{-# LANGUAGE BangPatterns, DeriveDataTypeable, FlexibleContexts,
    MultiParamTypeClasses, TemplateHaskell, TypeFamilies, CPP #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
-- |
-- Module    : Numeric.Sum
-- Copyright : (c) 2014 Bryan O'Sullivan
-- License   : BSD3
--
-- Maintainer  : bos@serpentine.com
-- Stability   : experimental
-- Portability : portable
--
-- Functions for summing floating point numbers more accurately than
-- the naive 'Prelude.sum' function and its counterparts in the
-- @vector@ package and elsewhere.
--
-- When used with floating point numbers, in the worst case, the
-- 'Prelude.sum' function accumulates numeric error at a rate
-- proportional to the number of values being summed. The algorithms
-- in this module implement different methods of /compensated
-- summation/, which reduce the accumulation of numeric error so that
-- it either grows much more slowly than the number of inputs
-- (e.g. logarithmically), or remains constant.
module Numeric.Sum (
    -- * Summation type class
      Summation(..)
    , sumVector
    -- ** Usage
    -- $usage

    -- * Kahan-Babuška-Neumaier summation
    , KBNSum(..)
    , kbn

    -- * Order-2 Kahan-Babuška summation
    , KB2Sum(..)
    , kb2

    -- * Less desirable approaches

    -- ** Kahan summation
    , KahanSum(..)
    , kahan

    -- ** Pairwise summation
    , pairwiseSum

    -- * References
    -- $references
    ) where

import Control.Arrow ((***))
import Control.DeepSeq (NFData(..))
import Data.Bits (shiftR)
import Data.Data (Typeable, Data)
import Data.Monoid                  (Monoid(..))
#if MIN_VERSION_base(4,9,0)
import Data.Semigroup               (Semigroup(..))
#endif
import Data.Vector.Generic          (Vector(..), foldl')
import Data.Vector.Unboxed.Deriving (derivingUnbox)
-- Needed for GHC 7.2 & 7.4 to derive Unbox instances
import Data.Vector.Generic.Mutable (MVector(..))

import qualified Data.Foldable as F
import qualified Data.Vector as V
import qualified Data.Vector.Generic as G
import qualified Data.Vector.Unboxed as U

-- | A class for summation of floating point numbers.
class Summation s where
    -- | The identity for summation.
    zero :: s

    -- | Add a value to a sum.
    add  :: s -> Double -> s

    -- | Sum a collection of values.
    --
    -- Example:
    -- @foo = 'sum' 'kbn' [1,2,3]@
    sum  :: (F.Foldable f) => (s -> Double) -> f Double -> Double
    sum  f = f . F.foldl' add zero
    {-# INLINE sum #-}

instance Summation Double where
    zero = 0
    add = (+)

-- | Kahan summation. This is the least accurate of the compensated
-- summation methods.  In practice, it only beats naive summation for
-- inputs with large magnitude.  Kahan summation can be /less/
-- accurate than naive summation for small-magnitude inputs.
--
-- This summation method is included for completeness. Its use is not
-- recommended.  In practice, 'KBNSum' is both 30% faster and more
-- accurate.
data KahanSum = KahanSum {-# UNPACK #-} !Double {-# UNPACK #-} !Double
              deriving (Eq, Show, Typeable, Data)

derivingUnbox "KahanSum"
    [t| KahanSum -> (Double, Double) |]
    [| \ (KahanSum a b) -> (a, b) |]
    [| \ (a, b) -> KahanSum a b |]

instance Summation KahanSum where
    zero = KahanSum 0 0
    add  = kahanAdd

instance NFData KahanSum where
    rnf !_ = ()

instance Monoid KahanSum where
  mempty = zero
  s `mappend` KahanSum s' _ = add s s'

#if MIN_VERSION_base(4,9,0)
instance Semigroup KahanSum where
  (<>) = mappend
#endif

kahanAdd :: KahanSum -> Double -> KahanSum
kahanAdd (KahanSum sum c) x = KahanSum sum' c'
  where sum' = sum + y
        c'   = (sum' - sum) - y
        y    = x - c

-- | Return the result of a Kahan sum.
kahan :: KahanSum -> Double
kahan (KahanSum sum _) = sum

-- | Kahan-Babuška-Neumaier summation. This is a little more
-- computationally costly than plain Kahan summation, but is /always/
-- at least as accurate.
data KBNSum = KBNSum {-# UNPACK #-} !Double {-# UNPACK #-} !Double
            deriving (Eq, Show, Typeable, Data)

derivingUnbox "KBNSum"
    [t| KBNSum -> (Double, Double) |]
    [| \ (KBNSum a b) -> (a, b) |]
    [| \ (a, b) -> KBNSum a b |]

instance Summation KBNSum where
    zero = KBNSum 0 0
    add  = kbnAdd

instance NFData KBNSum where
    rnf !_ = ()

instance Monoid KBNSum where
  mempty = zero
  s `mappend` KBNSum s' c' = add (add s s') c'

#if MIN_VERSION_base(4,9,0)
instance Semigroup KBNSum where
  (<>) = mappend
#endif

kbnAdd :: KBNSum -> Double -> KBNSum
kbnAdd (KBNSum sum c) x = KBNSum sum' c'
  where c' | abs sum >= abs x = c + ((sum - sum') + x)
           | otherwise        = c + ((x - sum') + sum)
        sum'                  = sum + x

