{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingStrategies #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE TypeInType #-}
{-# LANGUAGE UndecidableInstances #-}
module Membrain.Memory
(
Memory (..)
, memory
, toMemory
, showMemory
, readMemory
, toBits
, toRat
, floor
, memoryMul
, memoryDiff
, memoryPlus
, memoryDiv
, AnyMemory (..)
) where
import Prelude hiding (floor)
import Data.Char (isDigit, isSpace)
import Data.Coerce (coerce)
import Data.Foldable (foldl')
import Data.Kind (Type)
import Data.List.NonEmpty (NonEmpty)
import Data.Ratio (Ratio, (%))
import Data.Semigroup (Semigroup (..))
import GHC.Exts (Proxy#, proxy#)
import GHC.Generics (Generic)
import GHC.TypeNats (KnownNat, Nat, natVal')
import Numeric.Natural (Natural)
import Membrain.Units (KnownUnitSymbol, unitSymbol)
import qualified Prelude
newtype Memory (mem :: Nat) = Memory
{ unMemory :: Natural
} deriving stock (Show, Read, Generic)
deriving newtype (Eq, Ord)
instance Semigroup (Memory (mem :: Nat)) where
(<>) :: Memory mem -> Memory mem -> Memory mem
(<>) = coerce ((+) @Natural)
{-# INLINE (<>) #-}
sconcat :: NonEmpty (Memory mem) -> Memory mem
sconcat = foldl' (<>) mempty
{-# INLINE sconcat #-}
stimes :: Integral b => b -> Memory mem -> Memory mem
stimes n (Memory m) = Memory (fromIntegral n * m)
{-# INLINE stimes #-}
instance Monoid (Memory (mem :: Nat)) where
mempty :: Memory mem
mempty = Memory 0
{-# INLINE mempty #-}
mappend :: Memory mem -> Memory mem -> Memory mem
mappend = (<>)
{-# INLINE mappend #-}
mconcat :: [Memory mem] -> Memory mem
mconcat = foldl' (<>) mempty
{-# INLINE mconcat #-}
showMemory :: forall mem . (KnownNat mem, KnownUnitSymbol mem) => Memory mem -> String
showMemory (Memory m) = showFrac m (nat @mem) ++ unitSymbol @mem
where
showFrac :: Natural -> Natural -> String
showFrac number d = goIntegral number
where
goIntegral :: Natural -> String
goIntegral n =
let (q, r) = n `divMod` d
integral = show q
in if r == 0
then integral
else integral ++ '.' : goFractional r
goFractional :: Natural -> String
goFractional 0 = ""
goFractional n =
let (q, r) = (n * 10) `divMod` d
in show q ++ goFractional r
readMemory
:: forall (mem :: Nat)
. (KnownUnitSymbol mem, KnownNat mem)
=> String
-> Maybe (Memory mem)
readMemory (dropWhile isSpace -> str) = case span isDigit str of
([], _) -> Nothing
(_, []) -> Nothing
(ds, '.': rest) -> case span isDigit rest of
([], _) -> Nothing
(numerator, unit) -> makeMemory ds numerator unit
(ds, unit) -> makeMemory ds "0" unit
where
makeMemory :: String -> String -> String -> Maybe (Memory mem)
makeMemory (read @Natural -> whole) numStr u =
if unitSymbol @mem == u
then case ((whole * numPow + num) * unit) `divMod` numPow of
(b, 0) -> Just $ Memory b
_ -> Nothing
else Nothing
where
unit :: Natural
unit = nat @mem
num :: Natural
num = read @Natural numStr
numPow :: Natural
numPow = 10 ^ length numStr
memory :: forall (mem :: Nat) . KnownNat mem => Natural -> Memory mem
memory = Memory . (* nat @mem)
{-# INLINE memory #-}
toMemory :: forall (to :: Nat) (from :: Nat) . Memory from -> Memory to
toMemory = coerce
{-# INLINE toMemory #-}
toBits :: Memory mem -> Natural
toBits = coerce
{-# INLINE toBits #-}
toRat :: forall (mem :: Nat) . KnownNat mem => Memory mem -> Ratio Natural
toRat (Memory m) = m % nat @mem
{-# INLINE toRat #-}
floor
:: forall (n :: Type) (mem :: Nat) .
(Integral n, KnownNat mem)
=> Memory mem
-> n
floor = Prelude.floor . toRat
{-# INLINE floor #-}
{-# SPECIALIZE floor :: KnownNat mem => Memory mem -> Int #-}
{-# SPECIALIZE floor :: KnownNat mem => Memory mem -> Word #-}
{-# SPECIALIZE floor :: KnownNat mem => Memory mem -> Integer #-}
{-# SPECIALIZE floor :: KnownNat mem => Memory mem -> Natural #-}
memoryMul :: Natural -> Memory mem -> Memory mem
memoryMul = stimes
{-# INLINE memoryMul #-}
memoryDiff :: Memory mem -> Memory mem -> (Ordering, Memory mem)
memoryDiff (Memory m1) (Memory m2) = case compare m1 m2 of
LT -> (LT, Memory $ m2 - m1)
GT -> (GT, Memory $ m1 - m2)
EQ -> (EQ, Memory 0)
{-# INLINE memoryDiff #-}
memoryPlus :: Memory mem1 -> Memory mem2 -> Memory mem2
memoryPlus m1 = (<>) (toMemory m1)
{-# INLINE memoryPlus #-}
memoryDiv :: Memory mem1 -> Memory mem2 -> Ratio Natural
memoryDiv (Memory m1) (Memory m2) = m1 % m2
{-# INLINE memoryDiv #-}
data AnyMemory
= forall (mem :: Nat) . (KnownNat mem, KnownUnitSymbol mem)
=> MkAnyMemory (Memory mem)
instance Show AnyMemory where
show (MkAnyMemory t) = showMemory t
nat :: forall (mem :: Nat) . KnownNat mem => Natural
nat = natVal' (proxy# :: Proxy# mem)
{-# INLINE nat #-}