtorEffectsApp x
-> x -> x -> Instr inp (t : inp) -> (Instr inp (t : inp), x)
forall x.
CtorEffectsApp x
-> forall (i :: [T]) (o :: [T]).
Semigroup x =>
x -> x -> Instr i o -> (Instr i o, x)
ceaApplyEffects CtorEffectsApp x
dsCtorEffectsApp x
innerX x
outerX Instr inp (t : inp)
outerI
LAMBDA (VLam i1 :: RemFail Instr '[inp] '[out]
i1)
| Bool
dsGoToValues ->
(Instr '[inp] '[out] -> Instr inp ('TLambda inp out : inp))
-> Instr '[inp] '[out] -> (Instr inp ('TLambda inp out : inp), x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (Value' Instr ('TLambda inp out)
-> Instr inp ('TLambda inp out : inp)
forall (i :: T) (o :: T) (s :: [T]).
(KnownT i, KnownT o) =>
Value' Instr ('TLambda i o) -> Instr s ('TLambda i o : s)
LAMBDA (Value' Instr ('TLambda inp out)
-> Instr inp ('TLambda inp out : inp))
-> (Instr '[inp] '[out] -> Value' Instr ('TLambda inp out))
-> Instr '[inp] '[out]
-> Instr inp ('TLambda inp out : inp)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RemFail Instr '[inp] '[out] -> Value' Instr ('TLambda inp out)
forall (inp :: T) (out :: T) (instr :: [T] -> [T] -> *).
(KnownT inp, KnownT out,
forall (i :: [T]) (o :: [T]). Show (instr i o),
forall (i :: [T]) (o :: [T]). Eq (instr i o),
forall (i :: [T]) (o :: [T]). NFData (instr i o)) =>
RemFail instr '[inp] '[out] -> Value' instr ('TLambda inp out)
VLam (RemFail Instr '[inp] '[out] -> Value' Instr ('TLambda inp out))
-> (Instr '[inp] '[out] -> RemFail Instr '[inp] '[out])
-> Instr '[inp] '[out]
-> Value' Instr ('TLambda inp out)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Instr '[inp] '[out] -> RemFail Instr '[inp] '[out]
forall (i :: [T]) (o :: [T]).
HasCallStack =>
Instr i o -> RemFail Instr i o
analyzeInstrFailure) (RemFail Instr '[inp] '[out] -> Instr '[inp] '[out]
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
RemFail instr i o -> instr i o
rfAnyInstr RemFail Instr '[inp] '[out]
i1)
| Bool
otherwise -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CREATE_CONTRACT contract :: Contract p g
contract
| Bool
dsGoToValues ->
let updateContractCode :: ContractCode p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s)
updateContractCode code :: ContractCode p g
code = Contract p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s)
forall (p :: T) (g :: T) (s :: [T]).
(ParameterScope p, StorageScope g) =>
Contract p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s)
CREATE_CONTRACT (Contract p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s))
-> Contract p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s)
forall a b. (a -> b) -> a -> b
$ Contract p g
contract{ cCode :: ContractCode p g
cCode = ContractCode p g
code }
in (ContractCode p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s))
-> ContractCode p g
-> (Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s),
x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 ContractCode p g
-> Instr
('TOption 'TKeyHash : 'TMutez : g : s)
('TOperation : 'TAddress : s)
updateContractCode (ContractCode p g -> (Instr inp out, x))
-> ContractCode p g -> (Instr inp out, x)
forall a b. (a -> b) -> a -> b
$ Contract p g -> ContractCode p g
forall (cp :: T) (st :: T). Contract cp st -> ContractCode cp st
cCode Contract p g
contract
| Bool
otherwise -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
Nop{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
Ext (TEST_ASSERT (TestAssert nm :: Text
nm pc :: PrintComment inp
pc i1 :: Instr inp ('TBool : out)
i1)) ->
(Instr inp ('TBool : out) -> Instr inp inp)
-> Instr inp ('TBool : out) -> (Instr inp inp, x)
forall (a :: [T]) (b :: [T]) (c :: [T]) (d :: [T]).
(Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 (ExtInstr inp -> Instr inp inp
forall (s :: [T]). ExtInstr s -> Instr s s
Ext (ExtInstr inp -> Instr inp inp)
-> (Instr inp ('TBool : out) -> ExtInstr inp)
-> Instr inp ('TBool : out)
-> Instr inp inp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TestAssert inp -> ExtInstr inp
forall (s :: [T]). TestAssert s -> ExtInstr s
TEST_ASSERT (TestAssert inp -> ExtInstr inp)
-> (Instr inp ('TBool : out) -> TestAssert inp)
-> Instr inp ('TBool : out)
-> ExtInstr inp
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text
-> PrintComment inp -> Instr inp ('TBool : out) -> TestAssert inp
forall (out :: [T]) (inp :: [T]).
