Copyright | (c) Alexey Kuleshevich 2018-2019 |
---|---|
License | BSD3 |
Maintainer | Alexey Kuleshevich <lehins@yandex.ru> |
Stability | experimental |
Portability | non-portable |
Safe Haskell | None |
Language | Haskell2010 |
Synopsis
- midpointRule :: (Fractional e, StrideLoad DW ix e, Mutable r ix e) => Comp -> r -> ((Int -> e) -> ix -> e) -> e -> e -> Sz ix -> Int -> Array M ix e
- midpointStencil :: (Fractional e, Index ix) => e -> Dim -> Int -> Stencil ix e e
- trapezoidRule :: (Fractional e, StrideLoad DW ix e, Mutable r ix e) => Comp -> r -> ((Int -> e) -> ix -> e) -> e -> e -> Sz ix -> Int -> Array M ix e
- trapezoidStencil :: (Fractional e, Index ix) => e -> Dim -> Int -> Stencil ix e e
- simpsonsRule :: (Fractional e, StrideLoad DW ix e, Mutable r ix e) => Comp -> r -> ((Int -> e) -> ix -> e) -> e -> e -> Sz ix -> Int -> Array M ix e
- simpsonsStencil :: (Fractional e, Index ix) => e -> Dim -> Int -> Stencil ix e e
- integrateWith :: (Fractional e, StrideLoad DW ix e, Mutable r ix e) => (Dim -> Int -> Stencil ix e e) -> Dim -> Int -> Array r ix e -> Array r ix e
- integralApprox :: (Fractional e, StrideLoad DW ix e, Mutable r ix e) => (e -> Dim -> Int -> Stencil ix e e) -> e -> Sz ix -> Int -> Array r ix e -> Array M ix e
- fromFunction :: (Index ix, Fractional a) => Comp -> ((Int -> a) -> ix -> e) -> a -> a -> Sz ix -> Int -> Array D ix e
- fromFunctionMidpoint :: (Index ix, Fractional a) => Comp -> ((Int -> a) -> ix -> e) -> a -> a -> Sz ix -> Int -> Array D ix e
Documentation
Inspiration for the code in this module was taken from Paul Dawkins Online Notes. In particular the page on Integral Approximation, so if you need to brush up on some theory it is a great place to start.
Implementation-wise, integral approximation here relies heavily on stencils with stride, as such computation is fast and is automatically parallelizable.
Here are some examples of where this can be useful:
Integral of a function on a region
Say we have a gaussian f(x) = e^(x^2)
on interval [0, 2]
(as in Paul's tutorial above). For
this we define a function f
, an array with equally spaced (dx) sample input values and apply
the function to that array, which will give us an array of n + 1
sample points, or looking from
a different angle n
intervals.
>>>
import Data.Massiv.Array
>>>
f x = exp ( x ^ (2 :: Int) ) :: Float
>>>
fromFunction Seq (\ scale x -> f (scale x)) 0 2 (Sz1 1) 4
Array D Seq (Sz1 5) [ 1.0, 1.2840254, 2.7182817, 9.487736, 54.59815 ]
Once we have that array of sample points ready, we could use integralApprox
and one of the
stencils to compute an integral, but there are already functions that will do both steps for you:
>>>
simpsonsRule Seq U (\ scale x -> f (scale x)) 0 2 (Sz1 1) 4
Array M Seq (Sz1 1) [ 17.353626 ]
scale
is the function that will change an array index into equally spaced and
appropriately shifted values of x, y, ...
before they can get applied to f(x, y, ...)
Accurate values of a function
Another very useful place where integral approximation can be used is when a more accurate representation of a non-linear function is desired. Consider the same gaussian function applied to equally spaced values, with zero being in the middle of the vector:
>>>
xArr = makeArrayR D Seq (Sz1 4) $ \ i -> fromIntegral i - 1.5 :: Float
>>>
xArr
Array D Seq (Sz1 4) [ -1.5, -0.5, 0.5, 1.5 ]>>>
fmap f xArr
Array D Seq (Sz1 4) [ 9.487736, 1.2840254, 1.2840254, 9.487736 ]
The problem with above example is that computed values do not accurately represent the total
value contained within each vector cell. For that reason if your were to later use it for example
as convolution stencil, approximation would be very poor. The way to solve it is to approximate
an integral across each cell of vector by drastically blowing up the xArr
and then reducing it
to a smaller array by using one of the approximation rules:
>>>
startValue = -2 :: Float
>>>
distPerCell = 1 :: Float
>>>
desiredSize = Sz1 4 :: Sz1
>>>
numSamples = 4 :: Int
>>>
xArrX4 = fromFunction Seq ($) startValue distPerCell desiredSize numSamples
>>>
xArrX4
Array D Seq (Sz1 17) [ -2.0, -1.75, -1.5, -1.25, -1.0, -0.75, -0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0 ]>>>
yArrX4 = computeAs U $ fmap f xArrX4
>>>
integralApprox trapezoidStencil distPerCell desiredSize numSamples yArrX4
Array M Seq (Sz1 4) [ 16.074406, 1.4906789, 1.4906789, 16.074408 ]
We can clearly see the difference is huge, but it doesn't mean it is much better than our
previous estimate. In order to get more accurate results we can use a better Simpson's rule for
approximation and many more sample points. There is no need to create individual arrays xArr
and yArr
, there are functions like simpsonRule
that will take care it for you:
>>>
simpsonsRule Seq U (\ scale i -> f (scale i)) startValue distPerCell desiredSize 128
Array M Seq (Sz1 4) [ 14.989977, 1.4626511, 1.4626517, 14.989977 ]
:: (Fractional e, StrideLoad DW ix e, Mutable r ix e) | |
=> Comp | Computation strategy. |
-> r | Intermediate array representation. |
-> ((Int -> e) -> ix -> e) |
|
-> e |
|
-> e |
|
-> Sz ix |
|
-> Int |
|
-> Array M ix e |
Use midpoint rule to approximate an integral.
