{-# LANGUAGE CPP #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE ScopedTypeVariables #-} #ifdef TRUSTWORTHY # if MIN_VERSION_template_haskell(2,12,0) {-# LANGUAGE Safe #-} # else {-# LANGUAGE Trustworthy #-} # endif #endif #ifndef MIN_VERSION_template_haskell #define MIN_VERSION_template_haskell(x,y,z) (defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706) #endif #ifndef MIN_VERSION_containers #define MIN_VERSION_containers(x,y,z) 1 #endif {- | Module : Lens.Micro.TH Copyright : (C) 2013-2016 Eric Mertens, Edward Kmett, Artyom License : BSD-style (see the file LICENSE) -} module Lens.Micro.TH ( -- * Dealing with “not in scope” errors -- $errors-note -- * Using this module in GHCi -- $ghci-note -- * 'SimpleGetter' and 'SimpleFold' -- $getter-fold-note -- * Making lenses makeLenses, makeLensesFor, makeLensesWith, makeFields, makeClassy, -- * Default lens rules LensRules, DefName(..), lensRules, lensRulesFor, classyRules, camelCaseFields, abbreviatedFields, -- * Configuring lens rules lensField, lensClass, createClass, simpleLenses, generateSignatures, generateUpdateableOptics, generateLazyPatterns, ) where import Control.Monad import Control.Monad.Trans.State import Data.Char import Data.Data import Data.Either import qualified Data.Map as Map import Data.Map (Map) import Data.Monoid import qualified Data.Set as Set import Data.Set (Set) import Data.List (nub, findIndices, stripPrefix, isPrefixOf) import Data.Maybe import Lens.Micro import Lens.Micro.Internal (phantom) import Language.Haskell.TH import qualified Language.Haskell.TH.Datatype as D #if __GLASGOW_HASKELL__ < 710 import Control.Applicative import Data.Traversable (traverse, sequenceA) #endif {- $errors-note When you use Template Haskell, the order of declarations suddenly starts to matter. For instance, if you try to use 'makeLenses', 'makeFields', etc before the type is defined, you'll get a “not in scope” error: @ 'makeLenses' ''Foo data Foo = Foo {_foo :: Int} @ @ Not in scope: type constructor or class ‘Foo’ … In the Template Haskell quotation ''Foo @ You can't refer to generated lenses before you call 'makeLenses', either: @ data Foo = Foo {_foo :: Int} bar :: Lens' Foo Int bar = foo 'makeLenses' ''Foo @ @ Not in scope: ‘foo’ … Perhaps you meant one of these: data constructor ‘Foo’ (line 1), ‘_foo’ (line 1) @ -} {- $ghci-note You can use 'makeLenses' and friends to define lenses right from GHCi, but it's slightly tricky. First, enable Template Haskell: >>> :set -XTemplateHaskell Then define a bogus type (you can use any name in place of @M@, and you can use the same name many times), and follow the definition by the actual Template Haskell command you want to use: >>> data M; makeLenses ''Foo This will generate lenses for @Foo@ and you'll be able to use them from GHCi. If you want, you can define the type and lenses for it simultaneously with @:{@ and @:}@: @ >>> :{ data Foobar = Foobar { _foo :: Int, _bar :: Bool } deriving (Eq, Show) makeLenses ''Foobar :} @ -} {- $getter-fold-note When updates are forbidden (by using 'generateUpdateableOptics'), or when a field simply can't be updated (for instance, in the presence of @forall@), instead of 'Lens' and 'Traversal' we generate 'SimpleGetter' and 'SimpleFold'. These aren't true @Getter@ and @Fold@ from lens, so beware. (Still, they're compatible, it's just that you can't do some things with them that you can do with original ones – for instance, @backwards@ and @takingWhile@ don't work on 'SimpleFold'.) If you want to export true folds, it's recommended that you depend on <http://hackage.haskell.org/package/microlens-contra microlens-contra>, use 'makeLensesFor' to generate 'SimpleFold's with prefixes, and then export versions of those folds with @<http://hackage.haskell.org/package/microlens-contra/docs/Lens-Micro-Contra.html#v:fromSimpleFold fromSimpleFold>@ applied. -} -- Lens functions which would've been in Lens.Micro if it wasn't “micro” elemOf :: Eq a => Getting (Endo [a]) s a -> a -> s -> Bool elemOf l x s = elem x (s ^.. l) lengthOf :: Getting (Endo [a]) s a -> s -> Int lengthOf l s = length (s ^.. l) setOf :: Ord a => Getting (Endo [a]) s a -> s -> Set a setOf l s = Set.fromList (s ^.. l) _ForallT :: Traversal' Type ([TyVarBndr], Cxt, Type) _ForallT f (ForallT a b c) = (\(x, y, z) -> ForallT x y z) <$> f (a, b, c) _ForallT _ other = pure other -- Utilities -- @fromSet@ wasn't always there, and we need compatibility with -- containers-0.4 to compile on GHC 7.4. fromSet :: (k -> v) -> Set.Set k -> Map.Map k v #if MIN_VERSION_containers(0,5,0) fromSet = Map.fromSet #else fromSet f x = Map.fromDistinctAscList [ (k,f k) | k <- Set.toAscList x ] #endif -- like 'rewrite' from uniplate rewrite :: (Data a, Data b) => (a -> Maybe a) -> b -> b rewrite f mbA = case cast mbA of Nothing -> gmapT (rewrite f) mbA Just a -> let a' = gmapT (rewrite f) a in fromJust . cast $ fromMaybe a' (f a') -- like 'children' from uniplate children :: Data a => a -> [a] children = catMaybes . gmapQ cast -- Control.Lens.TH {- | Generate lenses for a data type or a newtype. To use it, you have to enable Template Haskell first: @ \{\-\# LANGUAGE TemplateHaskell \#\-\} @ Then, after declaring the datatype (let's say @Foo@), add @makeLenses ''Foo@ on a separate line (if you do it before the type is declared, you'll get a “not in scope” error – see the section at the top of this page): @ data Foo = Foo { _x :: Int, _y :: Bool } 'makeLenses' ''Foo @ This would generate the following lenses, which can be used to access the fields of @Foo@: @ x :: 'Lens'' Foo Int x f foo = (\\x' -> foo {_x = x'}) '<$>' f (_x foo) y :: 'Lens'' Foo Bool y f foo = (\\y' -> foo {_y = y'}) '<$>' f (_y foo) @ (If you don't want a lens to be generated for some field, don't prefix it with “_”.) If you want to create lenses for many types, you can do it all in one place like this (of course, instead you just can use 'makeLenses' several times if you feel it would be more readable): @ data Foo = ... data Bar = ... data Quux = ... 