Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- nop :: s :-> s
- justComment :: Text -> s :-> s
- comment :: CommentType -> s :-> s
- commentAroundFun :: Text -> (i :-> o) -> i :-> o
- commentAroundStmt :: Text -> (i :-> o) -> i :-> o
- drop :: (a & s) :-> s
- dropN :: forall (n :: Nat) (s :: [Type]). (SingI (ToPeano n), KnownPeano (ToPeano n), RequireLongerOrSameLength (ToTs s) (ToPeano n), Drop (ToPeano n) (ToTs s) ~ ToTs (Drop (ToPeano n) s)) => s :-> Drop (ToPeano n) s
- dup :: (a & s) :-> (a & (a & s))
- swap :: (a & (b & s)) :-> (b & (a & s))
- type ConstraintDIGLorentz (n :: Peano) (inp :: [Type]) (out :: [Type]) (a :: Type) = (ConstraintDIG n (ToTs inp) (ToTs out) (ToT a), ConstraintDIG' Type n inp out a)
- digPeano :: forall (n :: Peano) inp out a. ConstraintDIGLorentz n inp out a => inp :-> out
- dig :: forall (n :: Nat) inp out a. ConstraintDIGLorentz (ToPeano n) inp out a => inp :-> out
- type ConstraintDUGLorentz (n :: Peano) (inp :: [Type]) (out :: [Type]) (a :: Type) = (ConstraintDUG n (ToTs inp) (ToTs out) (ToT a), ConstraintDUG' Type n inp out a)
- dugPeano :: forall (n :: Peano) inp out a. ConstraintDUGLorentz n inp out a => inp :-> out
- dug :: forall (n :: Nat) inp out a. ConstraintDUGLorentz (ToPeano n) inp out a => inp :-> out
- push :: forall t s. NiceConstant t => t -> s :-> (t & s)
- some :: (a & s) :-> (Maybe a & s)
- none :: forall a s. KnownValue a => s :-> (Maybe a & s)
- unit :: s :-> (() & s)
- ifNone :: (s :-> s') -> ((a & s) :-> s') -> (Maybe a & s) :-> s'
- pair :: (a & (b & s)) :-> ((a, b) & s)
- car :: ((a, b) & s) :-> (a & s)
- cdr :: ((a, b) & s) :-> (b & s)
- left :: forall a b s. KnownValue b => (a & s) :-> (Either a b & s)
- right :: forall a b s. KnownValue a => (b & s) :-> (Either a b & s)
- ifLeft :: ((a & s) :-> s') -> ((b & s) :-> s') -> (Either a b & s) :-> s'
- nil :: KnownValue p => s :-> (List p & s)
- cons :: (a & (List a & s)) :-> (List a & s)
- size :: SizeOpHs c => (c & s) :-> (Natural & s)
- emptySet :: NiceComparable e => s :-> (Set e & s)
- emptyMap :: (NiceComparable k, KnownValue v) => s :-> (Map k v & s)
- emptyBigMap :: (NiceComparable k, KnownValue v) => s :-> (BigMap k v & s)
- map :: (MapOpHs c, IsoMapOpRes c b, KnownValue b, HasCallStack) => ((MapOpInpHs c & s) :-> (b & s)) -> (c & s) :-> (MapOpResHs c b & s)
- iter :: (IterOpHs c, HasCallStack) => ((IterOpElHs c & s) :-> s) -> (c & s) :-> s
- mem :: MemOpHs c => (MemOpKeyHs c & (c & s)) :-> (Bool & s)
- get :: (GetOpHs c, KnownValue (GetOpValHs c)) => (GetOpKeyHs c & (c & s)) :-> (Maybe (GetOpValHs c) & s)
- update :: UpdOpHs c => (UpdOpKeyHs c & (UpdOpParamsHs c & (c & s))) :-> (c & s)
- failingWhenPresent :: forall c k s v st e. (MemOpHs c, k ~ MemOpKeyHs c, KnownValue e, st ~ (k & (v & (c & s)))) => (forall s0. (k ': s0) :-> (e ': s0)) -> st :-> st
- updateNew :: forall c k s e. (UpdOpHs c, MemOpHs c, k ~ UpdOpKeyHs c, k ~ MemOpKeyHs c, KnownValue e) => (forall s0. (k ': s0) :-> (e ': s0)) -> (k & (UpdOpParamsHs c & (c & s))) :-> (c & s)
