{-# LANGUAGE CPP #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
module Language.Fixpoint.Types.Visitor (
Visitor (..)
, Visitable (..)
, SymConsts (..)
, defaultVisitor
, trans
, fold
, stripCasts
, kvars, eapps
, size, lamSize
, envKVars
, envKVarsN
, rhsKVars
, mapKVars, mapKVars', mapGVars', mapKVarSubsts
, mapExpr, mapMExpr
, CoSub
, applyCoSub
, isConcC , isKvarC
, foldSort
, mapSort
, foldDataDecl
, (<$$>)
) where
#if !MIN_VERSION_base(4,14,0)
import Data.Semigroup (Semigroup (..))
#endif
import Control.Monad.State.Strict
import qualified Data.HashSet as S
import qualified Data.HashMap.Strict as M
import qualified Data.List as L
import Language.Fixpoint.Types hiding (mapSort)
import qualified Language.Fixpoint.Misc as Misc
data Visitor acc ctx = Visitor {
Visitor acc ctx -> ctx -> Expr -> ctx
ctxExpr :: ctx -> Expr -> ctx
, Visitor acc ctx -> ctx -> Expr -> Expr
txExpr :: ctx -> Expr -> Expr
, Visitor acc ctx -> ctx -> Expr -> acc
accExpr :: ctx -> Expr -> acc
}
defaultVisitor :: (Monoid acc) => Visitor acc ctx
defaultVisitor :: Visitor acc ctx
defaultVisitor = Visitor :: forall acc ctx.
(ctx -> Expr -> ctx)
-> (ctx -> Expr -> Expr) -> (ctx -> Expr -> acc) -> Visitor acc ctx
Visitor
{ ctxExpr :: ctx -> Expr -> ctx
ctxExpr = ctx -> Expr -> ctx
forall a b. a -> b -> a
const
, txExpr :: ctx -> Expr -> Expr
txExpr = \ctx
_ Expr
x -> Expr
x
, accExpr :: ctx -> Expr -> acc
accExpr = \ctx
_ Expr
_ -> acc
forall a. Monoid a => a
mempty
}
fold :: (Visitable t, Monoid a) => Visitor a ctx -> ctx -> a -> t -> a
fold :: Visitor a ctx -> ctx -> a -> t -> a
fold Visitor a ctx
v ctx
c a
a t
t = (t, a) -> a
forall a b. (a, b) -> b
snd ((t, a) -> a) -> (t, a) -> a
forall a b. (a -> b) -> a -> b
$ Visitor a ctx
-> ctx
-> a
-> (Visitor a ctx -> ctx -> t -> State a t)
-> t
-> (t, a)
forall a ctx t.
Visitor a ctx
-> ctx
-> a
-> (Visitor a ctx -> ctx -> t -> State a t)
-> t
-> (t, a)
execVisitM Visitor a ctx
v ctx
c a
a Visitor a ctx -> ctx -> t -> State a t
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit t
t
trans :: (Visitable t, Monoid a) => Visitor a ctx -> ctx -> a -> t -> t
trans :: Visitor a ctx -> ctx -> a -> t -> t
trans Visitor a ctx
v ctx
c a
_ t
z = (t, a) -> t
forall a b. (a, b) -> a
fst ((t, a) -> t) -> (t, a) -> t
forall a b. (a -> b) -> a -> b
$ Visitor a ctx
-> ctx
-> a
-> (Visitor a ctx -> ctx -> t -> State a t)
-> t
-> (t, a)
forall a ctx t.