'concat' '<$>' 'mapM' 'makeLenses' [''Foo, ''Bar, ''Quux] @ When the data type has type parameters, it's possible for a lens to do a polymorphic update – i.e. change the type of the thing along with changing the type of the field. For instance, with this type @ data Foo a = Foo { _x :: a, _y :: Bool } @ the following lenses would be generated: @ x :: 'Lens' (Foo a) (Foo b) a b y :: 'Lens'' (Foo a) Bool @ However, when there are several fields using the same type parameter, type-changing updates are no longer possible: @ data Foo a = Foo { _x :: a, _y :: a } @ generates @ x :: 'Lens'' (Foo a) a y :: 'Lens'' (Foo a) a @ Finally, when the type has several constructors, some of fields may not be /always/ present – for those, a 'Traversal' is generated instead. For instance, in this example @y@ can be present or absent: @ data FooBar = Foo { _x :: Int, _y :: Bool } | Bar { _x :: Int } @ and the following accessors would be generated: @ x :: 'Lens'' FooBar Int y :: 'Traversal'' FooBar Bool @ So, to get @_y@, you'd have to either use ('^?') if you're not sure it's there, or ('^?!') if you're absolutely sure (and if you're wrong, you'll get an exception). Setting and updating @_y@ can be done as usual. -} makeLenses :: Name -> DecsQ makeLenses = makeFieldOptics lensRules {- | Like 'makeLenses', but lets you choose your own names for lenses: @ data Foo = Foo {foo :: Int, bar :: Bool} 'makeLensesFor' [(\"foo\", \"fooLens\"), (\"bar\", \"_bar\")] ''Foo @ would create lenses called @fooLens@ and @_bar@. This is useful, for instance, when you don't want to prefix your fields with underscores and want to prefix /lenses/ with underscores instead. If you give the same name to different fields, it will generate a 'Traversal' instead: @ data Foo = Foo {slot1, slot2, slot3 :: Int} 'makeLensesFor' [(\"slot1\", \"slots\"), (\"slot2\", \"slots\"), (\"slot3\", \"slots\")] ''Foo @ would generate @ slots :: 'Traversal'' Foo Int slots f foo = Foo '<$>' f (slot1 foo) '<*>' f (slot2 foo) '<*>' f (slot3 foo) @ -} makeLensesFor :: [(String, String)] -> Name -> DecsQ makeLensesFor fields = makeFieldOptics (lensRulesFor fields) {- | Generate lenses with custom parameters. To see what exactly you can customise, look at the “Configuring lens rules” section. Usually you would build upon the 'lensRules' configuration, which is used by 'makeLenses': @ 'makeLenses' = 'makeLensesWith' 'lensRules' @ Here's an example of generating lenses that would use lazy patterns: @ data Foo = Foo {_x, _y :: Int} 'makeLensesWith' ('lensRules' '&' 'generateLazyPatterns' '.~' True) ''Foo @ When there are several modifications to the rules, the code looks nicer when you use 'flip': @ 'flip' 'makeLensesWith' ''Foo $ 'lensRules' '&' 'generateLazyPatterns' '.~' True '&' 'generateSignatures' '.~' False @ -} makeLensesWith :: LensRules -> Name -> DecsQ makeLensesWith = makeFieldOptics {- | Generate overloaded lenses. This lets you deal with several data types having same fields. For instance, let's say you have @Foo@ and @Bar@, and both have a field named @x@. To avoid those fields clashing, you would have to use prefixes: @ data Foo a = Foo { fooX :: Int, fooY :: a } data Bar = Bar { barX :: Char } @ However, if you use 'makeFields' on both @Foo@ and @Bar@ now, it would generate lenses called @x@ and @y@ – and @x@ would be able to access both @fooX@ and @barX@! This is done by generating a separate class for each field, and making relevant types instances of that class: @ class HasX s a | s -> a where x :: 'Lens'' s a instance HasX (Foo a) Int where x :: 'Lens'' (Foo a) Int x = ... instance HasX Bar Char where x :: 'Lens'' Bar Char x = ... class HasY s a | s -> a where y :: 'Lens'' s a instance HasY (Foo a) a where y :: 'Lens'' (Foo a) a y = ... @ (There's a minor drawback, though: you can't perform type-changing updates with these lenses.) If you only want to make lenses for some fields, you can prefix them with underscores – the rest would be untouched. If no fields are prefixed with underscores, lenses would be created for all fields. The prefix must be the same as the name of the name of the data type (/not/ the constructor). If you don't like this behavior, use @'makeLensesWith' 'abbreviatedFields'@ – it allows any prefix (and even different prefixes). If you want to use 'makeFields' on types declared in different modules, you can do it, but then you would have to export the @Has*@ classes from one of the modules – 'makeFields' creates a class if it's not in scope yet, so the class must be in scope or else there would be duplicate classes and you would get an “Ambiguous occurrence” error. Finally, 'makeFields' is implemented as @'makeLensesWith' 'camelCaseFields'@, so you can build on 'camelCaseFields' if you want to customise behavior of 'makeFields'. -} makeFields :: Name -> DecsQ makeFields = makeFieldOptics camelCaseFields {- | Generate overloaded lenses without ad-hoc classes; useful when there's a collection of fields that you want to make common for several types. Like 'makeFields', each lens is a member of a class. However, the classes