{-# LANGUAGE Haskell2010, ConstraintKinds, FlexibleInstances, Trustworthy #-}
module Data.Monoid.Factorial (
module Data.Semigroup.Factorial,
FactorialMonoid(..), StableFactorialMonoid,
)
where
import Control.Arrow (first)
import Data.Monoid
import qualified Data.Foldable as Foldable
import qualified Data.List as List
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Lazy as LazyByteString
import qualified Data.Text as Text
import qualified Data.Text.Lazy as LazyText
import qualified Data.IntMap as IntMap
import qualified Data.IntSet as IntSet
import qualified Data.Map as Map
import qualified Data.Sequence as Sequence
import qualified Data.Set as Set
import qualified Data.Vector as Vector
import Data.Int (Int64)
import Data.Semigroup.Factorial
import Data.Monoid.Null (MonoidNull(null), PositiveMonoid)
import Prelude hiding (break, drop, dropWhile, foldl, foldr, last, length, map, max, min,
null, reverse, span, splitAt, take, takeWhile)
class (Factorial m, MonoidNull m) => FactorialMonoid m where
splitPrimePrefix :: m -> Maybe (m, m)
splitPrimeSuffix :: m -> Maybe (m, m)
inits :: m -> [m]
tails :: m -> [m]
span :: (m -> Bool) -> m -> (m, m)
break :: (m -> Bool) -> m -> (m, m)
split :: (m -> Bool) -> m -> [m]
takeWhile :: (m -> Bool) -> m -> m
dropWhile :: (m -> Bool) -> m -> m
spanMaybe :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' :: s -> (s -> m -> Maybe s) -> m -> (m, m, s)
splitAt :: Int -> m -> (m, m)
drop :: Int -> m -> m
take :: Int -> m -> m
splitPrimePrefix m
x = case forall m. Factorial m => m -> [m]
factors m
x
of [] -> forall a. Maybe a
Nothing
m
prefix : [m]
rest -> forall a. a -> Maybe a
Just (m
prefix, forall a. Monoid a => [a] -> a
mconcat [m]
rest)
splitPrimeSuffix m
x = case forall m. Factorial m => m -> [m]
factors m
x
of [] -> forall a. Maybe a
Nothing
[m]
fs -> forall a. a -> Maybe a
Just (forall a. Monoid a => [a] -> a
mconcat (forall a. [a] -> [a]
List.init [m]
fs), forall a. [a] -> a
List.last [m]
fs)
inits = forall m a. Factorial m => (m -> a -> a) -> a -> m -> a
foldr (\m
m [m]
l-> forall a. Monoid a => a
mempty forall a. a -> [a] -> [a]
: forall a b. (a -> b) -> [a] -> [b]
List.map (forall a. Monoid a => a -> a -> a
mappend m
m) [m]
l) [forall a. Monoid a => a
mempty]
tails m
m = m
m forall a. a -> [a] -> [a]
: forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] (forall m. FactorialMonoid m => m -> [m]
tails forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> b
snd) (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m)
span m -> Bool
p m
m0 = forall {a}. (m -> a) -> m -> (a, m)
spanAfter forall a. a -> a
id m
m0
where spanAfter :: (m -> a) -> m -> (a, m)
spanAfter m -> a
f m
m = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m
of Just (m
prime, m
rest) | m -> Bool
p m
prime -> (m -> a) -> m -> (a, m)
spanAfter (m -> a
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => a -> a -> a
mappend m
prime) m
rest
Maybe (m, m)
_ -> (m -> a
f forall a. Monoid a => a
mempty, m
m)
break = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Bool -> Bool
not forall b c a. (b -> c) -> (a -> b) -> a -> c
.)
spanMaybe s
s0 s -> m -> Maybe s
f m
m0 = (m -> m) -> s -> m -> (m, m, s)
spanAfter forall a. a -> a
id s
s0 m
m0
where spanAfter :: (m -> m) -> s -> m -> (m, m, s)
spanAfter m -> m
g s
s m
m = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m
of Just (m
prime, m
rest) | Just s
s' <- s -> m -> Maybe s
f s
s m
prime -> (m -> m) -> s -> m -> (m, m, s)
spanAfter (m -> m
g forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => a -> a -> a
mappend m
prime) s
s' m
rest
| Bool
otherwise -> (m -> m
g forall a. Monoid a => a
mempty, m
m, s
s)
Maybe (m, m)
Nothing -> (m
m0, m
m, s
s)
spanMaybe' s
s0 s -> m -> Maybe s
f m
m0 = (m -> m) -> s -> m -> (m, m, s)
spanAfter forall a. a -> a
id s
s0 m
m0
where spanAfter :: (m -> m) -> s -> m -> (m, m, s)
spanAfter m -> m
g s
s m
m = seq :: forall a b. a -> b -> b
seq s
s forall a b. (a -> b) -> a -> b
$
case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
m
of Just (m
prime, m
rest) | Just s
s' <- s -> m -> Maybe s
f s
s m
prime -> (m -> m) -> s -> m -> (m, m, s)
spanAfter (m -> m
g forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => a -> a -> a
mappend m
prime) s
s' m
rest
| Bool
otherwise -> (m -> m
g forall a. Monoid a => a
mempty, m
m, s
s)
Maybe (m, m)
Nothing -> (m
m0, m
m, s
s)
split m -> Bool
p m
m = m
prefix forall a. a -> [a] -> [a]
: [m]
splitRest
where (m
prefix, m
rest) = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
break m -> Bool
p m
m
splitRest :: [m]
splitRest = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix m
rest
of Maybe (m, m)
Nothing -> []
Just (m
_, m
tl) -> forall m. FactorialMonoid m => (m -> Bool) -> m -> [m]
split m -> Bool
p m
tl
takeWhile m -> Bool
p = forall a b. (a, b) -> a
fst forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span m -> Bool
p
dropWhile m -> Bool
p = forall a b. (a, b) -> b
snd forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span m -> Bool
p
splitAt Int
n0 m
m0 | Int
n0 forall a. Ord a => a -> a -> Bool
<= Int
0 = (forall a. Monoid a => a
mempty, m
m0)
| Bool
otherwise = forall {t} {t} {c}.
