Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
This module provides just the types (Lens
, Traversal
, etc). It's needed to break the dependency cycle – Lens.Micro depends on Lens.Micro.Classes, but Lens.Micro.Classes needs types like Lens
, so Lens
can't be defined in Lens.Micro.
- type ASetter s t a b = (a -> Identity b) -> s -> Identity t
- type ASetter' s a = ASetter s s a a
- type Getting r s a = (a -> Const r a) -> s -> Const r s
- type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t
- type Lens' s a = Lens s s a a
- type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t
- type Traversal' s a = Traversal s s a a
- type LensLike f s t a b = (a -> f b) -> s -> f t
- type LensLike' f s a = LensLike f s s a a
Documentation
type ASetter s t a b = (a -> Identity b) -> s -> Identity t Source
ASetter s t a b
is something that turns a function modifying a value into a function modifying a structure. If you ignore Identity
(as Identity a
is the same thing as a
), the type is:
type ASetter s t a b = (a -> b) -> s -> t
This means that examples of setters you might've already seen are:
map
:: (a -> b) -> [a] -> [b](which corresponds to
mapped
)fmap
::Functor
f => (a -> b) -> f a -> f b(which corresponds to
mapped
as well)first
:: (a -> b) -> (a, x) -> (b, x)(which corresponds to
_1
)left
:: (a -> b) ->Either
a x ->Either
b x(which corresponds to
_Left
)
The reason Identity
is used here is for ASetter
to be composable with other types, such as Lens
.
Technically, if you're writing a library, you shouldn't use this type for setters you are exporting from your library; the right type to use is Setter
, but it is not provided by this package (because then we'd have to depend on distributive). It's completely alright, however, to export functions which take an ASetter
as an argument.
type Getting r s a = (a -> Const r a) -> s -> Const r s Source
If you take a lens or a traversal and choose
as your functor, you will get Const
rGetting r s a
. This can be used to get something out of the structure instead of modifying it:
s^.
l =getConst
(lConst
s)
Functions that operate on getters – such as (^.
), (^..
), (^?
) – use Getter r s a
(with different values of r
) to describe what kind of getter they need. For instance, (^.
) needs the getter to be able to return a single value, and so it accepts a getter of type Getting a s a
. (^..
) wants the getter to gather values together, so it uses Getting (Endo [a]) s a
(it could've used Getting [a] s a
instead, but it's faster with Endo
). The choice of r
depends on what you want to do with elements you're extracting from s
.
type Lens s t a b = forall f. Functor f => (a -> f b) -> s -> f t Source
Lenses in a nutshell: use (^.
) to get, (.~
) to set, (%~
) to modify. (.
) composes lenses (i.e. if a B
is a part of A
, and a C
is a part of in B
, then b.c
lets you operate on C
inside A
). You can create lenses with lens
, or you can write them by hand (see below).
Lens s t a b
is the lowest common denominator of a setter and a getter, something that has the power of both; it has a Functor
constraint, and since both Const
and Identity
are functors, it can be used whenever a getter or a setter is needed.
a
is the type of the value inside of structureb
is the type of the replaced values
is the type of the whole structuret
is the type of the structure after replacinga
in it withb
A Lens
can only point at a single value inside a structure (unlike a Traversal
).
It is easy to write lenses manually. The generic template is:
somelens :: Lens s t a b
-- “f” is the “a -> f b” function, “s” is the structure.
somelens f s =
let
a = ... -- Extract the value from “s”.
rebuildWith b = ... -- Write a function which would
-- combine “s” and modified value
-- to produce new structure.
in
rebuildWith <$>
f a -- Apply the structure-producing
-- function to the modified value.
Here's the _1
lens:
_1
::Lens
(a, x) (b, x) a b_1
f (a, x) = (\b -> (b, x))<$>
f a
Here's a more complicated lens, which extracts several values from a structure (in a tuple):
type Age = Int type City = String type Country = String data Person = Person Age City Country -- This lens lets you access all location-related information about a person. location ::Lens'
Person (City, Country) location f (Person age city country) = (\(city', country') -> Person age city' country')<$>
f (city, country)
You even can choose to use a lens to present all information contained in the structure (in a different way). Such lenses are called Iso
in lens's terminology. For instance (assuming you don't mind functions that can error out), here's a lens which lets you act on the string representation of a value:
string :: (Read a, Show a) =>Lens'
a String string f s = read<$>
f (show s)
Using it to reverse a number:
>>> 123&
string%~
reverse 321
type Lens' s a = Lens s s a a Source
This is a type alias for monomorphic lenses which don't change the type of the container (or of the value inside).
type Traversal s t a b = forall f. Applicative f => (a -> f b) -> s -> f t Source
Traversals in a nutshell: they're like lenses but they can point at multiple values. Use (^..
) to get all values, (^?
) to get the 1st value, (.~
) to set values, (%~
) to modify them. (.
) composes traversals just as it composes lenses. (^.
) can be used with traversals as well, but don't confuse it with (^..
).
Traversal s t a b
is a generalisation of Lens
which allows many targets (possibly 0). It's achieved by changing the constraint to Applicative
instead of Functor
– indeed, the point of Applicative
is that you can combine effects, which is just what we need to have many targets.
Traversals don't differ from lenses when it comes to setting – you can use usual (%~
) and (.~
) to modify and set values. Getting is a bit different, because you have to decide what to do in the case of multiple values. In particular, you can use these combinators (as well as everything else in the “Folds” section):
- (
^..
) gets a list of values - (
^?
) gets the 1st value (orNothing
if there are no values) - (
^?!
) gets the 1st value and throws an exception if there are no values
In addition, (^.
) works for traversals as well – it combines traversed values using the (<>
) operation (if the values are instances of Monoid
).
Traversing any value twice is a violation of traversal laws. You can, however, traverse values in any order.
Ultimately, traversals should follow 2 laws:
t pure ≡ pure fmap (t f) . t g ≡ getCompose . t (Compose . fmap f . g)
The 1st law states that you can't change the shape of the structure or do anything funny with elements (traverse elements which aren't in the structure, create new elements out of thin air, etc.). The 2nd law states that you should be able to fuse 2 identical traversals into one. For a more detailed explanation of the laws, see this blog post (if you prefer rambling blog posts), or The Essence Of The Iterator Pattern (if you prefer papers).
type Traversal' s a = Traversal s s a a Source
This is a type alias for monomorphic traversals which don't change the type of the container (or of the values inside).
type LensLike f s t a b = (a -> f b) -> s -> f t Source
LensLike
is a type that is often used to make combinators as general as possible. For instance, take (<<%~
), which only requires the passed lens to be able to work with the (,) a
functor (lenses and traversals can do that). The fully expanded type is as follows:
(<<%~
) :: ((a -> (a, b)) -> s -> (a, t)) -> (a -> b) -> s -> (a, t)
With LensLike
, the intent to use the (,) a
functor can be made a bit clearer:
(<<%~
) :: LensLike ((,) a) s t a b -> (a -> b) -> s -> (a, t)