Typeable out =>
Text
-> PrintComment inp -> Instr inp ('TBool : out) -> TestAssert inp
TestAssert Text
nm PrintComment inp
pc) Instr inp ('TBool : out)
i1
Ext{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
AnnCAR{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
AnnCDR{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
DROP{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
DROPN{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
DUP{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SWAP{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
DIG{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
DUG{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SOME{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
NONE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
UNIT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
AnnPAIR{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
LEFT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
RIGHT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
NIL{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CONS{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SIZE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
EMPTY_SET{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
EMPTY_MAP{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
EMPTY_BIG_MAP{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
MEM{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
GET{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
UPDATE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
EXEC{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
APPLY{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
FAILWITH{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CAST{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
RENAME{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
PACK{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
UNPACK{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CONCAT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CONCAT'{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SLICE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
ISNAT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
ADD{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SUB{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
MUL{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
EDIV{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
ABS{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
NEG{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
LSL{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
LSR{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
OR{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
AND{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
XOR{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
NOT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
COMPARE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
EQ{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
NEQ{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
LT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
GT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
LE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
GE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
INT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SELF{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CONTRACT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
TRANSFER_TOKENS{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SET_DELEGATE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
IMPLICIT_ACCOUNT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
NOW{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
AMOUNT{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
BALANCE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CHECK_SIGNATURE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SHA256{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SHA512{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
BLAKE2B{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SHA3{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
KECCAK{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
HASH_KEY{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SOURCE{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
SENDER{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
ADDRESS{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
CHAIN_ID{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
LEVEL{} -> Instr inp out -> (Instr inp out, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr inp out
i
where
recursion1 ::
forall a b c d. (Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 :: (Instr a b -> Instr c d) -> Instr a b -> (Instr c d, x)
recursion1 constructor :: Instr a b -> Instr c d
constructor i0 :: Instr a b
i0 =
let
(innerI :: Instr a b
innerI, innerX :: x
innerX) = DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr a b
-> (Instr a b, x)
forall x (inp :: [T]) (out :: [T]).
Semigroup x =>
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr DfsSettings x
settings forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr a b
i0
(outerI :: Instr c d
outerI, outerX :: x
outerX) = Instr c d -> (Instr c d, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step (Instr c d -> (Instr c d, x)) -> Instr c d -> (Instr c d, x)
forall a b. (a -> b) -> a -> b
$ Instr a b -> Instr c d
constructor Instr a b
innerI
in CtorEffectsApp x -> x -> x -> Instr c d -> (Instr c d, x)
forall x.
CtorEffectsApp x
-> forall (i :: [T]) (o :: [T]).
Semigroup x =>
x -> x -> Instr i o -> (Instr i o, x)
ceaApplyEffects CtorEffectsApp x
dsCtorEffectsApp x
innerX x
outerX Instr c d
outerI
recursion2 ::
forall i o i1 o1 i2 o2.
(Instr i1 o1 -> Instr i2 o2 -> Instr i o) ->
Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 :: (Instr i1 o1 -> Instr i2 o2 -> Instr i o)
-> Instr i1 o1 -> Instr i2 o2 -> (Instr i o, x)
recursion2 constructor :: Instr i1 o1 -> Instr i2 o2 -> Instr i o
constructor i1 :: Instr i1 o1
i1 i2 :: Instr i2 o2
i2 =
let
(i1' :: Instr i1 o1
i1', x1 :: x
x1) = DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr i1 o1
-> (Instr i1 o1, x)
forall x (inp :: [T]) (out :: [T]).
Semigroup x =>
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr DfsSettings x
settings forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr i1 o1
i1
(i2' :: Instr i2 o2
i2', x2 :: x
x2) = DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr i2 o2
-> (Instr i2 o2, x)
forall x (inp :: [T]) (out :: [T]).
Semigroup x =>
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr DfsSettings x
settings forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step Instr i2 o2
i2
(i' :: Instr i o
i', x :: x
x) = Instr i o -> (Instr i o, x)
forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x)
step (Instr i o -> (Instr i o, x)) -> Instr i o -> (Instr i o, x)
forall a b. (a -> b) -> a -> b
$ Instr i1 o1 -> Instr i2 o2 -> Instr i o
constructor Instr i1 o1
i1' Instr i2 o2
i2'
in CtorEffectsApp x -> x -> x -> Instr i o -> (Instr i o, x)
forall x.
CtorEffectsApp x
-> forall (i :: [T]) (o :: [T]).
Semigroup x =>
x -> x -> Instr i o -> (Instr i o, x)
ceaApplyEffects CtorEffectsApp x
dsCtorEffectsApp (x
x1 x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
x2) x
x Instr i o
i'
dfsFoldInstr
:: forall x inp out.
(Semigroup x)
=> DfsSettings x
-> (forall i o. Instr i o -> x)
-> Instr inp out
-> x
dfsFoldInstr :: DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> x)
-> Instr inp out
-> x
dfsFoldInstr settings :: DfsSettings x
settings step :: forall (i :: [T]) (o :: [T]). Instr i o -> x
step instr :: Instr inp out
instr =
(Instr inp out, x) -> x
forall a b. (a, b) -> b
snd ((Instr inp out, x) -> x) -> (Instr inp out, x) -> x
forall a b. (a -> b) -> a -> b
$ DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
forall x (inp :: [T]) (out :: [T]).
Semigroup x =>
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr DfsSettings x
settings (\i :: Instr i o
i -> (Instr i o
i, Instr i o -> x
forall (i :: [T]) (o :: [T]). Instr i o -> x
step Instr i o
i)) Instr inp out
instr
dfsModifyInstr
:: DfsSettings ()
-> (forall i o. Instr i o -> Instr i o)
-> Instr inp out
-> Instr inp out
dfsModifyInstr :: DfsSettings ()
-> (forall (inp :: [T]) (out :: [T]).