(Eq t, Num t, FactorialMonoid t, Enum t) =>
t -> (t -> c) -> t -> (c, t)
split' Int
n0 forall a. a -> a
id m
m0
where split' :: t -> (t -> c) -> t -> (c, t)
split' t
0 t -> c
f t
m = (t -> c
f forall a. Monoid a => a
mempty, t
m)
split' t
n t -> c
f t
m = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix t
m
of Maybe (t, t)
Nothing -> (t -> c
f forall a. Monoid a => a
mempty, t
m)
Just (t
prime, t
rest) -> t -> (t -> c) -> t -> (c, t)
split' (forall a. Enum a => a -> a
pred t
n) (t -> c
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => a -> a -> a
mappend t
prime) t
rest
drop Int
n m
p = forall a b. (a, b) -> b
snd (forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n m
p)
take Int
n m
p = forall a b. (a, b) -> a
fst (forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n m
p)
{-# MINIMAL #-}
{-# INLINABLE splitPrimePrefix #-}
{-# INLINABLE splitPrimeSuffix #-}
{-# INLINABLE inits #-}
{-# INLINABLE tails #-}
{-# INLINABLE span #-}
{-# INLINE break #-}
{-# INLINABLE spanMaybe #-}
{-# INLINABLE spanMaybe' #-}
{-# INLINABLE split #-}
{-# INLINE takeWhile #-}
{-# INLINE dropWhile #-}
{-# INLINABLE splitAt #-}
{-# DEPRECATED StableFactorialMonoid "Use Data.Semigroup.Factorial.StableFactorial instead." #-}
type StableFactorialMonoid m = (StableFactorial m, FactorialMonoid m, PositiveMonoid m)
instance FactorialMonoid () where
splitPrimePrefix :: () -> Maybe ((), ())
splitPrimePrefix () = forall a. Maybe a
Nothing
splitPrimeSuffix :: () -> Maybe ((), ())
splitPrimeSuffix () = forall a. Maybe a
Nothing
instance FactorialMonoid a => FactorialMonoid (Dual a) where
splitPrimePrefix :: Dual a -> Maybe (Dual a, Dual a)
splitPrimePrefix (Dual a
a) = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a
of Maybe (a, a)
Nothing -> forall a. Maybe a
Nothing
Just (a
p, a
s) -> forall a. a -> Maybe a
Just (forall a. a -> Dual a
Dual a
s, forall a. a -> Dual a
Dual a
p)
splitPrimeSuffix :: Dual a -> Maybe (Dual a, Dual a)
splitPrimeSuffix (Dual a
a) = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a
of Maybe (a, a)
Nothing -> forall a. Maybe a
Nothing
Just (a
p, a
s) -> forall a. a -> Maybe a
Just (forall a. a -> Dual a
Dual a
s, forall a. a -> Dual a
Dual a
p)
inits :: Dual a -> [Dual a]
inits (Dual a
a) = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. a -> Dual a
Dual (forall m. Factorial m => m -> m
reverse forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails a
a)
tails :: Dual a -> [Dual a]
tails (Dual a
a) = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a. a -> Dual a
Dual (forall m. Factorial m => m -> m
reverse forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits a
a)
instance (Integral a, Eq a) => FactorialMonoid (Sum a) where
splitPrimePrefix :: Sum a -> Maybe (Sum a, Sum a)
splitPrimePrefix (Sum a
0) = forall a. Maybe a
Nothing
splitPrimePrefix (Sum a
a) = forall a. a -> Maybe a
Just (forall a. a -> Sum a
Sum (forall a. Num a => a -> a
signum a
a), forall a. a -> Sum a
Sum (a
a forall a. Num a => a -> a -> a
- forall a. Num a => a -> a
signum a
a))
splitPrimeSuffix :: Sum a -> Maybe (Sum a, Sum a)
splitPrimeSuffix (Sum a
0) = forall a. Maybe a
Nothing
splitPrimeSuffix (Sum a
a) = forall a. a -> Maybe a
Just (forall a. a -> Sum a
Sum (a
a forall a. Num a => a -> a -> a
- forall a. Num a => a -> a
signum a
a), forall a. a -> Sum a
Sum (forall a. Num a => a -> a
signum a
a))
instance Integral a => FactorialMonoid (Product a)
instance FactorialMonoid a => FactorialMonoid (Maybe a) where
splitPrimePrefix :: Maybe a -> Maybe (Maybe a, Maybe a)
splitPrimePrefix Maybe a
Nothing = forall a. Maybe a
Nothing
splitPrimePrefix (Just a
a) = case forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a
of Maybe (a, a)
Nothing -> forall a. a -> Maybe a
Just (forall a. a -> Maybe a
Just a
a, forall a. Maybe a
Nothing)
Just (a
p, a
s) -> forall a. a -> Maybe a
Just (forall a. a -> Maybe a
Just a
p, if forall m. MonoidNull m => m -> Bool
null a
s then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just a
s)
instance (FactorialMonoid a, FactorialMonoid b) => FactorialMonoid (a, b) where
splitPrimePrefix :: (a, b) -> Maybe ((a, b), (a, b))
splitPrimePrefix (a
a, b
b) = case (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix b
b)
of (Just (a
ap, a
as), Maybe (b, b)
_) -> forall a. a -> Maybe a
Just ((a
ap, forall a. Monoid a => a
mempty), (a
as, b
b))
(Maybe (a, a)
Nothing, Just (b
bp, b
bs)) -> forall a. a -> Maybe a
Just ((a
a, b
bp), (a
a, b
bs))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing) -> forall a. Maybe a
Nothing
splitPrimeSuffix :: (a, b) -> Maybe ((a, b), (a, b))
splitPrimeSuffix (a
a, b
b) = case (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix b
b)
of (Maybe (a, a)
_, Just (b
bp, b
bs)) -> forall a. a -> Maybe a
Just ((a
a, b
bp), (forall a. Monoid a => a
mempty, b
bs))
(Just (a
ap, a
as), Maybe (b, b)
Nothing) -> forall a. a -> Maybe a
Just ((a
ap, b
b), (a
as, b
b))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing) -> forall a. Maybe a
Nothing
inits :: (a, b) -> [(a, b)]
inits (a
a, b
b) = forall a b. (a -> b) -> [a] -> [b]
List.map (forall a b c. (a -> b -> c) -> b -> a -> c
flip (,) forall a. Monoid a => a
mempty) (forall m. FactorialMonoid m => m -> [m]
inits a
a) forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map ((,) a
a) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits b
b)
tails :: (a, b) -> [(a, b)]
tails (a
a, b
b) = forall a b. (a -> b) -> [a] -> [b]
List.map (forall a b c. (a -> b -> c) -> b -> a -> c
flip (,) b
b) (forall m. FactorialMonoid m => m -> [m]
tails a
a) forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map ((,) forall a. Monoid a => a
mempty) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails b
b)
span :: ((a, b) -> Bool) -> (a, b) -> ((a, b), (a, b))
span (a, b) -> Bool
p (a
x, b
y) = ((a
xp, b
yp), (a
xs, b
ys))
where (a
xp, a
xs) = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b a. Monoid b => a -> (a, b)
fromFst) a
x
(b
yp, b
ys) | forall m. MonoidNull m => m -> Bool
null a
xs = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. Monoid a => b -> (a, b)
fromSnd) b
y
| Bool
otherwise = (forall a. Monoid a => a
mempty, b
y)
spanMaybe :: forall s.
s -> (s -> (a, b) -> Maybe s) -> (a, b) -> ((a, b), (a, b), s)
spanMaybe s
s0 s -> (a, b) -> Maybe s
f (a
x, b
y) | forall m. MonoidNull m => m -> Bool
null a
xs = ((a
xp, b
yp), (a
xs, b
ys), s
s2)
| Bool
otherwise = ((a
xp, forall a. Monoid a => a
mempty), (a
xs, b
y), s
s1)
where (a
xp, a
xs, s
s1) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s0 (\s
s-> s -> (a, b) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b a. Monoid b => a -> (a, b)
fromFst) a
x
(b
yp, b
ys, s
s2) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s1 (\s
s-> s -> (a, b) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. Monoid a => b -> (a, b)
fromSnd) b
y
spanMaybe' :: forall s.