are per-type and not per-field. Let's take the following type: @ data Person = Person { _name :: String, _age :: Double } @ 'makeClassy' would generate a single class with 3 methods: @ class HasPerson c where person :: Lens' c Person age :: Lens' c Double age = person.age name :: Lens' c String name = person.name @ And an instance: @ instance HasPerson Person where person = id name = ... age = ... @ So, you can use @name@ and @age@ to refer to the @_name@ and @_age@ fields, as usual. However, the extra lens – @person@ – allows you to do a kind of subtyping. Let's say that there's a type called @Worker@ and every worker has the same fields that a person has, but also a @job@. If you were using 'makeFields', you'd do the following: @ data Worker = Worker { _workerName :: String, _workerAge :: Double, _workerJob :: String } @ However, with 'makeClassy' you can say “every worker is a person” in a more principled way: @ data Worker = Worker { _workerPerson :: Person, _job :: String } makeClassy ''Worker instance HasPerson Worker where person = workerPerson @ Now you can use @age@ and @name@ to access name\/age of a @Worker@, but you also can use @person@ to “downgrade” a @Worker@ to a @Person@ (and e.g. apply some @Person@-specific function to it). Unlike 'makeFields', 'makeClassy' doesn't make use of prefixes. @_workerPerson@ could've just as well been named @_foobar@. 'makeClassy' is implemented as @'makeLensesWith' 'classyRules'@, so you can build on 'classyRules' if you want to customise behavior of 'makeClassy'. -} makeClassy :: Name -> DecsQ makeClassy = makeFieldOptics classyRules {- | Generate simple (monomorphic) lenses even when type-changing lenses are possible – i.e. 'Lens'' instead of 'Lens' and 'Traversal'' instead of 'Traversal'. Just in case, here's an example of a situation when type-changing lenses would be normally generated: @ data Foo a = Foo { _foo :: a } @ Generated lens: @ foo :: 'Lens' (Foo a) (Foo b) a b @ Generated lens with 'simpleLenses' turned on: @ foo :: 'Lens'' (Foo a) a @ This option is disabled by default. -} simpleLenses :: Lens' LensRules Bool simpleLenses f r = fmap (\x -> r { _simpleLenses = x}) (f (_simpleLenses r)) {- | Supply type signatures for the generated lenses. This option is enabled by default. Disable it if you want to write the signature by yourself – for instance, if the signature should be more restricted, or if you want to write haddocks for the lens (as haddocks are attached to the signature and not to the definition). -} generateSignatures :: Lens' LensRules Bool generateSignatures f r = fmap (\x -> r { _generateSigs = x}) (f (_generateSigs r)) {- | Generate “updateable” optics. When turned off, 'SimpleFold's will be generated instead of 'Traversal's and 'SimpleGetter's will be generated instead of 'Lens'es. This option is enabled by default. Disabling it can be useful for types with invariants (also known as “types with smart constructors”) – if you generate updateable optics, anyone would be able to use them to break your invariants. -} generateUpdateableOptics :: Lens' LensRules Bool generateUpdateableOptics f r = fmap (\x -> r { _allowUpdates = x}) (f (_allowUpdates r)) {- | Generate lenses using lazy pattern matches. This can allow fields of an undefined value to be initialized with lenses: @ data Foo = Foo {_x :: Int, _y :: Bool} deriving Show 'makeLensesWith' ('lensRules' '&' 'generateLazyPatterns' '.~' True) ''Foo @ @ >>> 'undefined' '&' x '.~' 8 '&' y '.~' True Foo {_x = 8, _y = True} @ (Without 'generateLazyPatterns', the result would be just 'undefined'.) This option is disabled by default. The downside of enabling it is that it can lead to space-leaks and code-size\/compile-time increases when lenses are generated for large records. When you have a lazy lens, you can get a strict lens from it by composing with ('$!'): @ strictLens = ('$!') . lazyLens @ -} generateLazyPatterns :: Lens' LensRules Bool generateLazyPatterns f r = fmap (\x -> r { _lazyPatterns = x}) (f (_lazyPatterns r)) {- | This lets you choose which fields would have lenses generated for them and how would those lenses be called. To do that, you provide a function that would take a field name and output a list (possibly empty) of lenses that should be generated for that field. Here's the full type of the function you have to provide: @ 'Name' -> -- The datatype lenses are being generated for ['Name'] -> -- A list of all fields of the datatype 'Name' -> -- The current field ['DefName'] -- A list of lens names @ Most of the time you won't need the first 2 parameters, but sometimes they are useful – for instance, the list of all fields would be useful if you wanted to implement a slightly more complicated rule like “if some fields are prefixed with underscores, generate lenses for them, but if no fields are prefixed with underscores, generate lenses for /all/ fields”. As an example, here's a function used by default. It strips “_” off the field name, lowercases the next character after “_”, and skips the field entirely if it doesn't start with “_”: @ \\_ _ n -> case 'nameBase' n of \'_\':x:xs -> ['TopName' ('mkName' ('toLower' x : xs))] _ -> [] @ You can also generate classes (i.e. what 'makeFields' does) by using @'MethodName' className lensName@ instead of @'TopName' lensName@. -} lensField :: Lens' LensRules (Name -> [Name] -> Name -> [DefName]) lensField f r = fmap (\x -> r { _fieldToDef = x}) (f (_fieldToDef r)) {- | This lets you choose whether a class would be generated for the type itself (like 'makeClassy' does). If