-- | Return the result of a Kahan-Babuška-Neumaier sum.
kbn :: KBNSum -> Double
kbn (KBNSum sum c) = sum + c

-- | Second-order Kahan-Babuška summation.  This is more
-- computationally costly than Kahan-Babuška-Neumaier summation,
-- running at about a third the speed.  Its advantage is that it can
-- lose less precision (in admittedly obscure cases).
--
-- This method compensates for error in both the sum and the
-- first-order compensation term, hence the use of \"second order\" in
-- the name.
data KB2Sum = KB2Sum {-# UNPACK #-} !Double
                     {-# UNPACK #-} !Double
                     {-# UNPACK #-} !Double
            deriving (Eq, Show, Typeable, Data)

derivingUnbox "KB2Sum"
    [t| KB2Sum -> (Double, Double, Double) |]
    [| \ (KB2Sum a b c) -> (a, b, c) |]
    [| \ (a, b, c) -> KB2Sum a b c |]

instance Summation KB2Sum where
    zero = KB2Sum 0 0 0
    add  = kb2Add

instance NFData KB2Sum where
    rnf !_ = ()

instance Monoid KB2Sum where
  mempty = zero
  s `mappend` KB2Sum s' c' cc' = add (add (add s s') c') cc'

#if MIN_VERSION_base(4,9,0)
instance Semigroup KB2Sum where
  (<>) = mappend
#endif


kb2Add :: KB2Sum -> Double -> KB2Sum
kb2Add (KB2Sum sum c cc) x = KB2Sum sum' c' cc'
  where sum'                 = sum + x
        c'                   = c + k
        cc' | abs c >= abs k = cc + ((c - c') + k)
            | otherwise      = cc + ((k - c') + c)
        k | abs sum >= abs x = (sum - sum') + x
          | otherwise        = (x - sum') + sum

-- | Return the result of an order-2 Kahan-Babuška sum.
kb2 :: KB2Sum -> Double
kb2 (KB2Sum sum c cc) = sum + c + cc

-- | /O(n)/ Sum a vector of values.
sumVector :: (Vector v Double, Summation s) =>
             (s -> Double) -> v Double -> Double
sumVector f = f . foldl' add zero
{-# INLINE sumVector #-}

-- | /O(n)/ Sum a vector of values using pairwise summation.
--
-- This approach is perhaps 10% faster than 'KBNSum', but has poorer
-- bounds on its error growth.  Instead of having roughly constant
-- error regardless of the size of the input vector, in the worst case
-- its accumulated error grows with /O(log n)/.
pairwiseSum :: (Vector v Double) => v Double -> Double
pairwiseSum v
  | len <= 256 = G.sum v
  | otherwise  = uncurry (+) . (pairwiseSum *** pairwiseSum) .
                 G.splitAt (len `shiftR` 1) $ v
  where len = G.length v
{-# SPECIALIZE pairwiseSum :: V.Vector Double -> Double #-}
{-# SPECIALIZE pairwiseSum :: U.Vector Double -> Double #-}

-- $usage
--
-- Most of these summation algorithms are intended to be used via the
-- 'Summation' typeclass interface. Explicit type annotations should
-- not be necessary, as the use of a function such as 'kbn' or 'kb2'
-- to extract the final sum out of a 'Summation' instance gives the
-- compiler enough information to determine the precise type of
-- summation algorithm to use.
--
-- As an example, here is a (somewhat silly) function that manually
-- computes the sum of elements in a list.
--
-- @
-- sillySumList :: [Double] -> Double
-- sillySumList = loop 'zero'
--   where loop s []     = 'kbn' s
--         loop s (x:xs) = 'seq' s' loop s' xs
--           where s'    = 'add' s x
-- @
--
-- In most instances, you can simply use the much more general 'sum'
-- function instead of writing a summation function by hand.
--
-- @
-- -- Avoid ambiguity around which sum function we are using.
-- import Prelude hiding (sum)
-- --
-- betterSumList :: [Double] -> Double
-- betterSumList xs = 'sum' 'kbn' xs
-- @

-- Note well the use of 'seq' in the example above to force the
-- evaluation of intermediate values.  If you must write a summation
-- function by hand, and you forget to evaluate the intermediate
-- values, you are likely to incur a space leak.
--
-- Here is an example of how to compute a prefix sum in which the
-- intermediate values are as accurate as possible.
--
-- @
-- prefixSum :: [Double] -> [Double]
-- prefixSum xs = map 'kbn' . 'scanl' 'add' 'zero' $ xs
-- @

-- $references
--
-- * Kahan, W. (1965), Further remarks on reducing truncation
--   errors. /Communications of the ACM/ 8(1):40.
--
-- * Neumaier, A. (1974), Rundungsfehleranalyse einiger Verfahren zur
--   Summation endlicher Summen.
--   /Zeitschrift für Angewandte Mathematik und Mechanik/ 54:39–51.
--
-- * Klein, A. (2006), A Generalized
--   Kahan-Babuška-Summation-Algorithm. /Computing/ 76(3):279-293.
--
-- * Higham, N.J. (1993), The accuracy of floating point
--   summation. /SIAM Journal on Scientific Computing/ 14(4):783–799.