s -> (s -> (a, b) -> Maybe s) -> (a, b) -> ((a, b), (a, b), s)
spanMaybe' s
s0 s -> (a, b) -> Maybe s
f (a
x, b
y) | forall m. MonoidNull m => m -> Bool
null a
xs = ((a
xp, b
yp), (a
xs, b
ys), s
s2)
| Bool
otherwise = ((a
xp, forall a. Monoid a => a
mempty), (a
xs, b
y), s
s1)
where (a
xp, a
xs, s
s1) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s0 (\s
s-> s -> (a, b) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b a. Monoid b => a -> (a, b)
fromFst) a
x
(b
yp, b
ys, s
s2) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s1 (\s
s-> s -> (a, b) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. Monoid a => b -> (a, b)
fromSnd) b
y
split :: ((a, b) -> Bool) -> (a, b) -> [(a, b)]
split (a, b) -> Bool
p (a
x0, b
y0) = forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
List.foldr forall {a}. Monoid a => a -> ([a], Bool) -> ([a], Bool)
combine ([(a, b)]
ys, Bool
False) [(a, b)]
xs
where xs :: [(a, b)]
xs = forall a b. (a -> b) -> [a] -> [b]
List.map forall b a. Monoid b => a -> (a, b)
fromFst forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => (m -> Bool) -> m -> [m]
split ((a, b) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b a. Monoid b => a -> (a, b)
fromFst) a
x0
ys :: [(a, b)]
ys = forall a b. (a -> b) -> [a] -> [b]
List.map forall a b. Monoid a => b -> (a, b)
fromSnd forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => (m -> Bool) -> m -> [m]
split ((a, b) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. Monoid a => b -> (a, b)
fromSnd) b
y0
combine :: a -> ([a], Bool) -> ([a], Bool)
combine a
x (~(a
y:[a]
rest), Bool
False) = (forall a. Monoid a => a -> a -> a
mappend a
x a
y forall a. a -> [a] -> [a]
: [a]
rest, Bool
True)
combine a
x ([a]
rest, Bool
True) = (a
xforall a. a -> [a] -> [a]
:[a]
rest, Bool
True)
splitAt :: Int -> (a, b) -> ((a, b), (a, b))
splitAt Int
n (a
x, b
y) = ((a
xp, b
yp), (a
xs, b
ys))
where (a
xp, a
xs) = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n a
x
(b
yp, b
ys) | forall m. MonoidNull m => m -> Bool
null a
xs = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length a
x) b
y
| Bool
otherwise = (forall a. Monoid a => a
mempty, b
y)
{-# INLINE fromFst #-}
fromFst :: Monoid b => a -> (a, b)
fromFst :: forall b a. Monoid b => a -> (a, b)
fromFst a
a = (a
a, forall a. Monoid a => a
mempty)
{-# INLINE fromSnd #-}
fromSnd :: Monoid a => b -> (a, b)
fromSnd :: forall a b. Monoid a => b -> (a, b)
fromSnd b
b = (forall a. Monoid a => a
mempty, b
b)
instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c) => FactorialMonoid (a, b, c) where
splitPrimePrefix :: (a, b, c) -> Maybe ((a, b, c), (a, b, c))
splitPrimePrefix (a
a, b
b, c
c) = case (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix b
b, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix c
c)
of (Just (a
ap, a
as), Maybe (b, b)
_, Maybe (c, c)
_) -> forall a. a -> Maybe a
Just ((a
ap, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
b, c
c))
(Maybe (a, a)
Nothing, Just (b
bp, b
bs), Maybe (c, c)
_) -> forall a. a -> Maybe a
Just ((a
a, b
bp, forall a. Monoid a => a
mempty), (a
a, b
bs, c
c))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Just (c
cp, c
cs)) -> forall a. a -> Maybe a
Just ((a
a, b
b, c
cp), (a
a, b
b, c
cs))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing) -> forall a. Maybe a
Nothing
splitPrimeSuffix :: (a, b, c) -> Maybe ((a, b, c), (a, b, c))
splitPrimeSuffix (a
a, b
b, c
c) = case (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix b
b, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix c
c)
of (Maybe (a, a)
_, Maybe (b, b)
_, Just (c
cp, c
cs)) -> forall a. a -> Maybe a
Just ((a
a, b
b, c
cp), (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, c
cs))
(Maybe (a, a)
_, Just (b
bp, b
bs), Maybe (c, c)
Nothing) -> forall a. a -> Maybe a
Just ((a
a, b
bp, c
c), (forall a. Monoid a => a
mempty, b
bs, c
c))
(Just (a
ap, a
as), Maybe (b, b)
Nothing, Maybe (c, c)
Nothing) -> forall a. a -> Maybe a
Just ((a
ap, b
b, c
c), (a
as, b
b, c
c))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing) -> forall a. Maybe a
Nothing
inits :: (a, b, c) -> [(a, b, c)]
inits (a
a, b
b, c
c) = forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty)) (forall m. FactorialMonoid m => m -> [m]
inits a
a)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (a
a, b
b1, forall a. Monoid a => a
mempty)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits b
b)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (a
a, b
b, c
c1)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits c
c)
tails :: (a, b, c) -> [(a, b, c)]
tails (a
a, b
b, c
c) = forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, b
b, c
c)) (forall m. FactorialMonoid m => m -> [m]
tails a
a)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (forall a. Monoid a => a
mempty, b
b1, c
c)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails b
b)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, c
c1)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails c
c)
span :: ((a, b, c) -> Bool) -> (a, b, c) -> ((a, b, c), (a, b, c))
span (a, b, c) -> Bool
p (a
a, b
b, c
c) = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs))
where (a
ap, a
as) = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3) a
a
(b
bp, b
bs) | forall m. MonoidNull m => m -> Bool
null a
as = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3) b
b
| Bool
otherwise = (forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null b
bs = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3) c
c
| Bool
otherwise = (forall a. Monoid a => a
mempty, c
c)
spanMaybe :: forall s.
s
-> (s -> (a, b, c) -> Maybe s)
-> (a, b, c)
-> ((a, b, c), (a, b, c), s)
spanMaybe s
s0 s -> (a, b, c) -> Maybe s
f (a
a, b
b, c
c) | Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
b, c
c), s
s1)
| Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, forall a. Monoid a => a
mempty), (a
as, b
bs, c
c), s
s2)
| Bool
otherwise = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs), s
s3)
where (a
ap, a
as, s
s1) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s0 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3) a
a
(b
bp, b
bs, s
s2) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s1 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3) b
b
(c
cp, c
cs, s
s3) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s2 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3) c
c
spanMaybe' :: forall s.
s
-> (s -> (a, b, c) -> Maybe s)
-> (a, b, c)
-> ((a, b, c), (a, b, c), s)
spanMaybe' s
s0 s -> (a, b, c) -> Maybe s
f (a
a, b
b, c
c) | Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
b, c
c), s
s1)
| Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, forall a. Monoid a => a
mempty), (a
as, b
bs, c
c), s
s2)
| Bool
otherwise = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs), s
s3)
where (a
ap, a
as, s
s1) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s0 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3) a
a
(b
bp, b
bs, s
s2) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s1 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3) b
b
(c
cp, c
cs, s
s3) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s2 (\s
s-> s -> (a, b, c) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3) c
c
splitAt :: Int -> (a, b, c) -> ((a, b, c), (a, b, c))
splitAt Int
n (a
a, b
b, c
c) = ((a
ap, b
bp, c
cp), (a
as, b
bs, c
cs))
where (a
ap, a
as) = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n a
a
(b
bp, b
bs) | forall m. MonoidNull m => m -> Bool
null a
as = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length a
a) b
b
| Bool
otherwise = (forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null b
bs = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length a
a forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length b
b) c
c
| Bool
otherwise = (forall a. Monoid a => a
mempty, c
c)
{-# INLINE fromFstOf3 #-}
fromFstOf3 :: (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3 :: forall b c a. (Monoid b, Monoid c) => a -> (a, b, c)
fromFstOf3 a
a = (a
a, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty)
{-# INLINE fromSndOf3 #-}
fromSndOf3 :: (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3 :: forall a c b. (Monoid a, Monoid c) => b -> (a, b, c)
fromSndOf3 b
b = (forall a. Monoid a => a
mempty, b
b, forall a. Monoid a => a
mempty)
{-# INLINE fromThdOf3 #-}
fromThdOf3 :: (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3 :: forall a b c. (Monoid a, Monoid b) => c -> (a, b, c)
fromThdOf3 c
c = (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, c
c)
instance (FactorialMonoid a, FactorialMonoid b, FactorialMonoid c, FactorialMonoid d) =>
FactorialMonoid (a, b, c, d) where
splitPrimePrefix :: (a, b, c, d) -> Maybe ((a, b, c, d), (a, b, c, d))
splitPrimePrefix (a
a, b
b, c
c, d
d) = case (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix a
a, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix b
b, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix c
c, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimePrefix d
d)
of (Just (a
ap, a
as), Maybe (b, b)
_, Maybe (c, c)
_, Maybe (d, d)
_) -> forall a. a -> Maybe a
Just ((a
ap, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
b, c
c, d
d))
(Maybe (a, a)
Nothing, Just (b
bp, b
bs), Maybe (c, c)
_, Maybe (d, d)
_) -> forall a. a -> Maybe a
Just ((a
a, b
bp, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
a, b
bs, c
c, d
d))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Just (c
cp, c
cs), Maybe (d, d)
_) -> forall a. a -> Maybe a
Just ((a
a, b
b, c
cp, forall a. Monoid a => a
mempty), (a
a, b
b, c
cs, d
d))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Just (d
dp, d
ds)) -> forall a. a -> Maybe a
Just ((a
a, b
b, c
c, d
dp), (a
a, b
b, c
c, d
ds))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> forall a. Maybe a
Nothing
splitPrimeSuffix :: (a, b, c, d) -> Maybe ((a, b, c, d), (a, b, c, d))
splitPrimeSuffix (a
a, b
b, c
c, d
d) = case (forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix a
a, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix b
b, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix c
c, forall m. FactorialMonoid m => m -> Maybe (m, m)
splitPrimeSuffix d
d)
of (Maybe (a, a)
_, Maybe (b, b)
_, Maybe (c, c)
_, Just (d
dp, d
ds)) -> forall a. a -> Maybe a
Just ((a
a, b
b, c
c, d
dp), (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, d
ds))
(Maybe (a, a)
_, Maybe (b, b)
_, Just (c
cp, c
cs), Maybe (d, d)
Nothing) -> forall a. a -> Maybe a
Just ((a
a, b
b, c
cp, d
d), (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, c
cs, d
d))
(Maybe (a, a)
_, Just (b
bp, b
bs), Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> forall a. a -> Maybe a
Just ((a
a, b
bp, c
c, d
d), (forall a. Monoid a => a
mempty, b
bs, c
c, d
d))
(Just (a
ap, a
as), Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> forall a. a -> Maybe a
Just ((a
ap, b
b, c
c, d
d), (a
as, b
b, c
c, d
d))
(Maybe (a, a)
Nothing, Maybe (b, b)
Nothing, Maybe (c, c)
Nothing, Maybe (d, d)
Nothing) -> forall a. Maybe a
Nothing
inits :: (a, b, c, d) -> [(a, b, c, d)]
inits (a
a, b
b, c
c, d
d) = forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty)) (forall m. FactorialMonoid m => m -> [m]
inits a
a)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (a
a, b
b1, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits b
b)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (a
a, b
b, c
c1, forall a. Monoid a => a
mempty)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits c
c)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\d
d1-> (a
a, b
b, c
c, d
d1)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
inits d
d)
tails :: (a, b, c, d) -> [(a, b, c, d)]
tails (a
a, b
b, c
c, d
d) = forall a b. (a -> b) -> [a] -> [b]
List.map (\a
a1-> (a
a1, b
b, c
c, d
d)) (forall m. FactorialMonoid m => m -> [m]
tails a
a)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\b
b1-> (forall a. Monoid a => a
mempty, b
b1, c
c, d
d)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails b
b)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\c
c1-> (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, c
c1, d
d)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails c
c)
forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
List.map (\d
d1-> (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, d
d1)) (forall a. [a] -> [a]
List.tail forall a b. (a -> b) -> a -> b
$ forall m. FactorialMonoid m => m -> [m]
tails d
d)
span :: ((a, b, c, d) -> Bool)
-> (a, b, c, d) -> ((a, b, c, d), (a, b, c, d))
span (a, b, c, d) -> Bool
p (a
a, b
b, c
c, d
d) = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds))
where (a
ap, a
as) = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4) a
a
(b
bp, b
bs) | forall m. MonoidNull m => m -> Bool
null a
as = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4) b
b
| Bool
otherwise = (forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null b
bs = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4) c
c
| Bool
otherwise = (forall a. Monoid a => a
mempty, c
c)
(d
dp, d
ds) | forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null b
bs Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null c
cs = forall m. FactorialMonoid m => (m -> Bool) -> m -> (m, m)
span ((a, b, c, d) -> Bool
p forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4) d
d
| Bool
otherwise = (forall a. Monoid a => a
mempty, d
d)
spanMaybe :: forall s.
s
-> (s -> (a, b, c, d) -> Maybe s)
-> (a, b, c, d)
-> ((a, b, c, d), (a, b, c, d), s)
spanMaybe s
s0 s -> (a, b, c, d) -> Maybe s
f (a
a, b
b, c
c, d
d) | Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
b, c
c, d
d), s
s1)
| Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
bs, c
c, d
d), s
s2)
| Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null c
cs) = ((a
ap, b
bp, c
cp, forall a. Monoid a => a
mempty), (a
as, b
bs, c
cs, d
d), s
s3)
| Bool
otherwise = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds), s
s4)
where (a
ap, a
as, s
s1) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s0 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4) a
a
(b
bp, b
bs, s
s2) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s1 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4) b
b
(c
cp, c
cs, s
s3) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s2 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4) c
c
(d
dp, d
ds, s
s4) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe s
s3 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4) d
d
spanMaybe' :: forall s.
s
-> (s -> (a, b, c, d) -> Maybe s)
-> (a, b, c, d)
-> ((a, b, c, d), (a, b, c, d), s)
spanMaybe' s
s0 s -> (a, b, c, d) -> Maybe s
f (a
a, b
b, c
c, d
d) | Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null a
as) = ((a
ap, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
b, c
c, d
d), s
s1)
| Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null b
bs) = ((a
ap, b
bp, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty), (a
as, b
bs, c
c, d
d), s
s2)
| Bool -> Bool
not (forall m. MonoidNull m => m -> Bool
null c
cs) = ((a
ap, b
bp, c
cp, forall a. Monoid a => a
mempty), (a
as, b
bs, c
cs, d
d), s
s3)
| Bool
otherwise = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds), s
s4)
where (a
ap, a
as, s
s1) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s0 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4) a
a
(b
bp, b
bs, s
s2) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s1 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4) b
b
(c
cp, c
cs, s
s3) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s2 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4) c
c
(d
dp, d
ds, s
s4) = forall m s.
FactorialMonoid m =>
s -> (s -> m -> Maybe s) -> m -> (m, m, s)
spanMaybe' s
s3 (\s
s-> s -> (a, b, c, d) -> Maybe s
f s
s forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4) d
d
splitAt :: Int -> (a, b, c, d) -> ((a, b, c, d), (a, b, c, d))
splitAt Int
n (a
a, b
b, c
c, d
d) = ((a
ap, b
bp, c
cp, d
dp), (a
as, b
bs, c
cs, d
ds))
where (a
ap, a
as) = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt Int
n a
a
(b
bp, b
bs) | forall m. MonoidNull m => m -> Bool
null a
as = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length a
a) b
b
| Bool
otherwise = (forall a. Monoid a => a
mempty, b
b)
(c
cp, c
cs) | forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null b
bs = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length a
a forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length b
b) c
c
| Bool
otherwise = (forall a. Monoid a => a
mempty, c
c)
(d
dp, d
ds) | forall m. MonoidNull m => m -> Bool
null a
as Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null b
bs Bool -> Bool -> Bool
&& forall m. MonoidNull m => m -> Bool
null c
cs = forall m. FactorialMonoid m => Int -> m -> (m, m)
splitAt (Int
n forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length a
a forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length b
b forall a. Num a => a -> a -> a
- forall m. Factorial m => m -> Int
length c
c) d
d
| Bool
otherwise = (forall a. Monoid a => a
mempty, d
d)
{-# INLINE fromFstOf4 #-}
fromFstOf4 :: (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4 :: forall b c d a. (Monoid b, Monoid c, Monoid d) => a -> (a, b, c, d)
fromFstOf4 a
a = (a
a, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty)
{-# INLINE fromSndOf4 #-}
fromSndOf4 :: (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4 :: forall a c d b. (Monoid a, Monoid c, Monoid d) => b -> (a, b, c, d)
fromSndOf4 b
b = (forall a. Monoid a => a
mempty, b
b, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty)
{-# INLINE fromThdOf4 #-}
fromThdOf4 :: (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4 :: forall a b d c. (Monoid a, Monoid b, Monoid d) => c -> (a, b, c, d)
fromThdOf4 c
c = (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, c
c, forall a. Monoid a => a
mempty)
{-# INLINE fromFthOf4 #-}
fromFthOf4 :: (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4 :: forall a b c d. (Monoid a, Monoid b, Monoid c) => d -> (a, b, c, d)
fromFthOf4 d
d = (forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, forall a. Monoid a => a
mempty, d
d)
instance FactorialMonoid [x] where
splitPrimePrefix :: [x] -> Maybe ([x], [x])
splitPrimePrefix [] = forall a. Maybe a
Nothing
splitPrimePrefix (x
x:[x]
xs) = forall a. a -> Maybe a
Just ([x
x], [x]
xs)
splitPrimeSuffix :: [x] -> Maybe ([x], [x])
splitPrimeSuffix [] = forall a. Maybe a
Nothing
splitPrimeSuffix [x]
xs = forall a. a -> Maybe a
Just (forall {a} {c}. ([a] -> c) -> [a] -> (c, [a])
splitLast forall a. a -> a
id [x]
xs)
where splitLast :: ([a] -> c) -> [a] -> (c, [a])
splitLast [a] -> c
f last :: [a]
last@[a
_] = ([a] -> c
f [], [a]
last)
splitLast [a] -> c
f ~(a
x:[a]
rest) = ([a] -> c) -> [a] -> (c, [a])
splitLast ([a] -> c
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a
xforall a. a -> [a] -> [a]
:)) [a]
rest
inits :: [x] -> [[x]]
inits = forall x. [x] -> [[x]]
List.inits
tails :: [x] -> [[x]]
tails = forall x. [x] -> [[x]]
List.tails
break :: ([x] -> Bool) -> [x] -> ([x], [x])
break [x] -> Bool
f = forall a. (a -> Bool) -> [a] -> ([a], [a])
List.break ([x] -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. a -> [a] -> [a]
:[]))
span :: ([x] -> Bool) -> [x] -> ([x], [x])
span [x] -> Bool
f = forall a. (a -> Bool) -> [a] -> ([a], [a])
List.span ([x] -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. a -> [a] -> [a]
:[]))
dropWhile :: ([x] -> Bool) -> [x] -> [x]
dropWhile [x] -> Bool
f = forall a. (a -> Bool) -> [a] -> [a]
List.dropWhile ([x] -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. a -> [a] -> [a]
:[]))
takeWhile :: ([x] -> Bool) -> [x] -> [x]
takeWhile [x] -> Bool
f = forall a. (a -> Bool) -> [a] -> [a]
List.takeWhile ([x] -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. (forall a. a -> [a] -> [a]
:[]))
spanMaybe :: forall s. s -> (s -> [x] -> Maybe s) -> [x] -> ([x], [x], s)
spanMaybe s
s0 s -> [x] -> Maybe s
f [x]
l = ([x] -> [x]
prefix' [], [x] -> [x]
suffix' [], s
s')
where ([x] -> [x]
prefix', [x] -> [x]
suffix', s
s', Bool
_) = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' forall {c}.