so, you can choose the name of the class and the name of the type-specific lens. For 'makeLenses' and 'makeFields' this is just @const Nothing@. For 'makeClassy' this function is defined like this: @ \\n -> case 'nameBase' n of x:xs -> Just ('mkName' ("Has" ++ x:xs), 'mkName' ('toLower' x : xs)) [] -> Nothing @ -} lensClass :: Lens' LensRules (Name -> Maybe (Name, Name)) lensClass f r = fmap (\x -> r { _classyLenses = x }) (f (_classyLenses r)) {- | Decide whether generation of classes is allowed at all. If this is disabled, neither 'makeFields' nor 'makeClassy' would work, regardless of values of 'lensField' or 'lensClass'. On the other hand, if 'lensField' and 'lensClass' don't generate any classes, enabling this won't have any effect. -} createClass :: Lens' LensRules Bool createClass f r = fmap (\x -> r { _generateClasses = x}) (f (_generateClasses r)) {- | Lens rules used by default (i.e. in 'makeLenses'): * 'generateSignatures' is turned on * 'generateUpdateableOptics' is turned on * 'generateLazyPatterns' is turned off * 'simpleLenses' is turned off * 'lensField' strips “_” off the field name, lowercases the next character after “_”, and skips the field entirely if it doesn't start with “_” (you can see how it's implemented in the docs for 'lensField') * 'lensClass' isn't used (i.e. defined as @const Nothing@) -} lensRules :: LensRules lensRules = LensRules { _simpleLenses = False , _generateSigs = True , _generateClasses = False -- , _allowIsos = True , _allowUpdates = True , _lazyPatterns = False , _classyLenses = const Nothing , _fieldToDef = \_ _ n -> case nameBase n of '_':x:xs -> [TopName (mkName (toLower x:xs))] _ -> [] } {- | A modification of 'lensRules' used by 'makeLensesFor' (the only difference is that a simple lookup function is used for 'lensField'). -} lensRulesFor :: [(String, String)] -- ^ @[(fieldName, lensName)]@ -> LensRules lensRulesFor fields = lensRules & lensField .~ mkNameLookup fields mkNameLookup :: [(String,String)] -> Name -> [Name] -> Name -> [DefName] mkNameLookup kvs _ _ field = [ TopName (mkName v) | (k,v) <- kvs, k == nameBase field] {- | Lens rules used by 'makeFields': * 'generateSignatures' is turned on * 'generateUpdateableOptics' is turned on * 'generateLazyPatterns' is turned off * 'simpleLenses' is turned on (unlike in 'lensRules') * 'lensField' is more complicated – it takes fields which are prefixed with the name of the type they belong to (e.g. “fooFieldName” for “Foo”), strips that prefix, and generates a class called “HasFieldName” with a single method called “fieldName”. If some fields are prefixed with underscores, underscores would be stripped too, but then fields without underscores won't have any lenses generated for them. Also note that e.g. “foolish” won't have a lens called “lish” generated for it – the prefix must be followed by a capital letter (or else it wouldn't be camel case). * 'lensClass' isn't used (i.e. defined as @const Nothing@) -} camelCaseFields :: LensRules camelCaseFields = defaultFieldRules camelCaseNamer :: Name -> [Name] -> Name -> [DefName] camelCaseNamer tyName fields field = maybeToList $ do fieldPart <- stripPrefix expectedPrefix (nameBase field) method <- computeMethod fieldPart let cls = "Has" ++ fieldPart return (MethodName (mkName cls) (mkName method)) where expectedPrefix = optUnderscore ++ over _head toLower (nameBase tyName) optUnderscore = ['_' | any (isPrefixOf "_" . nameBase) fields ] computeMethod (x:xs) | isUpper x = Just (toLower x : xs) computeMethod _ = Nothing {- | Like standard rules used by 'makeFields', but doesn't put any restrictions on the prefix. I.e. if you have fields called * @_fooBarBaz@ * @_someX@ * @someY@ then the generated lenses would be called @barBaz@ and @x@. -} abbreviatedFields :: LensRules abbreviatedFields = defaultFieldRules { _fieldToDef = abbreviatedNamer } abbreviatedNamer :: Name -> [Name] -> Name -> [DefName] abbreviatedNamer _ fields field = maybeToList $ do fieldPart <- stripMaxLc (nameBase field) method <- computeMethod fieldPart let cls = "Has" ++ fieldPart return (MethodName (mkName cls) (mkName method)) where stripMaxLc f = do x <- stripPrefix optUnderscore f case break isUpper x of (p,s) | null p || null s -> Nothing | otherwise -> Just s optUnderscore = ['_' | any (isPrefixOf "_" . nameBase) fields ] computeMethod (x:xs) | isUpper x = Just (toLower x : xs) computeMethod _ = Nothing defaultFieldRules :: LensRules defaultFieldRules = LensRules { _simpleLenses = True , _generateSigs = True , _generateClasses = True -- classes will still be skipped if they already exist -- , _allowIsos = False -- generating Isos would hinder field class reuse , _allowUpdates = True , _lazyPatterns = False , _classyLenses = const Nothing , _fieldToDef = camelCaseNamer } underscoreNoPrefixNamer :: Name -> [Name] -> Name -> [DefName] underscoreNoPrefixNamer _ _ n = case nameBase n of '_':x:xs -> [TopName (mkName (toLower x:xs))] _ -> [] {- | Lens rules used by 'makeClassy': * 'generateSignatures' is turned on * 'generateUpdateableOptics' is turned on * 'generateLazyPatterns' is turned off * 'simpleLenses' is turned on (unlike in 'lensRules') * 'lensField' is the same as in 'lensRules' * 'lensClass' just adds “Has” to the name of the type (so for “Person” the generated class would be called “HasPerson” and the type-specific lens in that class would be called “person”) -} classyRules :: LensRules classyRules = LensRules { _simpleLenses = True , _generateSigs = True , _generateClasses = True -- , _allowIsos = False -- generating