- if_ :: (s :-> s') -> (s :-> s') -> (Bool & s) :-> s'
- ifCons :: ((a & (List a & s)) :-> s') -> (s :-> s') -> (List a & s) :-> s'
- loop :: (s :-> (Bool & s)) -> (Bool & s) :-> s
- loopLeft :: ((a & s) :-> (Either a b & s)) -> (Either a b & s) :-> (b & s)
- lambda :: ZipInstrs [i, o] => (i :-> o) -> s :-> ((i :-> o) & s)
- exec :: (a & (Lambda a b & s)) :-> (b & s)
- execute :: forall i o s. Each [KnownList, ZipInstr] [i, o] => ((i :-> o) ': (i ++ s)) :-> (o ++ s)
- apply :: forall a b c s. (NiceConstant a, KnownValue b) => (a & (Lambda (a, b) c & s)) :-> (Lambda b c & s)
- dip :: forall a s s'. HasCallStack => (s :-> s') -> (a & s) :-> (a & s')
- type ConstraintDIPNLorentz (n :: Peano) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]) = (ConstraintDIPN n (ToTs inp) (ToTs out) (ToTs s) (ToTs s'), ConstraintDIPN' Type n inp out s s')
- dipNPeano :: forall (n :: Peano) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]). ConstraintDIPNLorentz n inp out s s' => (s :-> s') -> inp :-> out
- dipN :: forall (n :: Nat) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]). ConstraintDIPNLorentz (ToPeano n) inp out s s' => (s :-> s') -> inp :-> out
- failWith :: KnownValue a => (a & s) :-> t
- cast :: KnownValue a => (a & s) :-> (a & s)
- pack :: forall a s. NicePackedValue a => (a & s) :-> (ByteString & s)
- unpack :: forall a s. NiceUnpackedValue a => (ByteString & s) :-> (Maybe a & s)
- concat :: ConcatOpHs c => (c & (c & s)) :-> (c & s)
- concat' :: ConcatOpHs c => (List c & s) :-> (c & s)
- slice :: (SliceOpHs c, KnownValue c) => (Natural & (Natural & (c & s))) :-> (Maybe c & s)
- isNat :: (Integer & s) :-> (Maybe Natural & s)
- add :: ArithOpHs Add n m => (n & (m & s)) :-> (ArithResHs Add n m & s)
- sub :: ArithOpHs Sub n m => (n & (m & s)) :-> (ArithResHs Sub n m & s)
- rsub :: ArithOpHs Sub n m => (m & (n & s)) :-> (ArithResHs Sub n m & s)
- mul :: ArithOpHs Mul n m => (n & (m & s)) :-> (ArithResHs Mul n m & s)
- ediv :: EDivOpHs n m => (n & (m & s)) :-> (Maybe (EDivOpResHs n m, EModOpResHs n m) & s)
- abs :: UnaryArithOpHs Abs n => (n & s) :-> (UnaryArithResHs Abs n & s)
- neg :: UnaryArithOpHs Neg n => (n & s) :-> (UnaryArithResHs Neg n & s)
- lsl :: ArithOpHs Lsl n m => (n & (m & s)) :-> (ArithResHs Lsl n m & s)
- lsr :: ArithOpHs Lsr n m => (n & (m & s)) :-> (ArithResHs Lsr n m & s)
- or :: ArithOpHs Or n m => (n & (m & s)) :-> (ArithResHs Or n m & s)
- and :: ArithOpHs And n m => (n & (m & s)) :-> (ArithResHs And n m & s)
- xor :: ArithOpHs Xor n m => (n & (m & s)) :-> (ArithResHs Xor n m & s)
- not :: UnaryArithOpHs Not n => (n & s) :-> (UnaryArithResHs Not n & s)
- compare :: NiceComparable n => (n & (n & s)) :-> (Integer & s)
- eq0 :: UnaryArithOpHs Eq' n => (n & s) :-> (UnaryArithResHs Eq' n & s)
- neq0 :: UnaryArithOpHs Neq n => (n & s) :-> (UnaryArithResHs Neq n & s)
- lt0 :: UnaryArithOpHs Lt n => (n & s) :-> (UnaryArithResHs Lt n & s)
- gt0 :: UnaryArithOpHs Gt n => (n & s) :-> (UnaryArithResHs Gt n & s)