Visitor a ctx
-> ctx
-> a
-> (Visitor a ctx -> ctx -> t -> State a t)
-> t
-> (t, a)
execVisitM Visitor a ctx
v ctx
c a
forall a. Monoid a => a
mempty Visitor a ctx -> ctx -> t -> State a t
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit t
z
execVisitM :: Visitor a ctx -> ctx -> a -> (Visitor a ctx -> ctx -> t -> State a t) -> t -> (t, a)
execVisitM :: Visitor a ctx
-> ctx
-> a
-> (Visitor a ctx -> ctx -> t -> State a t)
-> t
-> (t, a)
execVisitM Visitor a ctx
v ctx
c a
a Visitor a ctx -> ctx -> t -> State a t
f t
x = State a t -> a -> (t, a)
forall s a. State s a -> s -> (a, s)
runState (Visitor a ctx -> ctx -> t -> State a t
f Visitor a ctx
v ctx
c t
x) a
a
type VisitM acc = State acc
accum :: (Monoid a) => a -> VisitM a ()
accum :: a -> VisitM a ()
accum !a
z = (a -> a) -> VisitM a ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (a -> a -> a
forall a. Monoid a => a -> a -> a
mappend a
z)
(<$$>) :: (Monad m) => (a -> m b) -> [a] -> m [b]
a -> m b
f <$$> :: (a -> m b) -> [a] -> m [b]
<$$> [a]
xs = a -> m b
f (a -> m b) -> [a] -> m [b]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
Misc.<$$> [a]
xs
class Visitable t where
visit :: (Monoid a) => Visitor a c -> c -> t -> VisitM a t
instance Visitable Expr where
visit :: Visitor a c -> c -> Expr -> VisitM a Expr
visit = Visitor a c -> c -> Expr -> VisitM a Expr
forall a c. Monoid a => Visitor a c -> c -> Expr -> VisitM a Expr
visitExpr
instance Visitable Reft where
visit :: Visitor a c -> c -> Reft -> VisitM a Reft
visit Visitor a c
v c
c (Reft (Symbol
x, Expr
ra)) = ((Symbol, Expr) -> Reft
Reft ((Symbol, Expr) -> Reft)
-> (Expr -> (Symbol, Expr)) -> Expr -> Reft
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Symbol
x, )) (Expr -> Reft) -> StateT a Identity Expr -> VisitM a Reft
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Visitor a c -> c -> Expr -> StateT a Identity Expr
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c Expr
ra
instance Visitable SortedReft where
visit :: Visitor a c -> c -> SortedReft -> VisitM a SortedReft
visit Visitor a c
v c
c (RR Sort
t Reft
r) = Sort -> Reft -> SortedReft
RR Sort
t (Reft -> SortedReft)
-> StateT a Identity Reft -> VisitM a SortedReft
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Visitor a c -> c -> Reft -> StateT a Identity Reft
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c Reft
r
instance Visitable (Symbol, SortedReft) where
visit :: Visitor a c
-> c -> (Symbol, SortedReft) -> VisitM a (Symbol, SortedReft)
visit Visitor a c
v c
c (Symbol
sym, SortedReft
sr) = (Symbol
sym, ) (SortedReft -> (Symbol, SortedReft))
-> StateT a Identity SortedReft -> VisitM a (Symbol, SortedReft)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Visitor a c -> c -> SortedReft -> StateT a Identity SortedReft
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c SortedReft
sr
instance Visitable BindEnv where
visit :: Visitor a c -> c -> BindEnv -> VisitM a BindEnv
visit Visitor a c
v c
c = ((Symbol, SortedReft) -> StateT a Identity (Symbol, SortedReft))
-> BindEnv -> VisitM a BindEnv
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Visitor a c
-> c
-> (Symbol, SortedReft)
-> StateT a Identity (Symbol, SortedReft)
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c)
instance Visitable (SimpC a) where
visit :: Visitor a c -> c -> SimpC a -> VisitM a (SimpC a)
visit Visitor a c
v c
c SimpC a
x = do
Expr
rhs' <- Visitor a c -> c -> Expr -> VisitM a Expr
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (SimpC a -> Expr
forall a. SimpC a -> Expr
_crhs SimpC a
x)