Isos would hinder "subtyping" , _allowUpdates = True , _lazyPatterns = False , _classyLenses = \n -> case nameBase n of x:xs -> Just (mkName ("Has" ++ x:xs), mkName (toLower x:xs)) [] -> Nothing , _fieldToDef = underscoreNoPrefixNamer } -- Language.Haskell.TH.Lens -- Has a 'Name' class HasName t where -- Extract (or modify) the 'Name' of something name :: Lens' t Name instance HasName TyVarBndr where name f (PlainTV n) = PlainTV <$> f n name f (KindedTV n k) = (`KindedTV` k) <$> f n instance HasName Name where name = id -- | On @template-haskell-2.11.0.0@ or later, if a 'GadtC' or 'RecGadtC' has -- multiple 'Name's, the leftmost 'Name' will be chosen. instance HasName Con where name f (NormalC n tys) = (`NormalC` tys) <$> f n name f (RecC n tys) = (`RecC` tys) <$> f n name f (InfixC l n r) = (\n' -> InfixC l n' r) <$> f n name f (ForallC bds ctx con) = ForallC bds ctx <$> name f con #if MIN_VERSION_template_haskell(2,11,0) name f (GadtC ns argTys retTy) = (\n -> GadtC [n] argTys retTy) <$> f (head ns) name f (RecGadtC ns argTys retTy) = (\n -> RecGadtC [n] argTys retTy) <$> f (head ns) #endif -- Provides for the extraction of free type variables, and alpha renaming. class HasTypeVars t where -- When performing substitution into this traversal you're not allowed -- to substitute in a name that is bound internally or you'll violate -- the 'Traversal' laws, when in doubt generate your names with 'newName'. typeVarsEx :: Set Name -> Traversal' t Name instance HasTypeVars TyVarBndr where typeVarsEx s f b | Set.member (b^.name) s = pure b | otherwise = name f b instance HasTypeVars Name where typeVarsEx s f n | Set.member n s = pure n | otherwise = f n instance HasTypeVars Type where typeVarsEx s f (VarT n) = VarT <$> typeVarsEx s f n typeVarsEx s f (AppT l r) = AppT <$> typeVarsEx s f l <*> typeVarsEx s f r typeVarsEx s f (SigT t k) = (`SigT` k) <$> typeVarsEx s f t typeVarsEx s f (ForallT bs ctx ty) = ForallT bs <$> typeVarsEx s' f ctx <*> typeVarsEx s' f ty where s' = s `Set.union` Set.fromList (bs ^.. typeVars) typeVarsEx _ _ t = pure t #if !MIN_VERSION_template_haskell(2,10,0) instance HasTypeVars Pred where typeVarsEx s f (ClassP n ts) = ClassP n <$> typeVarsEx s f ts typeVarsEx s f (EqualP l r) = EqualP <$> typeVarsEx s f l <*> typeVarsEx s f r #endif instance HasTypeVars Con where typeVarsEx s f (NormalC n ts) = NormalC n <$> (traverse . _2) (typeVarsEx s f) ts typeVarsEx s f (RecC n ts) = RecC n <$> (traverse . _3) (typeVarsEx s f) ts typeVarsEx s f (InfixC l n r) = InfixC <$> g l <*> pure n <*> g r where g (i, t) = (,) i <$> typeVarsEx s f t typeVarsEx s f (ForallC bs ctx c) = ForallC bs <$> typeVarsEx s' f ctx <*> typeVarsEx s' f c where s' = s `Set.union` Set.fromList (bs ^.. typeVars) #if MIN_VERSION_template_haskell(2,11,0) typeVarsEx s f (GadtC ns argTys retTy) = GadtC ns <$> (traverse . _2) (typeVarsEx s f) argTys <*> typeVarsEx s f retTy typeVarsEx s f (RecGadtC ns argTys retTy) = RecGadtC ns <$> (traverse . _3) (typeVarsEx s f) argTys <*> typeVarsEx s f retTy #endif instance HasTypeVars t => HasTypeVars [t] where typeVarsEx s = traverse . typeVarsEx s instance HasTypeVars t => HasTypeVars (Maybe t) where typeVarsEx s = traverse . typeVarsEx s -- Traverse /free/ type variables typeVars :: HasTypeVars t => Traversal' t Name typeVars = typeVarsEx mempty -- Substitute using a map of names in for /free/ type variables substTypeVars :: HasTypeVars t => Map Name Name -> t -> t substTypeVars m = over typeVars $ \n -> fromMaybe n (Map.lookup n m) -- FieldTH.hs ------------------------------------------------------------------------ -- Field generation entry point ------------------------------------------------------------------------ -- Compute the field optics for the type identified by the given type name. -- Lenses will be computed when possible, Traversals otherwise. makeFieldOptics :: LensRules -> Name -> DecsQ makeFieldOptics rules = (`evalStateT` Set.empty) . makeFieldOpticsForDatatype rules <=< D.reifyDatatype type HasFieldClasses = StateT (Set Name) Q addFieldClassName :: Name -> HasFieldClasses () addFieldClassName n = modify $ Set.insert n -- | Compute the field optics for a deconstructed datatype Dec -- When possible build an Iso otherwise build one optic per field. makeFieldOpticsForDatatype :: LensRules -> D.DatatypeInfo -> HasFieldClasses [Dec] makeFieldOpticsForDatatype rules info = do perDef <- liftState $ do fieldCons <- traverse normalizeConstructor cons let allFields = toListOf (folded . _2 . folded . _1 . folded) fieldCons let defCons = over normFieldLabels (expandName allFields) fieldCons allDefs = setOf (normFieldLabels . folded) defCons sequenceA (fromSet (buildScaffold rules s defCons) allDefs) let defs = Map.toList perDef case _classyLenses rules tyName of Just (className, methodName) -> makeClassyDriver rules className methodName s defs Nothing -> do decss <- traverse (makeFieldOptic rules) defs return (concat decss) where tyName = D.datatypeName info s = D.datatypeType info cons = D.datatypeCons info -- Traverse the field labels of a normalized constructor normFieldLabels :: Traversal [(Name,[(a,Type)])] [(Name,[(b,Type)])] a b normFieldLabels = traverse . _2 . traverse . _1 -- Map a (possibly missing) field's name to zero-to-many optic definitions expandName :: [Name] -> Maybe Name -> [DefName] expandName allFields = concatMap (_fieldToDef rules tyName allFields) . maybeToList normalizeConstructor :: D.ConstructorInfo -> Q (Name, [(Maybe Name, Type)]) -- ^ constructor name, field name, field type normalizeConstructor