Instr inp out -> Instr inp out)
-> Instr inp out
-> Instr inp out
dfsModifyInstr settings :: DfsSettings ()
settings step :: forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
step instr :: Instr inp out
instr =
(Instr inp out, ()) -> Instr inp out
forall a b. (a, b) -> a
fst ((Instr inp out, ()) -> Instr inp out)
-> (Instr inp out, ()) -> Instr inp out
forall a b. (a -> b) -> a -> b
$ DfsSettings ()
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, ()))
-> Instr inp out
-> (Instr inp out, ())
forall x (inp :: [T]) (out :: [T]).
Semigroup x =>
DfsSettings x
-> (forall (i :: [T]) (o :: [T]). Instr i o -> (Instr i o, x))
-> Instr inp out
-> (Instr inp out, x)
dfsInstr DfsSettings ()
settings (\i :: Instr i o
i -> (Instr i o -> Instr i o
forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
step Instr i o
i, ())) Instr inp out
instr
analyzeInstrFailure :: HasCallStack => Instr i o -> RemFail Instr i o
analyzeInstrFailure :: Instr i o -> RemFail Instr i o
analyzeInstrFailure = Instr i o -> RemFail Instr i o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go
where
go :: Instr i o -> RemFail Instr i o
go :: Instr i o -> RemFail Instr i o
go = \case
WithLoc loc :: InstrCallStack
loc i :: Instr i o
i -> case Instr i o -> RemFail Instr i o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr i o
i of
RfNormal i0 :: Instr i o
i0 ->
Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal (InstrCallStack -> Instr i o -> Instr i o
forall (a :: [T]) (b :: [T]).
InstrCallStack -> Instr a b -> Instr a b
WithLoc InstrCallStack
loc Instr i o
i0)
r :: RemFail Instr i o
r -> RemFail Instr i o
r
InstrWithNotes pn :: PackedNotes o
pn i :: Instr i o
i -> case Instr i o -> RemFail Instr i o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr i o
i of
RfNormal i0 :: Instr i o
i0 ->
Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal (PackedNotes o -> Instr i o -> Instr i o
forall (b :: [T]) (a :: [T]).
PackedNotes b -> Instr a b -> Instr a b
InstrWithNotes PackedNotes o
pn Instr i o
i0)
RfAlwaysFails i0 :: forall (o' :: [T]). Instr i o'
i0 ->
Text -> RemFail Instr i o
forall a. HasCallStack => Text -> a
error (Text -> RemFail Instr i o) -> Text -> RemFail Instr i o
forall a b. (a -> b) -> a -> b
$ "InstrWithNotes wraps always-failing instruction: " Text -> Text -> Text
forall a. Semigroup a => a -> a -> a
<> Instr i Any -> Text
forall b a. (Show a, IsString b) => a -> b
show Instr i Any
forall (o' :: [T]). Instr i o'
i0
InstrWithVarNotes vn :: NonEmpty VarAnn
vn i :: Instr i o
i -> case Instr i o -> RemFail Instr i o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr i o
i of
RfNormal i0 :: Instr i o
i0 ->
Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal (NonEmpty VarAnn -> Instr i o -> Instr i o
forall (a :: [T]) (b :: [T]).
NonEmpty VarAnn -> Instr a b -> Instr a b
InstrWithVarNotes NonEmpty VarAnn
vn Instr i o
i0)
RfAlwaysFails i0 :: forall (o' :: [T]). Instr i o'
i0 ->
Text -> RemFail Instr i o
forall a. HasCallStack => Text -> a
error (Text -> RemFail Instr i o) -> Text -> RemFail Instr i o
forall a b. (a -> b) -> a -> b
$ "InstrWithVarNotes wraps always-failing instruction: " Text -> Text -> Text
forall a. Semigroup a => a -> a -> a
<> Instr i Any -> Text
forall b a. (Show a, IsString b) => a -> b
show Instr i Any
forall (o' :: [T]). Instr i o'
i0
FrameInstr s :: Proxy s
s i :: Instr a b
i -> case Instr a b -> RemFail Instr a b
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr a b
i of
RfNormal i0 :: Instr a b
i0 ->
Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal (Proxy s -> Instr a b -> Instr (a ++ s) (b ++ s)
forall (a :: [T]) (b :: [T]) (s :: [T]).
(KnownList a, KnownList b) =>
Proxy s -> Instr a b -> Instr (a ++ s) (b ++ s)
FrameInstr Proxy s
s Instr a b
i0)
RfAlwaysFails i0 :: forall (o' :: [T]). Instr a o'
i0 ->
Text -> RemFail Instr i o
forall a. HasCallStack => Text -> a
error (Text -> RemFail Instr i o) -> Text -> RemFail Instr i o
forall a b. (a -> b) -> a -> b
$ "FrameInstr wraps always-failing instruction: " Text -> Text -> Text
forall a. Semigroup a => a -> a -> a
<> Instr a Any -> Text
forall b a. (Show a, IsString b) => a -> b
show Instr a Any
forall (o' :: [T]). Instr a o'
i0
Seq a :: Instr i b
a b :: Instr b o
b -> Instr i b -> Instr b o' -> Instr i o'
forall (a :: [T]) (s :: [T]) (c :: [T]).