- le0 :: UnaryArithOpHs Le n => (n & s) :-> (UnaryArithResHs Le n & s)
- ge0 :: UnaryArithOpHs Ge n => (n & s) :-> (UnaryArithResHs Ge n & s)
- int :: (Natural & s) :-> (Integer & s)
- toTAddress_ :: forall cp addr s. ToTAddress_ cp addr => (addr ': s) :-> (TAddress cp ': s)
- self :: forall p s. (NiceParameterFull p, ForbidExplicitDefaultEntrypoint p) => s :-> (ContractRef p & s)
- selfCalling :: forall p mname s. NiceParameterFull p => EntrypointRef mname -> s :-> (ContractRef (GetEntrypointArgCustom p mname) & s)
- contract :: forall p addr s. (NiceParameterFull p, ForbidExplicitDefaultEntrypoint p, ToTAddress_ p addr) => (addr & s) :-> (Maybe (ContractRef p) & s)
- contractCalling :: forall cp epRef epArg addr s. (HasEntrypointArg cp epRef epArg, ToTAddress_ cp addr) => epRef -> (addr & s) :-> (Maybe (ContractRef epArg) & s)
- contractCallingUnsafe :: forall arg s. NiceParameter arg => EpName -> (Address & s) :-> (Maybe (ContractRef arg) & s)
- runFutureContract :: forall p s. NiceParameter p => (FutureContract p & s) :-> (Maybe (ContractRef p) & s)
- epAddressToContract :: forall p s. NiceParameter p => (EpAddress & s) :-> (Maybe (ContractRef p) & s)
- transferTokens :: forall p s. NiceParameter p => (p & (Mutez & (ContractRef p & s))) :-> (Operation & s)
- setDelegate :: (Maybe KeyHash & s) :-> (Operation & s)
- createContract :: forall p g s. (NiceStorage g, NiceParameterFull p) => Contract p g -> (Maybe KeyHash & (Mutez & (g & s))) :-> (Operation & (Address & s))
- implicitAccount :: (KeyHash & s) :-> (ContractRef () & s)
- now :: s :-> (Timestamp & s)
- amount :: s :-> (Mutez & s)
- balance :: s :-> (Mutez & s)
- checkSignature :: (PublicKey & (Signature & (ByteString & s))) :-> (Bool & s)
- sha256 :: (ByteString & s) :-> (ByteString & s)
- sha512 :: (ByteString & s) :-> (ByteString & s)
- blake2B :: (ByteString & s) :-> (ByteString & s)
- hashKey :: (PublicKey & s) :-> (KeyHash & s)
- source :: s :-> (Address & s)
- sender :: s :-> (Address & s)
- address :: (ContractRef a & s) :-> (Address & s)
- chainId :: s :-> (ChainId & s)
- framed :: forall s i o. (KnownList i, KnownList o) => (i :-> o) -> (i ++ s) :-> (o ++ s)
- class LorentzFunctor (c :: Type -> Type) where
- lmap :: KnownValue b => ((a ': s) :-> (b ': s)) -> (c a ': s) :-> (c b ': s)
- class NonZero t where
Documentation
justComment :: Text -> s :-> s Source #
dropN :: forall (n :: Nat) (s :: [Type]). (SingI (ToPeano n), KnownPeano (ToPeano n), RequireLongerOrSameLength (ToTs s) (ToPeano n), Drop (ToPeano n) (ToTs s) ~ ToTs (Drop (ToPeano n) s)) => s :-> Drop (ToPeano n) s Source #
Drop top n
elements from the stack.
type ConstraintDIGLorentz (n :: Peano) (inp :: [Type]) (out :: [Type]) (a :: Type) = (ConstraintDIG n (ToTs inp) (ToTs out) (ToT a), ConstraintDIG' Type n inp out a) Source #
digPeano :: forall (n :: Peano) inp out a. ConstraintDIGLorentz n inp out a => inp :-> out Source #
Version of dig
which uses Peano number.