con = return (D.constructorName con, zipWith checkForExistentials fieldNames (D.constructorFields con)) where fieldNames = case D.constructorVariant con of D.RecordConstructor xs -> fmap Just xs D.NormalConstructor -> repeat Nothing D.InfixConstructor -> repeat Nothing -- Fields mentioning existentially quantified types are not -- elligible for TH generated optics. checkForExistentials _ fieldtype | any (\tv -> D.tvName tv `Set.member` used) unallowable = (Nothing, fieldtype) where used = setOf typeVars fieldtype unallowable = D.constructorVars con checkForExistentials fieldname fieldtype = (fieldname, fieldtype) makeClassyDriver :: LensRules -> Name -> Name -> Type {- ^ Outer 's' type -} -> [(DefName, (OpticType, OpticStab, [(Name, Int, [Int])]))] -> HasFieldClasses [Dec] makeClassyDriver rules className methodName s defs = sequenceA (cls ++ inst) where cls | _generateClasses rules = [liftState $ makeClassyClass className methodName s defs] | otherwise = [] inst = [makeClassyInstance rules className methodName s defs] makeClassyClass :: Name -> Name -> Type {- ^ Outer 's' type -} -> [(DefName, (OpticType, OpticStab, [(Name, Int, [Int])]))] -> DecQ makeClassyClass className methodName s defs = do let ss = map (stabToS . (^. _2._2)) defs (sub,s') <- unifyTypes (s : ss) c <- newName "c" let vars = toListOf typeVars s' fd | null vars = [] | otherwise = [FunDep [c] vars] classD (cxt[]) className (map PlainTV (c:vars)) fd $ sigD methodName (return (''Lens' `conAppsT` [VarT c, s'])) : concat [ [sigD defName (return ty) ,valD (varP defName) (normalB body) [] ] ++ inlinePragma defName | (TopName defName, (_, stab, _)) <- defs , let body = appsE [varE '(.), varE methodName, varE defName] , let ty = quantifyType' (Set.fromList (c:vars)) (stabToContext stab) $ stabToOptic stab `conAppsT` [VarT c, applyTypeSubst sub (stabToA stab)] ] makeClassyInstance :: LensRules -> Name -> Name -> Type {- ^ Outer 's' type -} -> [(DefName, (OpticType, OpticStab, [(Name, Int, [Int])]))] -> HasFieldClasses Dec makeClassyInstance rules className methodName s defs = do methodss <- traverse (makeFieldOptic rules') defs liftState $ instanceD (cxt[]) (return instanceHead) $ valD (varP methodName) (normalB (varE 'id)) [] : map return (concat methodss) where instanceHead = className `conAppsT` (s : map VarT vars) vars = toListOf typeVars s rules' = rules { _generateSigs = False , _generateClasses = False } data OpticType = GetterType | LensType -- or IsoType -- Compute the positional location of the fields involved in -- each constructor for a given optic definition as well as the -- type of clauses to generate and the type to annotate the declaration -- with. buildScaffold :: LensRules -> Type {- outer type -} -> [(Name, [([DefName], Type)])] {- normalized constructors -} -> DefName {- target definition -} -> Q (OpticType, OpticStab, [(Name, Int, [Int])]) {- ^ optic type, definition type, field count, target fields -} buildScaffold rules s cons defName = do (s',t,a,b) <- buildStab s (concatMap snd consForDef) let defType | Just (_,cx,a') <- a ^? _ForallT = let optic | lensCase = ''SimpleGetter | otherwise = ''SimpleFold in OpticSa cx optic s' a' -- Getter and Fold are always simple | not (_allowUpdates rules) = let optic | lensCase = ''SimpleGetter | otherwise = ''SimpleFold in OpticSa [] optic s' a -- Generate simple Lens and Traversal where possible | _simpleLenses rules || s' == t && a == b = let optic -- isoCase && _allowIsos rules = ''Iso' | lensCase = ''Lens' | otherwise = ''Traversal' in OpticSa [] optic s' a -- Generate type-changing Lens and Traversal otherwise | otherwise = let optic -- isoCase && _allowIsos rules = ''Iso | lensCase = ''Lens | otherwise = ''Traversal in OpticStab optic s' t a b opticType | has _ForallT a = GetterType | not (_allowUpdates rules) = GetterType -- isoCase = IsoType | otherwise = LensType return (opticType, defType, scaffolds) where consForDef :: [(Name, [Either Type Type])] consForDef = over (mapped . _2 . mapped) categorize cons scaffolds :: [(Name, Int, [Int])] scaffolds = [ (n, length ts, rightIndices ts) | (n,ts) <- consForDef ] rightIndices :: [Either Type Type] -> [Int] rightIndices = findIndices (has _Right) -- Right: types for this definition -- Left : other types categorize :: ([DefName], Type) -> Either Type Type categorize (defNames, t) | defName `elem` defNames = Right t | otherwise = Left t lensCase :: Bool lensCase = all (\x -> lengthOf (_2 . folded . _Right) x == 1) consForDef -- isoCase :: Bool -- isoCase = case scaffolds of -- [(_,1,[0])] -> True -- _ -> False data OpticStab = OpticStab Name Type Type Type Type | OpticSa Cxt Name Type Type stabToType :: OpticStab -> Type stabToType (OpticStab c s t a b) = quantifyType [] (c `conAppsT` [s,t,a,b]) stabToType (OpticSa cx c s a ) = quantifyType cx (c `conAppsT` [s,a]) stabToContext :: OpticStab -> Cxt stabToContext OpticStab{} = [] stabToContext (OpticSa cx _ _ _) = cx stabToOptic :: OpticStab -> Name stabToOptic (OpticStab c _ _ _ _) = c stabToOptic (OpticSa _ c _ _) = c stabToS :: OpticStab -> Type stabToS (OpticStab _ s _ _ _) = s stabToS (OpticSa _ _ s _) = s stabToA :: OpticStab -> Type stabToA (OpticStab _ _ _ a _) = a stabToA (OpticSa _ _ _ a) = a -- Compute the s t a b types given the outer type 's' and the -- categorized field types. Left for fixed and Right for visited. -- These types are "raw" and will be packaged into an 'OpticStab' -- shortly after creation. buildStab :: Type -> [Either Type Type] -> Q (Type,Type,Type,Type) buildStab s categorizedFields = do (subA,a) <- unifyTypes targetFields let s' = applyTypeSubst subA s -- compute possible type changes sub <- sequenceA (fromSet (newName . nameBase) unfixedTypeVars) let (t,b) = over both (substTypeVars sub) (s',a) return (s',t,a,b) where (fixedFields, targetFields) = partitionEithers categorizedFields fixedTypeVars = setOf typeVars fixedFields unfixedTypeVars = setOf typeVars s Set.