SimpC a -> VisitM a (SimpC a)
forall (m :: * -> *) a. Monad m => a -> m a
return SimpC a
x { _crhs :: Expr
_crhs = Expr
rhs' }
instance Visitable (SubC a) where
visit :: Visitor a c -> c -> SubC a -> VisitM a (SubC a)
visit Visitor a c
v c
c SubC a
x = do
SortedReft
lhs' <- Visitor a c -> c -> SortedReft -> VisitM a SortedReft
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (SubC a -> SortedReft
forall a. SubC a -> SortedReft
slhs SubC a
x)
SortedReft
rhs' <- Visitor a c -> c -> SortedReft -> VisitM a SortedReft
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (SubC a -> SortedReft
forall a. SubC a -> SortedReft
srhs SubC a
x)
SubC a -> VisitM a (SubC a)
forall (m :: * -> *) a. Monad m => a -> m a
return SubC a
x { slhs :: SortedReft
slhs = SortedReft
lhs', srhs :: SortedReft
srhs = SortedReft
rhs' }
instance (Visitable (c a)) => Visitable (GInfo c a) where
visit :: Visitor a c -> c -> GInfo c a -> VisitM a (GInfo c a)
visit Visitor a c
v c
c GInfo c a
x = do
HashMap SubcId (c a)
cm' <- (c a -> StateT a Identity (c a))
-> HashMap SubcId (c a) -> StateT a Identity (HashMap SubcId (c a))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Visitor a c -> c -> c a -> StateT a Identity (c a)
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c) (GInfo c a -> HashMap SubcId (c a)
forall (c :: * -> *) a. GInfo c a -> HashMap SubcId (c a)
cm GInfo c a
x)
BindEnv
bs' <- Visitor a c -> c -> BindEnv -> VisitM a BindEnv
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (GInfo c a -> BindEnv
forall (c :: * -> *) a. GInfo c a -> BindEnv
bs GInfo c a
x)
AxiomEnv
ae' <- Visitor a c -> c -> AxiomEnv -> VisitM a AxiomEnv
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (GInfo c a -> AxiomEnv
forall (c :: * -> *) a. GInfo c a -> AxiomEnv
ae GInfo c a
x)
GInfo c a -> VisitM a (GInfo c a)
forall (m :: * -> *) a. Monad m => a -> m a
return GInfo c a
x { cm :: HashMap SubcId (c a)
cm = HashMap SubcId (c a)
cm', bs :: BindEnv
bs = BindEnv
bs', ae :: AxiomEnv
ae = AxiomEnv
ae' }
instance Visitable AxiomEnv where
visit :: Visitor a c -> c -> AxiomEnv -> VisitM a AxiomEnv
visit Visitor a c
v c
c AxiomEnv
x = do
[Equation]
eqs' <- (Equation -> StateT a Identity Equation)
-> [Equation] -> StateT a Identity [Equation]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Visitor a c -> c -> Equation -> StateT a Identity Equation
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c) (AxiomEnv -> [Equation]
aenvEqs AxiomEnv
x)
[Rewrite]
simpls' <- (Rewrite -> StateT a Identity Rewrite)
-> [Rewrite] -> StateT a Identity [Rewrite]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Visitor a c -> c -> Rewrite -> StateT a Identity Rewrite
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c) (AxiomEnv -> [Rewrite]
aenvSimpl AxiomEnv
x)
AxiomEnv -> VisitM a AxiomEnv
forall (m :: * -> *) a. Monad m => a -> m a
return AxiomEnv
x { aenvEqs :: [Equation]
aenvEqs = [Equation]
eqs' , aenvSimpl :: [Rewrite]
aenvSimpl = [Rewrite]
simpls'}
instance Visitable Equation where
visit :: Visitor a c -> c -> Equation -> VisitM a Equation
visit Visitor a c
v c
c Equation
eq = do
Expr
body' <- Visitor a c -> c -> Expr -> VisitM a Expr
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (Equation -> Expr
eqBody Equation
eq)
Equation -> VisitM a Equation
forall (m :: * -> *) a. Monad m => a -> m a
return Equation
eq { eqBody :: Expr
eqBody = Expr
body' }
instance Visitable Rewrite where
visit :: Visitor a c -> c -> Rewrite -> VisitM a Rewrite
visit Visitor a c
v c
c Rewrite
rw = do
Expr
body' <- Visitor a c -> c -> Expr -> VisitM a Expr
forall t a c.