([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g (forall a. a -> a
id, forall a. a -> a
id, s
s0, Bool
True) [x]
l
g :: ([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g ([x] -> c
prefix, [x] -> [x]
suffix, s
s1, Bool
live) x
x | Bool
live, Just s
s2 <- s -> [x] -> Maybe s
f s
s1 [x
x] = ([x] -> c
prefix forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xforall a. a -> [a] -> [a]
:), forall a. a -> a
id, s
s2, Bool
True)
| Bool
otherwise = ([x] -> c
prefix, [x] -> [x]
suffix forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xforall a. a -> [a] -> [a]
:), s
s1, Bool
False)
spanMaybe' :: forall s. s -> (s -> [x] -> Maybe s) -> [x] -> ([x], [x], s)
spanMaybe' s
s0 s -> [x] -> Maybe s
f [x]
l = ([x] -> [x]
prefix' [], [x] -> [x]
suffix' [], s
s')
where ([x] -> [x]
prefix', [x] -> [x]
suffix', s
s', Bool
_) = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' forall {c}.
([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g (forall a. a -> a
id, forall a. a -> a
id, s
s0, Bool
True) [x]
l
g :: ([x] -> c, [x] -> [x], s, Bool)
-> x -> ([x] -> c, [x] -> [x], s, Bool)
g ([x] -> c
prefix, [x] -> [x]
suffix, s
s1, Bool
live) x
x | Bool
live, Just s
s2 <- s -> [x] -> Maybe s
f s
s1 [x
x] = seq :: forall a b. a -> b -> b
seq s
s2 forall a b. (a -> b) -> a -> b
$ ([x] -> c
prefix forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xforall a. a -> [a] -> [a]
:), forall a. a -> a
id, s
s2, Bool
True)
| Bool
otherwise = ([x] -> c
prefix, [x] -> [x]
suffix forall b c a. (b -> c) -> (a -> b) -> a -> c
. (x
xforall a. a -> [a] -> [a]
:), s
s1, Bool
False)
splitAt :: Int -> [x] -> ([x], [x])
splitAt = forall x. Int -> [x] -> ([x], [x])
List.splitAt
drop :: Int -> [x] -> [x]
drop = forall x. Int -> [x] -> [x]
List.drop
take :: Int -> [x] -> [x]
take = forall x. Int -> [x] -> [x]
List.take
instance FactorialMonoid ByteString.ByteString where
splitPrimePrefix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimePrefix ByteString
x = if ByteString -> Bool
ByteString.null ByteString
x then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just (Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt Int
1 ByteString
x)
splitPrimeSuffix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimeSuffix ByteString
x = if ByteString -> Bool
ByteString.null ByteString
x then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just (Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt (ByteString -> Int
ByteString.length ByteString
x forall a. Num a => a -> a -> a
- Int
1) ByteString
x)
inits :: ByteString -> [ByteString]
inits = ByteString -> [ByteString]
ByteString.inits
tails :: ByteString -> [ByteString]
tails = ByteString -> [ByteString]
ByteString.tails
break :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
break ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
ByteString.break (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
span :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
span ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
ByteString.span (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
spanMaybe :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe s
s0 s -> ByteString -> Maybe s
f ByteString
b = case forall a. (Word8 -> a -> a) -> a -> ByteString -> a
ByteString.foldr Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g forall a. a -> a
id ByteString
b (Int
0, s
s0)
of (Int
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt Int
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Word8
w (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
ByteString.singleton Word8
w) = let i' :: Int
i' = forall a. Enum a => a -> a
succ Int
i :: Int in seq :: forall a b. a -> b -> b
seq Int
i' forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
spanMaybe' :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe' s
s0 s -> ByteString -> Maybe s
f ByteString
b = case forall a. (Word8 -> a -> a) -> a -> ByteString -> a
ByteString.foldr Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g forall a. a -> a
id ByteString
b (Int
0, s
s0)
of (Int
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt Int
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Word8
w (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
ByteString.singleton Word8
w) = let i' :: Int
i' = forall a. Enum a => a -> a
succ Int
i :: Int in seq :: forall a b. a -> b -> b
seq Int
i' forall a b. (a -> b) -> a -> b
$ seq :: forall a b. a -> b -> b
seq s
s' forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
dropWhile :: (ByteString -> Bool) -> ByteString -> ByteString
dropWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
ByteString.dropWhile (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
takeWhile :: (ByteString -> Bool) -> ByteString -> ByteString
takeWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
ByteString.takeWhile (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton)
split :: (ByteString -> Bool) -> ByteString -> [ByteString]
split ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> [ByteString]
ByteString.splitWith Word8 -> Bool
f'
where f' :: Word8 -> Bool
f' = ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
ByteString.singleton
splitAt :: Int -> ByteString -> (ByteString, ByteString)
splitAt = Int -> ByteString -> (ByteString, ByteString)
ByteString.splitAt
drop :: Int -> ByteString -> ByteString
drop = Int -> ByteString -> ByteString
ByteString.drop
take :: Int -> ByteString -> ByteString
take = Int -> ByteString -> ByteString
ByteString.take
instance FactorialMonoid LazyByteString.ByteString where
splitPrimePrefix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimePrefix ByteString
x = if ByteString -> Bool
LazyByteString.null ByteString
x then forall a. Maybe a
Nothing
else forall a. a -> Maybe a
Just (Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt Int64
1 ByteString
x)
splitPrimeSuffix :: ByteString -> Maybe (ByteString, ByteString)
splitPrimeSuffix ByteString
x = if ByteString -> Bool
LazyByteString.null ByteString
x then forall a. Maybe a
Nothing
else forall a. a -> Maybe a
Just (Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt (ByteString -> Int64
LazyByteString.length ByteString
x forall a. Num a => a -> a -> a
- Int64
1) ByteString
x)
inits :: ByteString -> [ByteString]
inits = ByteString -> [ByteString]
LazyByteString.inits
tails :: ByteString -> [ByteString]
tails = ByteString -> [ByteString]
LazyByteString.tails
break :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
break ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
LazyByteString.break (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
span :: (ByteString -> Bool) -> ByteString -> (ByteString, ByteString)
span ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> (ByteString, ByteString)
LazyByteString.span (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
spanMaybe :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe s
s0 s -> ByteString -> Maybe s
f ByteString
b = case forall a. (Word8 -> a -> a) -> a -> ByteString -> a
LazyByteString.foldr Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g forall a. a -> a
id ByteString
b (Int64
0, s
s0)
of (Int64
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt Int64
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Word8
w (Int64, s) -> (Int64, s)
cont (Int64
i, s
s) | Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
LazyByteString.singleton Word8
w) = let i' :: Int64
i' = forall a. Enum a => a -> a
succ Int64
i :: Int64 in seq :: forall a b. a -> b -> b
seq Int64
i' forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
spanMaybe' :: forall s.