\\ fixedTypeVars -- Build the signature and definition for a single field optic. -- In the case of a singleton constructor irrefutable matches are -- used to enable the resulting lenses to be used on a bottom value. makeFieldOptic :: LensRules -> (DefName, (OpticType, OpticStab, [(Name, Int, [Int])])) -> HasFieldClasses [Dec] makeFieldOptic rules (defName, (opticType, defType, cons)) = do locals <- get addName liftState $ do cls <- mkCls locals sequenceA (cls ++ sig ++ def) where mkCls locals = case defName of MethodName c n | _generateClasses rules -> do classExists <- isJust <$> lookupTypeName (show c) return (if classExists || Set.member c locals then [] else [makeFieldClass defType c n]) _ -> return [] addName = case defName of MethodName c _ -> addFieldClassName c _ -> return () sig = case defName of _ | not (_generateSigs rules) -> [] TopName n -> [sigD n (return (stabToType defType))] MethodName{} -> [] fun n = funD n clauses : inlinePragma n def = case defName of TopName n -> fun n MethodName c n -> [makeFieldInstance defType c (fun n)] clauses = makeFieldClauses rules opticType cons ------------------------------------------------------------------------ -- Field class generation ------------------------------------------------------------------------ makeFieldClass :: OpticStab -> Name -> Name -> DecQ makeFieldClass defType className methodName = classD (cxt []) className [PlainTV s, PlainTV a] [FunDep [s] [a]] [sigD methodName (return methodType)] where methodType = quantifyType' (Set.fromList [s,a]) (stabToContext defType) $ stabToOptic defType `conAppsT` [VarT s,VarT a] s = mkName "s" a = mkName "a" -- | Build an instance for a field. If the field’s type contains any type -- families, will produce an equality constraint to avoid a type family -- application in the instance head. makeFieldInstance :: OpticStab -> Name -> [DecQ] -> DecQ makeFieldInstance defType className decs = containsTypeFamilies a >>= pickInstanceDec where s = stabToS defType a = stabToA defType containsTypeFamilies = go <=< D.resolveTypeSynonyms where go (ConT nm) = (\i -> case i of FamilyI d _ -> isTypeFamily d; _ -> False) <$> reify nm go ty = or <$> traverse go (children ty) #if MIN_VERSION_template_haskell(2,11,0) isTypeFamily OpenTypeFamilyD{} = True isTypeFamily ClosedTypeFamilyD{} = True #elif MIN_VERSION_template_haskell(2,9,0) isTypeFamily (FamilyD TypeFam _ _ _) = True isTypeFamily ClosedTypeFamilyD{} = True #else isTypeFamily (FamilyD TypeFam _ _ _) = True #endif isTypeFamily _ = False pickInstanceDec hasFamilies | hasFamilies = do placeholder <- VarT <$> newName "a" mkInstanceDec [return (D.equalPred placeholder a)] [s, placeholder] | otherwise = mkInstanceDec [] [s, a] mkInstanceDec context headTys = instanceD (cxt context) (return (className `conAppsT` headTys)) decs ------------------------------------------------------------------------ -- Optic clause generators ------------------------------------------------------------------------ makeFieldClauses :: LensRules -> OpticType -> [(Name, Int, [Int])] -> [ClauseQ] makeFieldClauses rules opticType cons = case opticType of -- IsoType -> [ makeIsoClause conName | (conName, _, _) <- cons ] GetterType -> [ makeGetterClause conName fieldCount fields | (conName, fieldCount, fields) <- cons ] LensType -> [ makeFieldOpticClause conName fieldCount fields irref | (conName, fieldCount, fields) <- cons ] where irref = _lazyPatterns rules && length cons == 1 -- Construct an optic clause that returns an unmodified value -- given a constructor name and the number of fields on that -- constructor. makePureClause :: Name -> Int -> ClauseQ makePureClause conName fieldCount = do xs <- replicateM fieldCount (newName "x") -- clause: _ (Con x1..xn) = pure (Con x1..xn) clause [wildP, conP conName (map varP xs)] (normalB (appE (varE 'pure) (appsE (conE conName : map varE xs)))) [] -- Construct an optic clause suitable for a Getter or Fold -- by visited the fields identified by their 0 indexed positions makeGetterClause :: Name -> Int -> [Int] -> ClauseQ makeGetterClause conName fieldCount [] = makePureClause conName fieldCount makeGetterClause conName fieldCount fields = do f <- newName "f" xs <- replicateM (length fields) (newName "x") let pats (i:is) (y:ys) | i `elem` fields = varP y : pats is ys | otherwise = wildP : pats is (y:ys) pats is _ = map (const wildP) is fxs = [ appE (varE f) (varE x) | x <- xs ] body = foldl (\a b -> appsE [varE '(<*>), a, b]) (appE (varE 'phantom) (head fxs)) (tail fxs) -- clause f (Con x1..xn) = coerce (f x1) <*> ... <*> f xn clause [varP f, conP conName (pats [0..fieldCount - 1] xs)] (normalB body) [] -- Build a clause that updates the field at the given indexes -- When irref is 'True' the value with me matched with an irrefutable -- pattern. This is suitable for Lens and Traversal construction makeFieldOpticClause :: Name -> Int -> [Int] -> Bool -> ClauseQ makeFieldOpticClause conName fieldCount [] _ = makePureClause conName fieldCount makeFieldOpticClause conName fieldCount (field:fields) irref = do f <- newName "f" xs <- replicateM fieldCount (newName "x") ys <- replicateM (1 + length fields) (newName "y") let xs' = foldr (\(i,x) -> set (ix i) x) xs (zip (field:fields) ys) mkFx i = appE (varE f) (varE (xs !! i)) body0 = appsE [ varE 'fmap , lamE (map varP ys) (appsE (conE conName : map varE xs')) , mkFx field ] body = foldl (\a b -> appsE [varE '(<*>), a, mkFx b]) body0 fields let wrap = if irref then tildeP else id clause [varP f, wrap (conP conName (map varP xs))] (normalB body) [] ------------------------------------------------------------------------ -- Unification logic ------------------------------------------------------------------------ -- The field-oriented optic generation supports incorporating fields -- with distinct but unifiable types into a single definition. -- Unify the given list of types, if possible, and return the -- substitution used to unify the types for unifying the outer -- type when building a definition's type signature. unifyTypes :: [Type] -> Q (Map Name Type, Type) unifyTypes (x:xs) = foldM (uncurry unify1) (Map.empty, x) xs unifyTypes [] = fail "unifyTypes: Bug: Unexpected empty list" -- Attempt to unify two given types using a running substitution unify1 :: Map Name Type -> Type -> Type -> Q (Map Name Type, Type) unify1 sub (VarT x) y | Just r <- Map.lookup x sub = unify1 sub r y unify1 sub x (VarT y) | Just r <- Map.lookup y sub = unify1 sub x r unify1 sub x y | x == y = return (sub, x) unify1 sub (AppT f1 x1) (AppT f2 x2) = do (sub1, f) <- unify1 sub f1 f2 (sub2, x) <- unify1 sub1 x1 x2 return (sub2, AppT (applyTypeSubst sub2 f) x) unify1 sub x (VarT y) | elemOf typeVars y (applyTypeSubst sub x) = fail "Failed to unify types: occurs check" | otherwise = return (Map.insert y x sub, x) unify1 sub (VarT x) y = unify1 sub y (VarT x) -- TODO: Unify contexts unify1 sub (ForallT v1 [] t1) (ForallT v2 [] t2) = -- This approach works out because by the time this code runs -- all of the type variables have been renamed. No risk of shadowing. do (sub1,t) <- unify1 sub t1 t2 v <- fmap nub (traverse (limitedSubst sub1) (v1++v2)) return (sub1, ForallT v [] t) unify1 _ x y = fail ("Failed to unify types: " ++ show (x,y)) -- Perform a limited substitution on type variables. This is used -- when unifying rank-2 fields when trying to achieve a Getter or Fold. limitedSubst :: Map Name Type -> TyVarBndr -> Q TyVarBndr limitedSubst sub (PlainTV n) | Just r <- Map.lookup n sub = case r of VarT m -> limitedSubst sub (PlainTV m) _ -> fail "Unable to unify exotic higher-rank type" limitedSubst sub (KindedTV n k) | Just r <- Map.lookup n sub = case r of VarT m -> limitedSubst sub (KindedTV m k) _ -> fail "Unable to unify exotic higher-rank type" limitedSubst _ tv = return tv -- Apply a substitution to a type. This is used after unifying -- the types of the fields in unifyTypes. applyTypeSubst :: Map Name Type -> Type -> Type applyTypeSubst sub = rewrite aux where aux (VarT n) = Map.lookup n sub aux _ = Nothing ------------------------------------------------------------------------ -- Field generation parameters ------------------------------------------------------------------------ {- | Rules used to generate lenses. The fields are intentionally not exported; to create your own rules, see lenses in the “Configuring lens rules” section. You'd have to customise one of the existing rulesets; for an example of doing that, see 'makeLensesWith'. -} data LensRules = LensRules { _simpleLenses :: Bool , _generateSigs :: Bool , _generateClasses :: Bool -- , _allowIsos :: Bool , _allowUpdates :: Bool -- Allow Lens/Traversal (otherwise Getter/Fold) , _lazyPatterns :: Bool -- Type Name -> Field Names -> Target Field Name -> Definition Names , _fieldToDef :: Name -> [Name] -> Name -> [DefName] -- Type Name -> (Class Name, Top Method) , _classyLenses :: Name -> Maybe (Name, Name) } {- | Name to give to a generated lens (used in 'lensField'). -} data DefName = TopName Name -- ^ Simple top-level definiton name | MethodName Name Name -- ^ 'makeFields'-style class name and method name deriving (Show, Eq, Ord) ------------------------------------------------------------------------ -- Miscellaneous utility functions ------------------------------------------------------------------------ liftState :: Monad m => m a -> StateT s m a liftState act = StateT (\s -> liftM (flip (,) s) act) -- Apply arguments to a type constructor. conAppsT :: Name -> [Type] -> Type conAppsT conName = foldl AppT (ConT conName) -- Template Haskell wants type variables declared in a forall, so -- we find all free type variables in a given type and declare them. quantifyType :: Cxt -> Type -> Type quantifyType = quantifyType' Set.empty -- This function works like 'quantifyType' except that it takes -- a list of variables to exclude from quantification. quantifyType' :: Set Name -> Cxt -> Type -> Type quantifyType' exclude c t = ForallT vs c t where vs = map PlainTV $ filter (`Set.notMember` exclude) $ nub -- stable order $ toListOf typeVars t ------------------------------------------------------------------------ -- Support for generating inline pragmas ------------------------------------------------------------------------ inlinePragma :: Name -> [DecQ] #ifdef INLINING #if MIN_VERSION_template_haskell(2,8,0) # ifdef OLD_INLINE_PRAGMAS -- 7.6rc1? inlinePragma methodName = [pragInlD methodName (inlineSpecNoPhase Inline False)] # else -- 7.7.20120830 inlinePragma methodName = [pragInlD methodName Inline FunLike AllPhases] # endif #else -- GHC <7.6, TH <2.8.0 inlinePragma methodName = [pragInlD methodName (inlineSpecNoPhase True False)] #endif #else inlinePragma _ = [] #endif