------------------------------------------------------------------------- -- | -- Module : Control.Monad.Logic.Class -- Copyright : (c) Dan Doel -- License : BSD3 -- Maintainer : Andrew Lelechenko <andrew.lelechenko@gmail.com> -- -- A backtracking, logic programming monad. -- -- Adapted from the paper -- /Backtracking, Interleaving, and Terminating Monad Transformers/, -- by Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, Amr Sabry -- (<http://okmij.org/ftp/papers/LogicT.pdf>). ------------------------------------------------------------------------- {-# LANGUAGE CPP #-} #if __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Safe #-} #endif module Control.Monad.Logic.Class (MonadLogic(..), reflect) where import Control.Monad.Reader import qualified Control.Monad.State.Lazy as LazyST import qualified Control.Monad.State.Strict as StrictST ------------------------------------------------------------------------------- -- | Minimal implementation: msplit class (MonadPlus m) => MonadLogic m where -- | Attempts to split the computation, giving access to the first -- result. Satisfies the following laws: -- -- > msplit mzero == return Nothing -- > msplit (return a `mplus` m) == return (Just (a, m)) msplit :: m a -> m (Maybe (a, m a)) -- | Fair disjunction. It is possible for a logical computation -- to have an infinite number of potential results, for instance: -- -- > odds = return 1 `mplus` liftM (2+) odds -- -- Such computations can cause problems in some circumstances. Consider: -- -- > do x <- odds `mplus` return 2 -- > if even x then return x else mzero -- -- Such a computation may never consider the 'return 2', and will -- therefore never terminate. By contrast, interleave ensures fair -- consideration of both branches of a disjunction interleave :: m a -> m a -> m a -- | Fair conjunction. Similarly to the previous function, consider -- the distributivity law for MonadPlus: -- -- > (mplus a b) >>= k = (a >>= k) `mplus` (b >>= k) -- -- If 'a >>= k' can backtrack arbitrarily many tmes, (b >>= k) may never -- be considered. (>>-) takes similar care to consider both branches of -- a disjunctive computation. (>>-) :: m a -> (a -> m b) -> m b infixl 1 >>- -- | Logical conditional. The equivalent of Prolog's soft-cut. If its -- first argument succeeds at all, then the results will be fed into -- the success branch. Otherwise, the failure branch is taken. -- satisfies the following laws: -- -- > ifte (return a) th el == th a -- > ifte mzero th el == el -- > ifte (return a `mplus` m) th el == th a `mplus` (m >>= th) ifte :: m a -> (a -> m b) -> m b -> m b -- | Pruning. Selects one result out of many. Useful for when multiple -- results of a computation will be equivalent, or should be treated as -- such. once :: m a -> m a -- | Inverts a logic computation. If @m@ succeeds with at least one value, -- @lnot m@ fails. If @m@ fails, then @lnot m@ succeeds the value @()@. lnot :: m a -> m () -- All the class functions besides msplit can be derived from msplit, if -- desired interleave m1 m2 = msplit m1 >>= maybe m2 (\(a, m1') -> return a `mplus` interleave m2 m1') m >>- f = do (a, m') <- maybe mzero return =<< msplit m interleave (f a) (m' >>- f) ifte t th el = msplit t >>= maybe el (\(a,m) -> th a `mplus` (m >>= th)) once m = do (a, _) <- maybe mzero return =<< msplit m return a lnot m = ifte (once m) (const mzero) (return ()) ------------------------------------------------------------------------------- -- | The inverse of msplit. Satisfies the following law: -- -- > msplit m >>= reflect == m reflect :: MonadLogic m => Maybe (a, m a) -> m a reflect Nothing = mzero reflect (Just (a, m)) = return a `mplus` m -- An instance of MonadLogic for lists instance MonadLogic [] where msplit [] = return Nothing msplit (x:xs) = return $ Just (x, xs) -- | Note that splitting a transformer does -- not allow you to provide different input -- to the monadic object returned. -- For instance, in: -- -- > let Just (_, rm') = runReaderT (msplit rm) r in runReaderT rm' r' -- -- @r'@ will be ignored, because @r@ was already threaded through the -- computation. instance MonadLogic m => MonadLogic (ReaderT e m) where msplit rm = ReaderT $ \e -> do r <- msplit $ runReaderT rm e case r of Nothing -> return Nothing Just (a, m) -> return (Just (a, lift m)) -- | See note on splitting above. instance MonadLogic m => MonadLogic (StrictST.StateT s m) where msplit sm = StrictST.StateT $ \s -> do r <- msplit (StrictST.runStateT sm s) case r of Nothing -> return (Nothing, s) Just ((a,s'), m) -> return (Just (a, StrictST.StateT (\_ -> m)), s') interleave ma mb = StrictST.StateT $ \s -> StrictST.runStateT ma s `interleave` StrictST.runStateT mb s ma >>- f = StrictST.StateT $ \s -> StrictST.runStateT ma s >>- \(a,s') -> StrictST.runStateT (f a) s' ifte t th el = StrictST.StateT $ \s -> ifte (StrictST.runStateT t s) (\(a,s') -> StrictST.runStateT (th a) s') (StrictST.runStateT el s) once ma = StrictST.StateT $ \s -> once (StrictST.runStateT ma s) -- | See note on splitting above. instance MonadLogic m => MonadLogic (LazyST.StateT s m) where msplit sm = LazyST.StateT $ \s -> do r <- msplit (LazyST.runStateT sm s) case r of Nothing -> return (Nothing, s) Just ((a,s'), m) -> return (Just (a, LazyST.StateT (\_ -> m)), s') interleave ma mb = LazyST.StateT $ \s -> LazyST.runStateT ma s `interleave` LazyST.runStateT mb s ma >>- f = LazyST.StateT $ \s -> LazyST.runStateT ma s >>- \(a,s') -> LazyST.runStateT (f a) s' ifte t th el = LazyST.StateT $ \s -> ifte (LazyST.runStateT t s) (\(a,s') -> LazyST.runStateT (th a) s') (LazyST.runStateT el s) once ma = LazyST.StateT $ \s -> once (LazyST.runStateT ma s)