-- | A strict version of the semi-direct product. If a monoid m acts
--   on s then this version of the semi-direct product is strict in
--   the m-portion of the semi-direct product.

{-# LANGUAGE CPP                   #-}
{-# LANGUAGE FlexibleInstances     #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TupleSections         #-}

module Data.Monoid.SemiDirectProduct.Strict
       ( Semi, unSemi, tag, inject, untag, embed, quotient
       ) where

#if !MIN_VERSION_base(4,8,0)
import           Data.Monoid        (Monoid(..))
#endif
import           Data.Semigroup     (Semigroup(..))

import           Data.Monoid.Action

-- | The semi-direct product of monoids @s@ and @m@, which is a monoid
--   when @m@ acts on @s@. Structurally, the semi-direct product is
--   just a pair @(s,m)@.  However, the monoid instance is different.
--   In particular, we have
--
-- > (s1,m1) <> (s2,m2) = (s1 <> (m1 `act` s2), m1 <> m2)
--
--   We call the monoid @m@ the quotient monoid and the monoid @s@ the
--   sub-monoid of the semi-direct product. The semi-direct product
--   @Semi s m@ is an extension of the monoid @s@ with @m@ being the
--   quotient.
data Semi s m = Semi s !m

unSemi :: Semi s m -> (s,m)
unSemi :: Semi s m -> (s, m)
unSemi (Semi s
s m
m) = (s
s,m
m)

instance (Semigroup m, Semigroup s, Action m s) => Semigroup (Semi s m) where
  Semi s
xs m
xm <> :: Semi s m -> Semi s m -> Semi s m
<> Semi s
ys m
ym          = s -> m -> Semi s m
forall s m. s -> m -> Semi s m
Semi (s
xs s -> s -> s
forall a. Semigroup a => a -> a -> a
<> (m
xm m -> s -> s
forall m s. Action m s => m -> s -> s
`act` s
ys)) (m
xm m -> m -> m
forall a. Semigroup a => a -> a -> a
<> m
ym)
  {-# INLINE (<>) #-}

#if MIN_VERSION_base(4,8,0)
  sconcat :: NonEmpty (Semi s m) -> Semi s m
sconcat                           = (Semi s m -> Semi s m -> Semi s m)
-> NonEmpty (Semi s m) -> Semi s m
forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 Semi s m -> Semi s m -> Semi s m
forall a. Semigroup a => a -> a -> a
(<>)
  {-# INLINE sconcat #-}
#endif

instance (Monoid m, Monoid s, Action m s) => Monoid (Semi s m) where
  mempty :: Semi s m
mempty                            = s -> m -> Semi s m
forall s m. s -> m -> Semi s m
Semi s
forall a. Monoid a => a
mempty m
forall a. Monoid a => a
mempty
  {-# INLINE mempty #-}
#if !MIN_VERSION_base(4,11,0)
  mappend (Semi xs xm) (Semi ys ym) = Semi (xs `mappend` (xm `act` ys)) (xm `mappend` ym)
  {-# INLINE mappend #-}
#endif
  mconcat :: [Semi s m] -> Semi s m
mconcat                           = (Semi s m -> Semi s m -> Semi s m)
-> Semi s m -> [Semi s m] -> Semi s m
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Semi s m -> Semi s m -> Semi s m
forall a. Monoid a => a -> a -> a
mappend Semi s m
forall a. Monoid a => a
mempty
  {-# INLINE mconcat #-}

-- | Tag an @s@ value with an @m@ value to create an element of the
--   semi-direct product.
tag :: s -> m -> Semi s m
tag :: s -> m -> Semi s m
tag = s -> m -> Semi s m
forall s m. s -> m -> Semi s m
Semi

-- | The injection map, /i.e./ give an @s@ value a trivial tag.
inject :: Monoid m => s -> Semi s m
inject :: s -> Semi s m
inject = (s -> m -> Semi s m) -> m -> s -> Semi s m
forall a b c. (a -> b -> c) -> b -> a -> c
flip s -> m -> Semi s m
forall s m. s -> m -> Semi s m
Semi m
forall a. Monoid a => a
mempty

-- | Forget the monoidal tag.  Of course, @untag . inject = id@, and
--   @untag (tag s m) = s@.
untag :: Semi s m -> s
untag :: Semi s m -> s
untag (Semi s
s m
_) = s
s

-- | Embed a "tag" value as a value of type @Semi s m@.  Note that
--
--   @inject s <> embed m = tag s m@
--
--   and
--
--   @embed m <> inject s@ = tag (act m s) m@
--
--   The semi-direct product gives a split extension of @s@ by
--   @m@. This allows us to embed @m@ into the semi-direct
--   product. This is the embedding map. The quotient and embed maps
--   should satisfy the equation @quotient . embed = id@.
embed :: Monoid s => m -> Semi s m
embed :: m -> Semi s m
embed = s -> m -> Semi s m
forall s m. s -> m -> Semi s m
Semi s
forall a. Monoid a => a
mempty

-- | The quotient map, /i.e./ retrieve the monoidal tag value.
quotient :: Semi s m -> m
quotient :: Semi s m -> m
quotient (Semi s
_ m
m) = m
m