Instr a s -> Instr s c -> Instr a c
Seq Instr i b
a (forall (o' :: [T]). Instr b o' -> Instr i o')
-> RemFail Instr b o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o')
-> RemFail instr i1 o -> RemFail instr i2 o
`rfMapAnyInstr` Instr b o -> RemFail Instr b o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr b o
b
Nop -> Instr i i -> RemFail Instr i i
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i i
forall (s :: [T]). Instr s s
Nop
Ext e :: ExtInstr i
e -> Instr i i -> RemFail Instr i i
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal (ExtInstr i -> Instr i i
forall (s :: [T]). ExtInstr s -> Instr s s
Ext ExtInstr i
e)
Nested i :: Instr i o
i -> forall (o' :: [T]). Instr i o' -> Instr i o'
forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
Nested (forall (o' :: [T]). Instr i o' -> Instr i o')
-> RemFail Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o')
-> RemFail instr i1 o -> RemFail instr i2 o
`rfMapAnyInstr` Instr i o -> RemFail Instr i o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr i o
i
DocGroup g :: DocGrouping
g i :: Instr i o
i -> DocGrouping -> Instr i o' -> Instr i o'
forall (inp :: [T]) (out :: [T]).
DocGrouping -> Instr inp out -> Instr inp out
DocGroup DocGrouping
g (forall (o' :: [T]). Instr i o' -> Instr i o')
-> RemFail Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o')
-> RemFail instr i1 o -> RemFail instr i2 o
`rfMapAnyInstr` Instr i o -> RemFail Instr i o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr i o
i
IF_NONE l :: Instr s o
l r :: Instr (a : s) o
r -> (forall (o' :: [T]). Instr s o' -> Instr (a : s) o' -> Instr i o')
-> RemFail Instr s o
-> RemFail Instr (a : s) o
-> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (i3 :: k)
(o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o' -> instr i3 o')
-> RemFail instr i1 o -> RemFail instr i2 o -> RemFail instr i3 o
rfMerge forall (o' :: [T]). Instr s o' -> Instr (a : s) o' -> Instr i o'
forall (s :: [T]) (s' :: [T]) (a :: T).
Instr s s' -> Instr (a : s) s' -> Instr ('TOption a : s) s'
IF_NONE (Instr s o -> RemFail Instr s o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr s o
l) (Instr (a : s) o -> RemFail Instr (a : s) o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr (a : s) o
r)
IF_LEFT l :: Instr (a : s) o
l r :: Instr (b : s) o
r -> (forall (o' :: [T]).
Instr (a : s) o' -> Instr (b : s) o' -> Instr i o')
-> RemFail Instr (a : s) o
-> RemFail Instr (b : s) o
-> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (i3 :: k)
(o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o' -> instr i3 o')
-> RemFail instr i1 o -> RemFail instr i2 o -> RemFail instr i3 o
rfMerge forall (o' :: [T]).
Instr (a : s) o' -> Instr (b : s) o' -> Instr i o'
forall (a :: T) (s :: [T]) (s' :: [T]) (b :: T).
Instr (a : s) s' -> Instr (b : s) s' -> Instr ('TOr a b : s) s'
IF_LEFT (Instr (a : s) o -> RemFail Instr (a : s) o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr (a : s) o
l) (Instr (b : s) o -> RemFail Instr (b : s) o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr (b : s) o
r)
IF_CONS l :: Instr (a : 'TList a : s) o
l r :: Instr s o
r -> (forall (o' :: [T]).
Instr (a : 'TList a : s) o' -> Instr s o' -> Instr i o')
-> RemFail Instr (a : 'TList a : s) o
-> RemFail Instr s o
-> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (i3 :: k)
(o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o' -> instr i3 o')
-> RemFail instr i1 o -> RemFail instr i2 o -> RemFail instr i3 o
rfMerge forall (o' :: [T]).
Instr (a : 'TList a : s) o' -> Instr s o' -> Instr i o'
forall (a :: T) (s :: [T]) (s' :: [T]).
Instr (a : 'TList a : s) s'
-> Instr s s' -> Instr ('TList a : s) s'
IF_CONS (Instr (a : 'TList a : s) o -> RemFail Instr (a : 'TList a : s) o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr (a : 'TList a : s) o
l) (Instr s o -> RemFail Instr s o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr s o
r)
IF l :: Instr s o
l r :: Instr s o
r -> (forall (o' :: [T]). Instr s o' -> Instr s o' -> Instr i o')
-> RemFail Instr s o -> RemFail Instr s o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i1 :: k) (i2 :: k) (i3 :: k)
(o :: k).
(forall (o' :: k). instr i1 o' -> instr i2 o' -> instr i3 o')
-> RemFail instr i1 o -> RemFail instr i2 o -> RemFail instr i3 o
rfMerge forall (o' :: [T]). Instr s o' -> Instr s o' -> Instr i o'
forall (s :: [T]) (s' :: [T]).