(Visitable t, Monoid a) =>
Visitor a c -> c -> t -> VisitM a t
visit Visitor a c
v c
c (Rewrite -> Expr
smBody Rewrite
rw)
Rewrite -> VisitM a Rewrite
forall (m :: * -> *) a. Monad m => a -> m a
return Rewrite
rw { smBody :: Expr
smBody = Expr
body' }
visitExpr :: (Monoid a) => Visitor a ctx -> ctx -> Expr -> VisitM a Expr
visitExpr :: Visitor a ctx -> ctx -> Expr -> VisitM a Expr
visitExpr !Visitor a ctx
v = ctx -> Expr -> VisitM a Expr
vE
where
vE :: ctx -> Expr -> VisitM a Expr
vE !ctx
c !Expr
e = do {-# SCC "visitExpr.vE.accum" #-} a -> VisitM a ()
forall a. Monoid a => a -> VisitM a ()
accum a
acc
{-# SCC "visitExpr.vE.step" #-} ctx -> Expr -> VisitM a Expr
step ctx
c' Expr
e'
where !c' :: ctx
c' = Visitor a ctx -> ctx -> Expr -> ctx
forall acc ctx. Visitor acc ctx -> ctx -> Expr -> ctx
ctxExpr Visitor a ctx
v ctx
c Expr
e
!e' :: Expr
e' = Visitor a ctx -> ctx -> Expr -> Expr
forall acc ctx. Visitor acc ctx -> ctx -> Expr -> Expr
txExpr Visitor a ctx
v ctx
c' Expr
e
!acc :: a
acc = Visitor a ctx -> ctx -> Expr -> a
forall acc ctx. Visitor acc ctx -> ctx -> Expr -> acc
accExpr Visitor a ctx
v ctx
c' Expr
e
step :: ctx -> Expr -> VisitM a Expr
step ctx
_ !e :: Expr
e@(ESym SymConst
_) = Expr -> VisitM a Expr
forall (m :: * -> *) a. Monad m => a -> m a
return Expr
e
step ctx
_ !e :: Expr
e@(ECon Constant
_) = Expr -> VisitM a Expr
forall (m :: * -> *) a. Monad m => a -> m a
return Expr
e
step ctx
_ !e :: Expr
e@(EVar Symbol
_) = Expr -> VisitM a Expr
forall (m :: * -> *) a. Monad m => a -> m a
return Expr
e
step !ctx
c !(EApp Expr
f Expr
e) = Expr -> Expr -> Expr
EApp (Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
f StateT a Identity (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step !ctx
c !(ENeg Expr
e) = Expr -> Expr
ENeg (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step !ctx
c !(EBin Bop
o Expr
e1 Expr
e2) = Bop -> Expr -> Expr -> Expr
EBin Bop
o (Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e1 StateT a Identity (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e2
step !ctx
c !(EIte Expr
p Expr
e1 Expr
e2) = Expr -> Expr -> Expr -> Expr
EIte (Expr -> Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p StateT a Identity (Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e1 StateT a Identity (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e2
step !ctx
c !(ECst Expr
e Sort
t) = (Expr -> Sort -> Expr
`ECst` Sort
t) (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step !ctx
c !(PAnd [Expr]
ps) = [Expr] -> Expr
PAnd ([Expr] -> Expr) -> StateT a Identity [Expr] -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ctx -> Expr -> VisitM a Expr
vE ctx
c (Expr -> VisitM a Expr) -> [Expr] -> StateT a Identity [Expr]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
<$$> [Expr]
ps)
step !ctx
c !(POr [Expr]
ps) = [Expr] -> Expr
POr ([Expr] -> Expr) -> StateT a Identity [Expr] -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (ctx -> Expr -> VisitM a Expr
vE ctx
c (Expr -> VisitM a Expr) -> [Expr] -> StateT a Identity [Expr]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
<$$> [Expr]
ps)
step !ctx
c !(PNot Expr
p) = Expr -> Expr
PNot (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p
step !ctx
c !(PImp Expr
p1 Expr
p2) = Expr -> Expr -> Expr
PImp (Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p1 StateT a Identity (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p2
step !ctx
c !(PIff Expr
p1 Expr
p2) = Expr -> Expr -> Expr
PIff (Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p1 StateT a Identity (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p2