It is inteded for internal usage in Lorentz.
dig :: forall (n :: Nat) inp out a. ConstraintDIGLorentz (ToPeano n) inp out a => inp :-> out Source #
type ConstraintDUGLorentz (n :: Peano) (inp :: [Type]) (out :: [Type]) (a :: Type) = (ConstraintDUG n (ToTs inp) (ToTs out) (ToT a), ConstraintDUG' Type n inp out a) Source #
dugPeano :: forall (n :: Peano) inp out a. ConstraintDUGLorentz n inp out a => inp :-> out Source #
Version of dug
which uses Peano number.
It is inteded for internal usage in Lorentz.
dug :: forall (n :: Nat) inp out a. ConstraintDUGLorentz (ToPeano n) inp out a => inp :-> out Source #
emptyMap :: (NiceComparable k, KnownValue v) => s :-> (Map k v & s) Source #
emptyBigMap :: (NiceComparable k, KnownValue v) => s :-> (BigMap k v & s) Source #
map :: (MapOpHs c, IsoMapOpRes c b, KnownValue b, HasCallStack) => ((MapOpInpHs c & s) :-> (b & s)) -> (c & s) :-> (MapOpResHs c b & s) Source #
iter :: (IterOpHs c, HasCallStack) => ((IterOpElHs c & s) :-> s) -> (c & s) :-> s Source #
get :: (GetOpHs c, KnownValue (GetOpValHs c)) => (GetOpKeyHs c & (c & s)) :-> (Maybe (GetOpValHs c) & s) Source #
failingWhenPresent :: forall c k s v st e. (MemOpHs c, k ~ MemOpKeyHs c, KnownValue e, st ~ (k & (v & (c & s)))) => (forall s0. (k ': s0) :-> (e ': s0)) -> st :-> st Source #
Helper instruction.
Checks whether given key present in the storage and fails if it is. This instruction leaves stack intact.
updateNew :: forall c k s e. (UpdOpHs c, MemOpHs c, k ~ UpdOpKeyHs c, k ~ MemOpKeyHs c, KnownValue e) => (forall s0. (k ': s0) :-> (e ': s0)) -> (k & (UpdOpParamsHs c & (c & s))) :-> (c & s) Source #
Like update
, but throw an error on attempt to overwrite existing entry.
execute :: forall i o s. Each [KnownList, ZipInstr] [i, o] => ((i :-> o) ': (i ++ s)) :-> (o ++ s) Source #
Similar to exec
but works for lambdas with arbitrary size of input
and output.
Note that this instruction has its arguments flipped, lambda goes first. This seems to be the only reasonable way to achieve good inference.
apply :: forall a b c s. (NiceConstant a, KnownValue b) => (a & (Lambda (a, b) c & s)) :-> (Lambda b c & s) Source #
type ConstraintDIPNLorentz (n :: Peano) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]) = (ConstraintDIPN n (ToTs inp) (ToTs out) (ToTs s) (ToTs s'), ConstraintDIPN' Type n inp out s s') Source #
dipNPeano :: forall (n :: Peano) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]). ConstraintDIPNLorentz n inp out s s' => (s :-> s') -> inp :-> out Source #
Version of dipN
which uses Peano number.
It is inteded for internal usage in Lorentz.
dipN :: forall (n :: Nat) (inp :: [Type]) (out :: [Type]) (s :: [Type]) (s' :: [Type]). ConstraintDIPNLorentz (ToPeano n) inp out s s' => (s :-> s') -> inp :-> out Source #
pack :: forall a s. NicePackedValue a => (a & s) :-> (ByteString & s) Source #
unpack :: forall a s. NiceUnpackedValue a => (ByteString & s) :-> (Maybe a & s) Source #
abs :: UnaryArithOpHs Abs n => (n & s) :-> (UnaryArithResHs Abs n & s) Source #
neg :: UnaryArithOpHs Neg n => (n & s) :-> (UnaryArithResHs Neg n & s) Source #
not :: UnaryArithOpHs Not n => (n & s) :-> (UnaryArithResHs Not n & s) Source #
eq0 :: UnaryArithOpHs Eq' n => (n & s) :-> (UnaryArithResHs Eq' n & s) Source #
neq0 :: UnaryArithOpHs Neq n => (n & s) :-> (UnaryArithResHs Neq n & s) Source #
lt0 :: UnaryArithOpHs Lt n => (n & s) :-> (UnaryArithResHs Lt n & s) Source #
gt0 :: UnaryArithOpHs Gt n => (n & s) :-> (UnaryArithResHs Gt n & s) Source #
le0 :: UnaryArithOpHs Le n => (n & s) :-> (UnaryArithResHs Le n & s) Source #
ge0 :: UnaryArithOpHs Ge n => (n & s) :-> (UnaryArithResHs Ge n & s) Source #
toTAddress_ :: forall cp addr s. ToTAddress_ cp addr => (addr ': s) :-> (TAddress cp ': s) Source #
Cast something appropriate to TAddress
.