Instr s s' -> Instr s s' -> Instr ('TBool : s) s'
IF (Instr s o -> RemFail Instr s o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr s o
l) (Instr s o -> RemFail Instr s o
forall (i :: [T]) (o :: [T]). Instr i o -> RemFail Instr i o
go Instr s o
r)
i :: Instr i o
i@MAP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@ITER{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@LOOP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@LOOP_LEFT{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@LAMBDA{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DIP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DIPN{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@AnnCAR{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@AnnCDR{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DROP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DROPN{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DUP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@SWAP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DIG{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@DUG{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@PUSH{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@SOME{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@NONE{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@UNIT{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@AnnPAIR{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@LEFT{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@RIGHT{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@NIL{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@CONS{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@SIZE{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@EMPTY_SET{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@EMPTY_MAP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@EMPTY_BIG_MAP{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@MEM{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@GET{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@UPDATE{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@EXEC{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@APPLY{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
FAILWITH -> (forall (o' :: [T]). Instr i o') -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
(forall (o' :: k). instr i o') -> RemFail instr i o
RfAlwaysFails forall (o' :: [T]). Instr i o'
forall (a :: T) (s :: [T]) (t :: [T]). KnownT a => Instr (a : s) t
FAILWITH
i :: Instr i o
i@Instr i o
CAST -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
RENAME -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
PACK -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
UNPACK -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
CONCAT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
CONCAT' -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SLICE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
ISNAT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
ADD -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SUB -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
MUL -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
EDIV -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
ABS -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
NEG -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
LSL -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
LSR -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
OR -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
AND -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
XOR -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
NOT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
COMPARE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
EQ -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
NEQ -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
LT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
GT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
LE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
GE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
INT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@SELF{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@CONTRACT{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
TRANSFER_TOKENS -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SET_DELEGATE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@CREATE_CONTRACT{} -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
IMPLICIT_ACCOUNT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
NOW -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
AMOUNT -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
BALANCE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
CHECK_SIGNATURE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SHA256 -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SHA512 -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
BLAKE2B -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SHA3 -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
KECCAK -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
HASH_KEY -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SOURCE -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
SENDER -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
ADDRESS -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
CHAIN_ID -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
i :: Instr i o
i@Instr i o
LEVEL -> Instr i o -> RemFail Instr i o
forall k (instr :: k -> k -> *) (i :: k) (o :: k).
instr i o -> RemFail instr i o
RfNormal Instr i o
i
linearizeLeft :: Instr inp out -> Instr inp out
linearizeLeft :: Instr inp out -> Instr inp out
linearizeLeft = Bool -> Instr inp out -> Instr inp out
forall (inp :: [T]) (out :: [T]).
Bool -> Instr inp out -> Instr inp out
linearizeLeftHelper Bool
False
where
linearizeLeftHelper :: Bool -> Instr inp out -> Instr inp out
linearizeLeftHelper :: Bool -> Instr inp out -> Instr inp out
linearizeLeftHelper isLeftInstrAlreadyLinear :: Bool
isLeftInstrAlreadyLinear =
\case
Seq i1 :: Instr inp b
i1 (Seq i2 :: Instr b b
i2 i3 :: Instr b out
i3) ->
Bool -> Instr inp out -> Instr inp out
forall (inp :: [T]) (out :: [T]).
Bool -> Instr inp out -> Instr inp out
linearizeLeftHelper Bool
True (Instr inp out -> Instr inp out) -> Instr inp out -> Instr inp out
forall a b. (a -> b) -> a -> b
$
Instr inp b -> Instr b out -> Instr inp out
forall (a :: [T]) (s :: [T]) (c :: [T]).
Instr a s -> Instr s c -> Instr a c
Seq (Bool -> Instr inp b -> Instr inp b
forall (inp :: [T]) (out :: [T]).
Bool -> Instr inp out -> Instr inp out
linearizeLeftHelper Bool
isLeftInstrAlreadyLinear (Instr inp b -> Instr b b -> Instr inp b
forall (a :: [T]) (s :: [T]) (c :: [T]).
Instr a s -> Instr s c -> Instr a c
Seq Instr inp b
i1 Instr b b
i2)) Instr b out
i3
Seq i1 :: Instr inp b
i1 i2 :: Instr b out
i2
| Bool
isLeftInstrAlreadyLinear
, Instr b out
Nop <- Instr b out
i2 -> Instr inp out
Instr inp b
i1
| Bool
isLeftInstrAlreadyLinear -> Instr inp b -> Instr b out -> Instr inp out
forall (a :: [T]) (s :: [T]) (c :: [T]).
Instr a s -> Instr s c -> Instr a c
Seq Instr inp b
i1 Instr b out
i2
| Instr b out
Nop <- Instr b out
i2 -> Instr inp b -> Instr inp b
forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
linearizeLeft Instr inp b
i1
| Bool
otherwise -> Instr inp b -> Instr b out -> Instr inp out
forall (a :: [T]) (s :: [T]) (c :: [T]).
Instr a s -> Instr s c -> Instr a c
Seq (Instr inp b -> Instr inp b
forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
linearizeLeft Instr inp b
i1) Instr b out
i2
i :: Instr inp out
i -> Instr inp out
i
linearizeLeftDeep :: Instr inp out -> Instr inp out
linearizeLeftDeep :: Instr inp out -> Instr inp out
linearizeLeftDeep = DfsSettings ()
-> (forall (inp :: [T]) (out :: [T]).
Instr inp out -> Instr inp out)
-> Instr inp out
-> Instr inp out
forall (inp :: [T]) (out :: [T]).
DfsSettings ()
-> (forall (inp :: [T]) (out :: [T]).
Instr inp out -> Instr inp out)
-> Instr inp out
-> Instr inp out
dfsModifyInstr DfsSettings ()
forall a. Default a => a
def forall (inp :: [T]) (out :: [T]). Instr inp out -> Instr inp out
linearizeLeft
dfsValue ::
forall t x.