:: (Fractional e, Index ix) | |
=> e |
|
-> Dim | Dimension along which to integrate |
-> Int |
|
-> Stencil ix e e |
Midpoint Rule
\[ \int_{{\,a}}^{{\,b}}{{f\left( x \right)\,dx}} \approx \Delta x \cdot \,f\left( {x_1 + \frac{\Delta x}{2}} \right) + \Delta x \cdot \,f\left( {x_2 + \frac{\Delta x}{2}} \right) + \cdots + \Delta x \cdot \,f\left( {x_n + \frac{\Delta x}{2}} \right) \]
Trapezoid Rule
:: (Fractional e, StrideLoad DW ix e, Mutable r ix e) | |
=> Comp | Computation strategy |
-> r | Intermediate array representation |
-> ((Int -> e) -> ix -> e) |
|
-> e |
|
-> e |
|
-> Sz ix |
|
-> Int |
|
-> Array M ix e |
Use trapezoid rule to approximate an integral.
:: (Fractional e, Index ix) | |
=> e |
|
-> Dim | Dimension along which to integrate |
-> Int |
|
-> Stencil ix e e |
Trapezoid Rule
\[ \int_{{\,a}}^{{\,b}}{{f\left( x \right)\,dx}} \approx \frac{{\Delta x}}{2}\cdot\left( {f\left( {{x_0}} \right) + f\left( {{x_1}} \right)} \right) + \frac{{\Delta x}}{2}\cdot\left( {f\left( {{x_1}} \right) + f\left( {{x_2}} \right)} \right) + \cdots + \frac{{\Delta x}}{2}\cdot\left( {f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right) \]
Simpson's Rule
:: (Fractional e, StrideLoad DW ix e, Mutable r ix e) | |
=> Comp | Computation strategy |
-> r | Intermediate array representation |
-> ((Int -> e) -> ix -> e) |
|
-> e |
|
-> e |
|
-> Sz ix |
|
-> Int |
|
-> Array M ix e |
Use Simpson's rule to approximate an integral.
:: (Fractional e, Index ix) | |
=> e |
|
-> Dim | Dimension along which to integrate |
-> Int |
|
-> Stencil ix e e |
Simpson's Rule
\[ \int_{{\,a}}^{{\,b}}{{f\left( x \right)\,dx}} \approx \frac{{\Delta x}}{3}\cdot\left( {f\left( {{x_0}} \right) + 4\cdot f\left( {{x_1}} \right) + f\left( {{x_2}} \right)} \right) + \frac{{\Delta x}}{3}\cdot\left( {f\left( {{x_2}} \right) + 4\cdot f\left( {{x_3}} \right) + f\left( {{x_4}} \right)} \right) + \cdots + \frac{{\Delta x}}{3}\cdot\left( {f\left( {{x_{n - 2}}} \right) + 4\cdot f\left( {{x_{n - 1}}} \right) + f\left( {{x_n}} \right)} \right) \]
General Integral approximation
:: (Fractional e, StrideLoad DW ix e, Mutable r ix e) | |
=> (Dim -> Int -> Stencil ix e e) | |
-> Dim | Dimension along which integration should be estimated. |
-> Int |
|
-> Array r ix e | |
-> Array r ix e |
Integrate with a stencil along a particular dimension.
:: (Fractional e, StrideLoad DW ix e, Mutable r ix e) | |
=> (e -> Dim -> Int -> Stencil ix e e) | Integration Stencil |
-> e |
|
-> Sz ix |
|
-> Int |
|
-> Array r ix e | Array with values of |
-> Array M ix e |
Compute an approximation of integral using a supplied rule in a form of Stencil
.
From functions
Sampled at the edge
:: (Index ix, Fractional a) | |
=> Comp | Computation strategy |
-> ((Int -> a) -> ix -> e) | A function that will produce elements of scaled up array. First argument is a scaling function that should be applied to individual indicies. |
-> a |
|
-> a |
|
-> Sz ix |
|
-> Int |
|
-> Array D ix e |
Create an array from a function with sample points at the edges
>>>
fromFunction Seq (\ scale (i :. j) -> scale i + scale j :: Double) (-2) 1 (Sz 4) 2
Array D Seq (Sz (9 :. 9)) [ [ -4.0, -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0 ] , [ -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5 ] , [ -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0 ] , [ -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5 ] , [ -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0 ] , [ -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 ] , [ -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 ] , [ -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 ] , [ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 ] ]
Sampled at the midpoint
fromFunctionMidpoint :: (Index ix, Fractional a) => Comp -> ((Int -> a) -> ix -> e) -> a -> a -> Sz ix -> Int -> Array D ix e Source #
Similar to fromFunction
, but will create an array from a function with sample points in the
middle of cells.
>>>
fromFunctionMidpoint Seq (\ scale (i :. j) -> scale i + scale j :: Double) (-2) 1 (Sz 4) 2
Array D Seq (Sz (8 :. 8)) [ [ -3.5, -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0 ] , [ -3.0, -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5 ] , [ -2.5, -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0 ] , [ -2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5 ] , [ -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0 ] , [ -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5 ] , [ -0.5, 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0 ] , [ 0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 ] ]