s
-> (s -> ByteString -> Maybe s)
-> ByteString
-> (ByteString, ByteString, s)
spanMaybe' s
s0 s -> ByteString -> Maybe s
f ByteString
b = case forall a. (Word8 -> a -> a) -> a -> ByteString -> a
LazyByteString.foldr Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g forall a. a -> a
id ByteString
b (Int64
0, s
s0)
of (Int64
i, s
s') | (ByteString
prefix, ByteString
suffix) <- Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt Int64
i ByteString
b -> (ByteString
prefix, ByteString
suffix, s
s')
where g :: Word8 -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Word8
w (Int64, s) -> (Int64, s)
cont (Int64
i, s
s)
| Just s
s' <- s -> ByteString -> Maybe s
f s
s (Word8 -> ByteString
LazyByteString.singleton Word8
w) = let i' :: Int64
i' = forall a. Enum a => a -> a
succ Int64
i :: Int64 in seq :: forall a b. a -> b -> b
seq Int64
i' forall a b. (a -> b) -> a -> b
$ seq :: forall a b. a -> b -> b
seq s
s' forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
dropWhile :: (ByteString -> Bool) -> ByteString -> ByteString
dropWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
LazyByteString.dropWhile (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
takeWhile :: (ByteString -> Bool) -> ByteString -> ByteString
takeWhile ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> ByteString
LazyByteString.takeWhile (ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton)
split :: (ByteString -> Bool) -> ByteString -> [ByteString]
split ByteString -> Bool
f = (Word8 -> Bool) -> ByteString -> [ByteString]
LazyByteString.splitWith Word8 -> Bool
f'
where f' :: Word8 -> Bool
f' = ByteString -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Word8 -> ByteString
LazyByteString.singleton
splitAt :: Int -> ByteString -> (ByteString, ByteString)
splitAt = Int64 -> ByteString -> (ByteString, ByteString)
LazyByteString.splitAt forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral
drop :: Int -> ByteString -> ByteString
drop Int
n = Int64 -> ByteString -> ByteString
LazyByteString.drop (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
take :: Int -> ByteString -> ByteString
take Int
n = Int64 -> ByteString -> ByteString
LazyByteString.take (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
instance FactorialMonoid Text.Text where
splitPrimePrefix :: Text -> Maybe (Text, Text)
splitPrimePrefix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Char -> Text
Text.singleton) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text -> Maybe (Char, Text)
Text.uncons
splitPrimeSuffix :: Text -> Maybe (Text, Text)
splitPrimeSuffix Text
x = if Text -> Bool
Text.null Text
x then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just (Text -> Text
Text.init Text
x, Char -> Text
Text.singleton (Text -> Char
Text.last Text
x))
inits :: Text -> [Text]
inits = Text -> [Text]
Text.inits
tails :: Text -> [Text]
tails = Text -> [Text]
Text.tails
span :: (Text -> Bool) -> Text -> (Text, Text)
span Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
Text.span (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
break :: (Text -> Bool) -> Text -> (Text, Text)
break Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
Text.break (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
dropWhile :: (Text -> Bool) -> Text -> Text
dropWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
Text.dropWhile (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
takeWhile :: (Text -> Bool) -> Text -> Text
takeWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
Text.takeWhile (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton)
spanMaybe :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe s
s0 s -> Text -> Maybe s
f Text
t = case forall a. (Char -> a -> a) -> a -> Text -> a
Text.foldr Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g forall a. a -> a
id Text
t (Int
0, s
s0)
of (Int
i, s
s') | (Text
prefix, Text
suffix) <- Int -> Text -> (Text, Text)
Text.splitAt Int
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Char
c (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
Text.singleton Char
c) = let i' :: Int
i' = forall a. Enum a => a -> a
succ Int
i :: Int in seq :: forall a b. a -> b -> b
seq Int
i' forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
spanMaybe' :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe' s
s0 s -> Text -> Maybe s
f Text
t = case forall a. (Char -> a -> a) -> a -> Text -> a
Text.foldr Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g forall a. a -> a
id Text
t (Int
0, s
s0)
of (Int
i, s
s') | (Text
prefix, Text
suffix) <- Int -> Text -> (Text, Text)
Text.splitAt Int
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g Char
c (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
Text.singleton Char
c) = let i' :: Int
i' = forall a. Enum a => a -> a
succ Int
i :: Int in seq :: forall a b. a -> b -> b
seq Int
i' forall a b. (a -> b) -> a -> b
$ seq :: forall a b. a -> b -> b
seq s
s' forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
split :: (Text -> Bool) -> Text -> [Text]
split Text -> Bool
f = (Char -> Bool) -> Text -> [Text]
Text.split Char -> Bool
f'
where f' :: Char -> Bool
f' = Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
Text.singleton
splitAt :: Int -> Text -> (Text, Text)
splitAt = Int -> Text -> (Text, Text)
Text.splitAt
drop :: Int -> Text -> Text
drop = Int -> Text -> Text
Text.drop
take :: Int -> Text -> Text
take = Int -> Text -> Text
Text.take
instance FactorialMonoid LazyText.Text where
splitPrimePrefix :: Text -> Maybe (Text, Text)
splitPrimePrefix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Char -> Text
LazyText.singleton) forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text -> Maybe (Char, Text)
LazyText.uncons
splitPrimeSuffix :: Text -> Maybe (Text, Text)
splitPrimeSuffix Text
x = if Text -> Bool
LazyText.null Text
x
then forall a. Maybe a
Nothing
else forall a. a -> Maybe a
Just (Text -> Text
LazyText.init Text
x, Char -> Text
LazyText.singleton (Text -> Char
LazyText.last Text
x))
inits :: Text -> [Text]
inits = Text -> [Text]
LazyText.inits
tails :: Text -> [Text]
tails = Text -> [Text]
LazyText.tails
span :: (Text -> Bool) -> Text -> (Text, Text)
span Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
LazyText.span (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
break :: (Text -> Bool) -> Text -> (Text, Text)
break Text -> Bool
f = (Char -> Bool) -> Text -> (Text, Text)
LazyText.break (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
dropWhile :: (Text -> Bool) -> Text -> Text
dropWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
LazyText.dropWhile (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
takeWhile :: (Text -> Bool) -> Text -> Text
takeWhile Text -> Bool
f = (Char -> Bool) -> Text -> Text
LazyText.takeWhile (Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton)
spanMaybe :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe s
s0 s -> Text -> Maybe s
f Text
t = case forall a. (Char -> a -> a) -> a -> Text -> a
LazyText.foldr Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g forall a. a -> a
id Text
t (Int64
0, s
s0)
of (Int64
i, s
s') | (Text
prefix, Text
suffix) <- Int64 -> Text -> (Text, Text)
LazyText.splitAt Int64
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Char
c (Int64, s) -> (Int64, s)
cont (Int64