Monoid x
=> (forall t'. Value t' -> (Value t', x))
-> Value t
-> (Value t, x)
dfsValue :: (forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue step :: forall (t' :: T). Value t' -> (Value t', x)
step i :: Value t
i = case Value t
i of
VKey{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VUnit -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VSignature{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VChainId{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VOp{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VContract{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VLam{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VInt{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VNat{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VString{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VBytes{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VMutez{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VBool{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VKeyHash{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VTimestamp{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VAddress{} -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
VOption mVal :: Maybe (Value' Instr t)
mVal -> case Maybe (Value' Instr t)
mVal of
Nothing -> Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value t
i
Just val :: Value' Instr t
val -> (Value' Instr t -> Value t) -> Value' Instr t -> (Value t, x)
forall (t' :: T). (Value t' -> Value t) -> Value t' -> (Value t, x)
recursion1 (Maybe (Value' Instr t) -> Value' Instr ('TOption t)
forall (t :: T) (instr :: [T] -> [T] -> *).
KnownT t =>
Maybe (Value' instr t) -> Value' instr ('TOption t)
VOption (Maybe (Value' Instr t) -> Value' Instr ('TOption t))
-> (Value' Instr t -> Maybe (Value' Instr t))
-> Value' Instr t
-> Value' Instr ('TOption t)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value' Instr t -> Maybe (Value' Instr t)
forall a. a -> Maybe a
Just) Value' Instr t
val
VList vals :: [Value' Instr t]
vals ->
let
(vs :: [Value' Instr t]
vs, xs :: [x]
xs) = [(Value' Instr t, x)] -> ([Value' Instr t], [x])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(Value' Instr t, x)] -> ([Value' Instr t], [x]))
-> [(Value' Instr t, x)] -> ([Value' Instr t], [x])
forall a b. (a -> b) -> a -> b
$ (Value' Instr t -> (Value' Instr t, x))
-> [Value' Instr t] -> [(Value' Instr t, x)]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
map ((forall (t' :: T). Value t' -> (Value t', x))
-> Value' Instr t -> (Value' Instr t, x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue forall (t' :: T). Value t' -> (Value t', x)
step) [Value' Instr t]
vals
(v :: Value ('TList t)
v, x :: x
x) = Value ('TList t) -> (Value ('TList t), x)
forall (t' :: T). Value t' -> (Value t', x)
step (Value ('TList t) -> (Value ('TList t), x))
-> Value ('TList t) -> (Value ('TList t), x)
forall a b. (a -> b) -> a -> b
$ [Value' Instr t] -> Value ('TList t)
forall (t :: T) (instr :: [T] -> [T] -> *).
KnownT t =>
[Value' instr t] -> Value' instr ('TList t)
VList [Value' Instr t]
vs
in
(Value t
Value ('TList t)
v, x
x x -> x -> x
forall a. Semigroup a => a -> a -> a
<> [x] -> x
forall (t :: * -> *) m. (Foldable t, Monoid m) => t m -> m
F.fold [x]
xs)
VSet vals :: Set (Value' Instr t)
vals ->
let
(cs :: Set (Value' Instr t)
cs, cxs :: x
cxs) =
(Value' Instr t
-> (Set (Value' Instr t), x) -> (Set (Value' Instr t), x))
-> (Set (Value' Instr t), x)
-> Set (Value' Instr t)
-> (Set (Value' Instr t), x)
forall a b. (a -> b -> b) -> b -> Set a -> b
S.foldr (\a :: Value' Instr t
a (s :: Set (Value' Instr t)
s, xs :: x
xs) -> let (c :: Value' Instr t
c, x :: x
x) = Value' Instr t -> (Value' Instr t, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value' Instr t
a in (Value' Instr t -> Set (Value' Instr t) -> Set (Value' Instr t)
forall a. Ord a => a -> Set a -> Set a
S.insert Value' Instr t
c Set (Value' Instr t)
s, x
x x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
xs))
(Set (Value' Instr t)
forall a. Set a
S.empty, x
forall a. Monoid a => a
mempty) Set (Value' Instr t)
vals
(v :: Value ('TSet t)
v, vx :: x
vx) = Value ('TSet t) -> (Value ('TSet t), x)
forall (t' :: T). Value t' -> (Value t', x)
step (Set (Value' Instr t) -> Value ('TSet t)
forall (t :: T) (instr :: [T] -> [T] -> *).
(KnownT t, Comparable t) =>
Set (Value' instr t) -> Value' instr ('TSet t)
VSet Set (Value' Instr t)
cs)
in (Value t
Value ('TSet t)
v, x
vx x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
cxs)
VPair (v1 :: Value' Instr l
v1, v2 :: Value' Instr r
v2) -> (Value' Instr l -> Value' Instr r -> Value t)
-> Value' Instr l -> Value' Instr r -> (Value t, x)
forall (t1 :: T) (t2 :: T).
(Value t1 -> Value t2 -> Value t)
-> Value t1 -> Value t2 -> (Value t, x)
recursion2 (((Value' Instr l, Value' Instr r) -> Value' Instr ('TPair l r))
-> Value' Instr l -> Value' Instr r -> Value' Instr ('TPair l r)
forall a b c. ((a, b) -> c) -> a -> b -> c
curry (Value' Instr l, Value' Instr r) -> Value' Instr ('TPair l r)
forall (l :: T) (r :: T) (instr :: [T] -> [T] -> *).