self :: forall p s. (NiceParameterFull p, ForbidExplicitDefaultEntrypoint p) => s :-> (ContractRef p & s) Source #
Get a reference to the current contract.
Note that, similar to CONTRACT
instruction, in Michelson SELF
instruction
can accept an entrypoint as field annotation, and without annotation specified
it creates a contract
value which calls the default entrypoint.
This particular function carries the behaviour of SELF
before introduction
of lightweight entrypoints feature.
Thus the contract must not have explicit "default" entrypoint for this to
work.
If you are going to call a specific entrypoint of the contract, see selfCalling
.
selfCalling :: forall p mname s. NiceParameterFull p => EntrypointRef mname -> s :-> (ContractRef (GetEntrypointArgCustom p mname) & s) Source #
Make a reference to the current contract, maybe a specific entrypoint.
Note that, since information about parameter of the current contract is not
carried around, in this function you need to specify parameter type p
explicitly.
contract :: forall p addr s. (NiceParameterFull p, ForbidExplicitDefaultEntrypoint p, ToTAddress_ p addr) => (addr & s) :-> (Maybe (ContractRef p) & s) Source #
Get a reference to a contract by its address.
This instruction carries the behaviour of CONTRACT
before introduction
of lightweight entrypoints feature.
The contract must not have explicit "default" entrypoint for this to work.
If you are going to call a specific entrypoint of the contract, see contractCalling
.
contractCalling :: forall cp epRef epArg addr s. (HasEntrypointArg cp epRef epArg, ToTAddress_ cp addr) => epRef -> (addr & s) :-> (Maybe (ContractRef epArg) & s) Source #
Make a reference to a contract, maybe a specific entrypoint.
When calling this function, make sure that parameter type is known.
It's recommended that you supply TAddress
with a concrete parameter as the
stack argument.
contractCallingUnsafe :: forall arg s. NiceParameter arg => EpName -> (Address & s) :-> (Maybe (ContractRef arg) & s) Source #
Specialized version of contractCalling
for the case when you do
not have compile-time evidence of appropriate HasEntrypointArg
.
For instance, if you have untyped EpName
you can not have this
evidence (the value is only available in runtime).
If you have typed EntrypointRef
, use eprName
to construct EpName
.
runFutureContract :: forall p s. NiceParameter p => (FutureContract p & s) :-> (Maybe (ContractRef p) & s) Source #
Version of contract
instruction which may accept address with already
specified entrypoint name.
Also you cannot specify entrypoint name here because this could result in conflict.
epAddressToContract :: forall p s. NiceParameter p => (EpAddress & s) :-> (Maybe (ContractRef p) & s) Source #
Similar to runFutureContract
, works with EpAddress
.
Validity of such operation cannot be ensured at compile time.
transferTokens :: forall p s. NiceParameter p => (p & (Mutez & (ContractRef p & s))) :-> (Operation & s) Source #
createContract :: forall p g s. (NiceStorage g, NiceParameterFull p) => Contract p g -> (Maybe KeyHash & (Mutez & (g & s))) :-> (Operation & (Address & s)) Source #
implicitAccount :: (KeyHash & s) :-> (ContractRef () & s) Source #
sha256 :: (ByteString & s) :-> (ByteString & s) Source #
sha512 :: (ByteString & s) :-> (ByteString & s) Source #
blake2B :: (ByteString & s) :-> (ByteString & s) Source #
framed :: forall s i o. (KnownList i, KnownList o) => (i :-> o) -> (i ++ s) :-> (o ++ s) Source #
Execute given instruction on truncated stack.
This instruction requires you to specify the piece of stack to truncate as type argument.
class LorentzFunctor (c :: Type -> Type) where Source #
Instances
LorentzFunctor Maybe Source # | |
Defined in Lorentz.Instr |