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
LazyText.singleton Char
c) = let i' :: Int64
i' = forall a. Enum a => a -> a
succ Int64
i :: Int64 in seq :: forall a b. a -> b -> b
seq Int64
i' forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
spanMaybe' :: forall s. s -> (s -> Text -> Maybe s) -> Text -> (Text, Text, s)
spanMaybe' s
s0 s -> Text -> Maybe s
f Text
t = case forall a. (Char -> a -> a) -> a -> Text -> a
LazyText.foldr Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g forall a. a -> a
id Text
t (Int64
0, s
s0)
of (Int64
i, s
s') | (Text
prefix, Text
suffix) <- Int64 -> Text -> (Text, Text)
LazyText.splitAt Int64
i Text
t -> (Text
prefix, Text
suffix, s
s')
where g :: Char -> ((Int64, s) -> (Int64, s)) -> (Int64, s) -> (Int64, s)
g Char
c (Int64, s) -> (Int64, s)
cont (Int64
i, s
s) | Just s
s' <- s -> Text -> Maybe s
f s
s (Char -> Text
LazyText.singleton Char
c) = let i' :: Int64
i' = forall a. Enum a => a -> a
succ Int64
i :: Int64 in seq :: forall a b. a -> b -> b
seq Int64
i' forall a b. (a -> b) -> a -> b
$ seq :: forall a b. a -> b -> b
seq s
s' forall a b. (a -> b) -> a -> b
$ (Int64, s) -> (Int64, s)
cont (Int64
i', s
s')
| Bool
otherwise = (Int64
i, s
s)
split :: (Text -> Bool) -> Text -> [Text]
split Text -> Bool
f = (Char -> Bool) -> Text -> [Text]
LazyText.split Char -> Bool
f'
where f' :: Char -> Bool
f' = Text -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. Char -> Text
LazyText.singleton
splitAt :: Int -> Text -> (Text, Text)
splitAt = Int64 -> Text -> (Text, Text)
LazyText.splitAt forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (Integral a, Num b) => a -> b
fromIntegral
drop :: Int -> Text -> Text
drop Int
n = Int64 -> Text -> Text
LazyText.drop (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
take :: Int -> Text -> Text
take Int
n = Int64 -> Text -> Text
LazyText.take (forall a b. (Integral a, Num b) => a -> b
fromIntegral Int
n)
instance Ord k => FactorialMonoid (Map.Map k v) where
splitPrimePrefix :: Map k v -> Maybe (Map k v, Map k v)
splitPrimePrefix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {k} {a} {b}. ((k, a), b) -> (Map k a, b)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k a. Map k a -> Maybe ((k, a), Map k a)
Map.minViewWithKey
where singularize :: ((k, a), b) -> (Map k a, b)
singularize ((k
k, a
v), b
rest) = (forall k a. k -> a -> Map k a
Map.singleton k
k a
v, b
rest)
splitPrimeSuffix :: Map k v -> Maybe (Map k v, Map k v)
splitPrimeSuffix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {k} {a} {a}. ((k, a), a) -> (a, Map k a)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall k a. Map k a -> Maybe ((k, a), Map k a)
Map.maxViewWithKey
where singularize :: ((k, a), a) -> (a, Map k a)
singularize ((k
k, a
v), a
rest) = (a
rest, forall k a. k -> a -> Map k a
Map.singleton k
k a
v)
instance FactorialMonoid (IntMap.IntMap a) where
splitPrimePrefix :: IntMap a -> Maybe (IntMap a, IntMap a)
splitPrimePrefix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a} {b}. ((Int, a), b) -> (IntMap a, b)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. IntMap a -> Maybe ((Int, a), IntMap a)
IntMap.minViewWithKey
where singularize :: ((Int, a), b) -> (IntMap a, b)
singularize ((Int
k, a
v), b
rest) = (forall a. Int -> a -> IntMap a
IntMap.singleton Int
k a
v, b
rest)
splitPrimeSuffix :: IntMap a -> Maybe (IntMap a, IntMap a)
splitPrimeSuffix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a} {a}. ((Int, a), a) -> (a, IntMap a)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. IntMap a -> Maybe ((Int, a), IntMap a)
IntMap.maxViewWithKey
where singularize :: ((Int, a), a) -> (a, IntMap a)
singularize ((Int
k, a
v), a
rest) = (a
rest, forall a. Int -> a -> IntMap a
IntMap.singleton Int
k a
v)
instance FactorialMonoid IntSet.IntSet where
splitPrimePrefix :: IntSet -> Maybe (IntSet, IntSet)
splitPrimePrefix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {b}. (Int, b) -> (IntSet, b)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
IntSet.minView
where singularize :: (Int, b) -> (IntSet, b)
singularize (Int
min, b
rest) = (Int -> IntSet
IntSet.singleton Int
min, b
rest)
splitPrimeSuffix :: IntSet -> Maybe (IntSet, IntSet)
splitPrimeSuffix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a}. (Int, a) -> (a, IntSet)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntSet -> Maybe (Int, IntSet)
IntSet.maxView
where singularize :: (Int, a) -> (a, IntSet)
singularize (Int
max, a
rest) = (a
rest, Int -> IntSet
IntSet.singleton Int
max)
instance FactorialMonoid (Sequence.Seq a) where
splitPrimePrefix :: Seq a -> Maybe (Seq a, Seq a)
splitPrimePrefix Seq a
q = case forall a. Seq a -> ViewL a
Sequence.viewl Seq a
q
of ViewL a
Sequence.EmptyL -> forall a. Maybe a
Nothing
a
hd Sequence.:< Seq a
rest -> forall a. a -> Maybe a
Just (forall a. a -> Seq a
Sequence.singleton a
hd, Seq a
rest)
splitPrimeSuffix :: Seq a -> Maybe (Seq a, Seq a)
splitPrimeSuffix Seq a
q = case forall a. Seq a -> ViewR a
Sequence.viewr Seq a
q
of ViewR a
Sequence.EmptyR -> forall a. Maybe a
Nothing
Seq a
rest Sequence.:> a
last -> forall a. a -> Maybe a
Just (Seq a
rest, forall a. a -> Seq a
Sequence.singleton a
last)
inits :: Seq a -> [Seq a]
inits = forall (t :: * -> *) a. Foldable t => t a -> [a]
Foldable.toList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Seq a -> Seq (Seq a)
Sequence.inits
tails :: Seq a -> [Seq a]
tails = forall (t :: * -> *) a. Foldable t => t a -> [a]
Foldable.toList forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Seq a -> Seq (Seq a)
Sequence.tails
span :: (Seq a -> Bool) -> Seq a -> (Seq a, Seq a)
span Seq a -> Bool
f = forall a. (a -> Bool) -> Seq a -> (Seq a, Seq a)
Sequence.spanl (Seq a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Seq a
Sequence.singleton)
break :: (Seq a -> Bool) -> Seq a -> (Seq a, Seq a)
break Seq a -> Bool
f = forall a. (a -> Bool) -> Seq a -> (Seq a, Seq a)
Sequence.breakl (Seq a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Seq a
Sequence.singleton)
dropWhile :: (Seq a -> Bool) -> Seq a -> Seq a
dropWhile Seq a -> Bool
f = forall a. (a -> Bool) -> Seq a -> Seq a
Sequence.dropWhileL (Seq a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Seq a
Sequence.singleton)
takeWhile :: (Seq a -> Bool) -> Seq a -> Seq a
takeWhile Seq a -> Bool
f = forall a. (a -> Bool) -> Seq a -> Seq a
Sequence.takeWhileL (Seq a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Seq a
Sequence.singleton)
spanMaybe :: forall s.
s -> (s -> Seq a -> Maybe s) -> Seq a -> (Seq a, Seq a, s)
spanMaybe s
s0 s -> Seq a -> Maybe s
f Seq a
b = case forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Foldable.foldr a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g forall a. a -> a
id Seq a
b (Int
0, s
s0)
of (Int
i, s
s') | (Seq a
prefix, Seq a
suffix) <- forall a. Int -> Seq a -> (Seq a, Seq a)
Sequence.splitAt Int
i Seq a
b -> (Seq a
prefix, Seq a
suffix, s
s')
where g :: a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g a
x (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Seq a -> Maybe s
f s
s (forall a. a -> Seq a
Sequence.singleton a
x) = let i' :: Int
i' = forall a. Enum a => a -> a
succ Int
i :: Int in seq :: forall a b. a -> b -> b
seq Int
i' forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
spanMaybe' :: forall s.