(Value' instr l, Value' instr r) -> Value' instr ('TPair l r)
VPair) Value' Instr l
v1 Value' Instr r
v2
VOr vEither :: Either (Value' Instr l) (Value' Instr r)
vEither -> case Either (Value' Instr l) (Value' Instr r)
vEither of
Left v :: Value' Instr l
v -> (Value' Instr l -> Value t) -> Value' Instr l -> (Value t, x)
forall (t' :: T). (Value t' -> Value t) -> Value t' -> (Value t, x)
recursion1 (Either (Value' Instr l) (Value' Instr r) -> Value' Instr ('TOr l r)
forall (l :: T) (r :: T) (instr :: [T] -> [T] -> *).
(KnownT l, KnownT r) =>
Either (Value' instr l) (Value' instr r) -> Value' instr ('TOr l r)
VOr (Either (Value' Instr l) (Value' Instr r)
-> Value' Instr ('TOr l r))
-> (Value' Instr l -> Either (Value' Instr l) (Value' Instr r))
-> Value' Instr l
-> Value' Instr ('TOr l r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value' Instr l -> Either (Value' Instr l) (Value' Instr r)
forall a b. a -> Either a b
Left) Value' Instr l
v
Right v :: Value' Instr r
v -> (Value' Instr r -> Value t) -> Value' Instr r -> (Value t, x)
forall (t' :: T). (Value t' -> Value t) -> Value t' -> (Value t, x)
recursion1 (Either (Value' Instr l) (Value' Instr r) -> Value' Instr ('TOr l r)
forall (l :: T) (r :: T) (instr :: [T] -> [T] -> *).
(KnownT l, KnownT r) =>
Either (Value' instr l) (Value' instr r) -> Value' instr ('TOr l r)
VOr (Either (Value' Instr l) (Value' Instr r)
-> Value' Instr ('TOr l r))
-> (Value' Instr r -> Either (Value' Instr l) (Value' Instr r))
-> Value' Instr r
-> Value' Instr ('TOr l r)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value' Instr r -> Either (Value' Instr l) (Value' Instr r)
forall a b. b -> Either a b
Right) Value' Instr r
v
VMap vmap :: Map (Value' Instr k) (Value' Instr v)
vmap -> (Map (Value' Instr k) (Value' Instr v) -> Value t)
-> Map (Value' Instr k) (Value' Instr v) -> (Value t, x)
forall (t' :: T) (k :: T).
Comparable k =>
(Map (Value k) (Value t') -> Value t)
-> Map (Value k) (Value t') -> (Value t, x)
mapRecursion Map (Value' Instr k) (Value' Instr v) -> Value t
forall (k :: T) (v :: T) (instr :: [T] -> [T] -> *).
(KnownT k, KnownT v, Comparable k) =>
Map (Value' instr k) (Value' instr v) -> Value' instr ('TMap k v)
VMap Map (Value' Instr k) (Value' Instr v)
vmap
VBigMap vmap :: Map (Value' Instr k) (Value' Instr v)
vmap -> (Map (Value' Instr k) (Value' Instr v) -> Value t)
-> Map (Value' Instr k) (Value' Instr v) -> (Value t, x)
forall (t' :: T) (k :: T).
Comparable k =>
(Map (Value k) (Value t') -> Value t)
-> Map (Value k) (Value t') -> (Value t, x)
mapRecursion Map (Value' Instr k) (Value' Instr v) -> Value t
forall (k :: T) (v :: T) (instr :: [T] -> [T] -> *).
(KnownT k, KnownT v, Comparable k) =>
Map (Value' instr k) (Value' instr v)
-> Value' instr ('TBigMap k v)
VBigMap Map (Value' Instr k) (Value' Instr v)
vmap
where
recursion1 ::
forall t'.
(Value t' -> Value t)
-> Value t'
-> (Value t, x)
recursion1 :: (Value t' -> Value t) -> Value t' -> (Value t, x)
recursion1 constructor :: Value t' -> Value t
constructor i' :: Value t'
i' =
let
(v :: Value t'
v, x :: x
x) = (forall (t' :: T). Value t' -> (Value t', x))
-> Value t' -> (Value t', x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue forall (t' :: T). Value t' -> (Value t', x)
step Value t'
i'
(v' :: Value t
v', x' :: x
x') = Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step (Value t -> (Value t, x)) -> Value t -> (Value t, x)
forall a b. (a -> b) -> a -> b
$ Value t' -> Value t
constructor Value t'
v
in
(Value t
v', x
x x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
x')
recursion2 ::
forall t1 t2.
(Value t1 -> Value t2 -> Value t)
-> Value t1
-> Value t2
-> (Value t, x)
recursion2 :: (Value t1 -> Value t2 -> Value t)
-> Value t1 -> Value t2 -> (Value t, x)
recursion2 constructor :: Value t1 -> Value t2 -> Value t
constructor i1 :: Value t1
i1 i2 :: Value t2
i2 =
let
(v1 :: Value t1
v1, x1 :: x
x1) = (forall (t' :: T). Value t' -> (Value t', x))
-> Value t1 -> (Value t1, x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue forall (t' :: T). Value t' -> (Value t', x)
step Value t1
i1
(v2 :: Value t2
v2, x2 :: x
x2) = (forall (t' :: T). Value t' -> (Value t', x))
-> Value t2 -> (Value t2, x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue forall (t' :: T). Value t' -> (Value t', x)
step Value t2
i2
(v :: Value t
v, x :: x
x) = Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step (Value t -> (Value t, x)) -> Value t -> (Value t, x)
forall a b. (a -> b) -> a -> b
$ Value t1 -> Value t2 -> Value t
constructor Value t1
v1 Value t2
v2
in
(Value t
v, x
x1 x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
x2 x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
x)
mapRecursion
:: forall t' k. Comparable k
=> (M.Map (Value k) (Value t') -> Value t)
-> M.Map (Value k) (Value t')
-> (Value t, x)
mapRecursion :: (Map (Value k) (Value t') -> Value t)
-> Map (Value k) (Value t') -> (Value t, x)
mapRecursion constructor :: Map (Value k) (Value t') -> Value t
constructor vmap :: Map (Value k) (Value t')
vmap =
let
(ms :: Map (Value k) (Value t')
ms, cxs :: x
cxs) = (Value k
-> Value t'
-> (Map (Value k) (Value t'), x)
-> (Map (Value k) (Value t'), x))
-> (Map (Value k) (Value t'), x)
-> Map (Value k) (Value t')
-> (Map (Value k) (Value t'), x)
forall k a b. (k -> a -> b -> b) -> b -> Map k a -> b
M.foldrWithKey (\k :: Value k
k a :: Value t'
a (m :: Map (Value k) (Value t')
m, xs :: x
xs) ->
let (c :: Value k
c, cx :: x
cx) = Value k -> (Value k, x)
forall (t' :: T). Value t' -> (Value t', x)
step Value k
k
(v :: Value t'
v, vx :: x
vx) = (forall (t' :: T). Value t' -> (Value t', x))
-> Value t' -> (Value t', x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue forall (t' :: T). Value t' -> (Value t', x)
step Value t'
a
in (Value k
-> Value t' -> Map (Value k) (Value t') -> Map (Value k) (Value t')
forall k a. Ord k => k -> a -> Map k a -> Map k a
M.insert Value k
c Value t'
v Map (Value k) (Value t')
m, x
vx x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
cx x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
xs)) (Map (Value k) (Value t')
forall k a. Map k a
M.empty, x
forall a. Monoid a => a
mempty) Map (Value k) (Value t')
vmap
(v' :: Value t
v', x' :: x
x') = Value t -> (Value t, x)
forall (t' :: T). Value t' -> (Value t', x)
step (Value t -> (Value t, x)) -> Value t -> (Value t, x)
forall a b. (a -> b) -> a -> b
$ Map (Value k) (Value t') -> Value t
constructor Map (Value k) (Value t')
ms
in
(Value t
v', x
cxs x -> x -> x
forall a. Semigroup a => a -> a -> a
<> x
x')
dfsFoldValue ::
Monoid x =>
(forall t'. Value t' -> x)
-> Value t
-> x
dfsFoldValue :: (forall (t' :: T). Value t' -> x) -> Value t -> x
dfsFoldValue f :: forall (t' :: T). Value t' -> x
f = (Value t, x) -> x
forall a b. (a, b) -> b
snd ((Value t, x) -> x) -> (Value t -> (Value t, x)) -> Value t -> x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue (\v :: Value t'
v -> (Value t'
v, Value t' -> x
forall (t' :: T). Value t' -> x
f Value t'
v))
dfsModifyValue ::
(forall t'. Value t' -> Value t')
-> Value t
-> Value t
dfsModifyValue :: (forall (t' :: T). Value t' -> Value t') -> Value t -> Value t
dfsModifyValue f :: forall (t' :: T). Value t' -> Value t'
f = (Value t, ()) -> Value t
forall a b. (a, b) -> a
fst ((Value t, ()) -> Value t)
-> (Value t -> (Value t, ())) -> Value t -> Value t
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall (t' :: T). Value t' -> (Value t', ()))
-> Value t -> (Value t, ())
forall (t :: T) x.
Monoid x =>
(forall (t' :: T). Value t' -> (Value t', x))
-> Value t -> (Value t, x)
dfsValue ((, ()) (Value t' -> (Value t', ()))
-> (Value t' -> Value t') -> Value t' -> (Value t', ())
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value t' -> Value t'
forall (t' :: T). Value t' -> Value t'
f)
isStringValue :: Value t -> Maybe MText
isStringValue :: Value t -> Maybe MText
isStringValue =
\case
VString str :: MText
str -> MText -> Maybe MText
forall a. a -> Maybe a
Just MText
str
_ -> Maybe MText
forall a. Maybe a
Nothing
isBytesValue :: Value t -> Maybe ByteString
isBytesValue :: Value t -> Maybe ByteString
isBytesValue =
\case
VBytes bytes :: ByteString
bytes -> ByteString -> Maybe ByteString
forall a. a -> Maybe a
Just ByteString
bytes
_ -> Maybe ByteString
forall a. Maybe a
Nothing
allAtomicValues ::
forall t a. (forall t'. Value t' -> Maybe a) -> Value t -> [a]
allAtomicValues :: (forall (t' :: T). Value t' -> Maybe a) -> Value t -> [a]
allAtomicValues selector :: forall (t' :: T). Value t' -> Maybe a
selector = (forall (t' :: T). Value t' -> [a]) -> Value t -> [a]
forall x (t :: T).
Monoid x =>
(forall (t' :: T). Value t' -> x) -> Value t -> x
dfsFoldValue (Maybe a -> [a]
forall a. Maybe a -> [a]
maybeToList (Maybe a -> [a]) -> (Value t' -> Maybe a) -> Value t' -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value t' -> Maybe a
forall (t' :: T). Value t' -> Maybe a
selector)