s -> (s -> Seq a -> Maybe s) -> Seq a -> (Seq a, Seq a, s)
spanMaybe' s
s0 s -> Seq a -> Maybe s
f Seq a
b = case forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
Foldable.foldr a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g forall a. a -> a
id Seq a
b (Int
0, s
s0)
of (Int
i, s
s') | (Seq a
prefix, Seq a
suffix) <- forall a. Int -> Seq a -> (Seq a, Seq a)
Sequence.splitAt Int
i Seq a
b -> (Seq a
prefix, Seq a
suffix, s
s')
where g :: a -> ((Int, s) -> (Int, s)) -> (Int, s) -> (Int, s)
g a
x (Int, s) -> (Int, s)
cont (Int
i, s
s) | Just s
s' <- s -> Seq a -> Maybe s
f s
s (forall a. a -> Seq a
Sequence.singleton a
x) = let i' :: Int
i' = forall a. Enum a => a -> a
succ Int
i :: Int in seq :: forall a b. a -> b -> b
seq Int
i' forall a b. (a -> b) -> a -> b
$ seq :: forall a b. a -> b -> b
seq s
s' forall a b. (a -> b) -> a -> b
$ (Int, s) -> (Int, s)
cont (Int
i', s
s')
| Bool
otherwise = (Int
i, s
s)
splitAt :: Int -> Seq a -> (Seq a, Seq a)
splitAt = forall a. Int -> Seq a -> (Seq a, Seq a)
Sequence.splitAt
drop :: Int -> Seq a -> Seq a
drop = forall a. Int -> Seq a -> Seq a
Sequence.drop
take :: Int -> Seq a -> Seq a
take = forall a. Int -> Seq a -> Seq a
Sequence.take
instance Ord a => FactorialMonoid (Set.Set a) where
splitPrimePrefix :: Set a -> Maybe (Set a, Set a)
splitPrimePrefix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a} {b}. (a, b) -> (Set a, b)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Set a -> Maybe (a, Set a)
Set.minView
where singularize :: (a, b) -> (Set a, b)
singularize (a
min, b
rest) = (forall a. a -> Set a
Set.singleton a
min, b
rest)
splitPrimeSuffix :: Set a -> Maybe (Set a, Set a)
splitPrimeSuffix = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall {a} {a}. (a, a) -> (a, Set a)
singularize forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Set a -> Maybe (a, Set a)
Set.maxView
where singularize :: (a, a) -> (a, Set a)
singularize (a
max, a
rest) = (a
rest, forall a. a -> Set a
Set.singleton a
max)
instance FactorialMonoid (Vector.Vector a) where
splitPrimePrefix :: Vector a -> Maybe (Vector a, Vector a)
splitPrimePrefix Vector a
x = if forall a. Vector a -> Bool
Vector.null Vector a
x then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just (forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt Int
1 Vector a
x)
splitPrimeSuffix :: Vector a -> Maybe (Vector a, Vector a)
splitPrimeSuffix Vector a
x = if forall a. Vector a -> Bool
Vector.null Vector a
x then forall a. Maybe a
Nothing else forall a. a -> Maybe a
Just (forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt (forall a. Vector a -> Int
Vector.length Vector a
x forall a. Num a => a -> a -> a
- Int
1) Vector a
x)
inits :: Vector a -> [Vector a]
inits Vector a
x0 = forall {a}. Vector a -> [Vector a] -> [Vector a]
initsWith Vector a
x0 []
where initsWith :: Vector a -> [Vector a] -> [Vector a]
initsWith Vector a
x [Vector a]
rest | forall a. Vector a -> Bool
Vector.null Vector a
x = Vector a
xforall a. a -> [a] -> [a]
:[Vector a]
rest
| Bool
otherwise = Vector a -> [Vector a] -> [Vector a]
initsWith (forall a. Vector a -> Vector a
Vector.unsafeInit Vector a
x) (Vector a
xforall a. a -> [a] -> [a]
:[Vector a]
rest)
tails :: Vector a -> [Vector a]
tails Vector a
x = Vector a
x forall a. a -> [a] -> [a]
: if forall a. Vector a -> Bool
Vector.null Vector a
x then [] else forall m. FactorialMonoid m => m -> [m]
tails (forall a. Vector a -> Vector a
Vector.unsafeTail Vector a
x)
break :: (Vector a -> Bool) -> Vector a -> (Vector a, Vector a)
break Vector a -> Bool
f = forall a. (a -> Bool) -> Vector a -> (Vector a, Vector a)
Vector.break (Vector a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Vector a
Vector.singleton)
span :: (Vector a -> Bool) -> Vector a -> (Vector a, Vector a)
span Vector a -> Bool
f = forall a. (a -> Bool) -> Vector a -> (Vector a, Vector a)
Vector.span (Vector a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Vector a
Vector.singleton)
dropWhile :: (Vector a -> Bool) -> Vector a -> Vector a
dropWhile Vector a -> Bool
f = forall a. (a -> Bool) -> Vector a -> Vector a
Vector.dropWhile (Vector a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Vector a
Vector.singleton)
takeWhile :: (Vector a -> Bool) -> Vector a -> Vector a
takeWhile Vector a -> Bool
f = forall a. (a -> Bool) -> Vector a -> Vector a
Vector.takeWhile (Vector a -> Bool
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. a -> Vector a
Vector.singleton)
spanMaybe :: forall s.
s
-> (s -> Vector a -> Maybe s)
-> Vector a
-> (Vector a, Vector a, s)
spanMaybe s
s0 s -> Vector a -> Maybe s
f Vector a
v = case forall a b. (Int -> a -> b -> b) -> b -> Vector a -> b
Vector.ifoldr forall {a} {a}.
a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g forall a b. a -> Either a b
Left Vector a
v s
s0
of Left s
s' -> (Vector a
v, forall a. Vector a
Vector.empty, s
s')
Right (Int
i, s
s') | (Vector a
prefix, Vector a
suffix) <- forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt Int
i Vector a
v -> (Vector a
prefix, Vector a
suffix, s
s')
where g :: a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g a
i a
x s -> Either a (a, s)
cont s
s | Just s
s' <- s -> Vector a -> Maybe s
f s
s (forall a. a -> Vector a
Vector.singleton a
x) = s -> Either a (a, s)
cont s
s'
| Bool
otherwise = forall a b. b -> Either a b
Right (a
i, s
s)
spanMaybe' :: forall s.
s
-> (s -> Vector a -> Maybe s)
-> Vector a
-> (Vector a, Vector a, s)
spanMaybe' s
s0 s -> Vector a -> Maybe s
f Vector a
v = case forall a b. (Int -> a -> b -> b) -> b -> Vector a -> b
Vector.ifoldr' forall {a} {a}.
a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g forall a b. a -> Either a b
Left Vector a
v s
s0
of Left s
s' -> (Vector a
v, forall a. Vector a
Vector.empty, s
s')
Right (Int
i, s
s') | (Vector a
prefix, Vector a
suffix) <- forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt Int
i Vector a
v -> (Vector a
prefix, Vector a
suffix, s
s')
where g :: a -> a -> (s -> Either a (a, s)) -> s -> Either a (a, s)
g a
i a
x s -> Either a (a, s)
cont s
s | Just s
s' <- s -> Vector a -> Maybe s
f s
s (forall a. a -> Vector a
Vector.singleton a
x) = seq :: forall a b. a -> b -> b
seq s
s' (s -> Either a (a, s)
cont s
s')
| Bool
otherwise = forall a b. b -> Either a b
Right (a
i, s
s)
splitAt :: Int -> Vector a -> (Vector a, Vector a)
splitAt = forall a. Int -> Vector a -> (Vector a, Vector a)
Vector.splitAt
drop :: Int -> Vector a -> Vector a
drop = forall a. Int -> Vector a -> Vector a
Vector.drop
take :: Int -> Vector a -> Vector a
take = forall a. Int -> Vector a -> Vector a
Vector.take