step !ctx
c !(PAtom Brel
r Expr
e1 Expr
e2) = Brel -> Expr -> Expr -> Expr
PAtom Brel
r (Expr -> Expr -> Expr)
-> VisitM a Expr -> StateT a Identity (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e1 StateT a Identity (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e2
step !ctx
c !(PAll [(Symbol, Sort)]
xts Expr
p) = [(Symbol, Sort)] -> Expr -> Expr
PAll [(Symbol, Sort)]
xts (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p
step !ctx
c !(ELam (Symbol
x,Sort
t) Expr
e) = (Symbol, Sort) -> Expr -> Expr
ELam (Symbol
x,Sort
t) (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step !ctx
c !(ECoerc Sort
a Sort
t Expr
e) = Sort -> Sort -> Expr -> Expr
ECoerc Sort
a Sort
t (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step !ctx
c !(PExist [(Symbol, Sort)]
xts Expr
p) = [(Symbol, Sort)] -> Expr -> Expr
PExist [(Symbol, Sort)]
xts (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
p
step !ctx
c !(ETApp Expr
e Sort
s) = (Expr -> Sort -> Expr
`ETApp` Sort
s) (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step !ctx
c !(ETAbs Expr
e Symbol
s) = (Expr -> Symbol -> Expr
`ETAbs` Symbol
s) (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
step ctx
_ !p :: Expr
p@(PKVar KVar
_ Subst
_) = Expr -> VisitM a Expr
forall (m :: * -> *) a. Monad m => a -> m a
return Expr
p
step !ctx
c !(PGrad KVar
k Subst
su GradInfo
i Expr
e) = KVar -> Subst -> GradInfo -> Expr -> Expr
PGrad KVar
k Subst
su GradInfo
i (Expr -> Expr) -> VisitM a Expr -> VisitM a Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ctx -> Expr -> VisitM a Expr
vE ctx
c Expr
e
mapKVars :: Visitable t => (KVar -> Maybe Expr) -> t -> t
mapKVars :: (KVar -> Maybe Expr) -> t -> t
mapKVars KVar -> Maybe Expr
f = ((KVar, Subst) -> Maybe Expr) -> t -> t
forall t. Visitable t => ((KVar, Subst) -> Maybe Expr) -> t -> t
mapKVars' (KVar, Subst) -> Maybe Expr
forall b. (KVar, b) -> Maybe Expr
f'
where
f' :: (KVar, b) -> Maybe Expr
f' (KVar
kv', b
_) = KVar -> Maybe Expr
f KVar
kv'
mapKVars' :: Visitable t => ((KVar, Subst) -> Maybe Expr) -> t -> t
mapKVars' :: ((KVar, Subst) -> Maybe Expr) -> t -> t
mapKVars' (KVar, Subst) -> Maybe Expr
f = Visitor () () -> () -> () -> t -> t
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> t
trans Visitor () ()
forall p. Visitor () p
kvVis () ()
where
kvVis :: Visitor () p
kvVis = Visitor () p
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor { txExpr :: p -> Expr -> Expr
txExpr = p -> Expr -> Expr
forall p. p -> Expr -> Expr
txK }
txK :: p -> Expr -> Expr
txK p
_ (PKVar KVar
k Subst
su)
| Just Expr
p' <- (KVar, Subst) -> Maybe Expr
f (KVar
k, Subst
su) = Subst -> Expr -> Expr
forall a. Subable a => Subst -> a -> a
subst Subst
su Expr
p'
txK p
_ (PGrad KVar
k Subst
su GradInfo
_ Expr
_)
| Just Expr
p' <- (KVar, Subst) -> Maybe Expr
f (KVar
k, Subst
su) = Subst -> Expr -> Expr
forall a. Subable a => Subst -> a -> a
subst Subst
su Expr
p'
txK p
_ Expr
p = Expr
p
mapGVars' :: Visitable t => ((KVar, Subst) -> Maybe Expr) -> t -> t
mapGVars' :: ((KVar, Subst) -> Maybe Expr) -> t -> t
mapGVars' (KVar, Subst) -> Maybe Expr
f = Visitor () () -> () -> () -> t -> t
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> t
trans Visitor () ()
forall p. Visitor () p
kvVis () ()
where
kvVis :: Visitor () p
kvVis = Visitor () p
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor { txExpr :: p -> Expr -> Expr
txExpr = p -> Expr -> Expr
forall p. p -> Expr -> Expr
txK }
txK :: p -> Expr -> Expr
txK p
_ (PGrad KVar
k Subst
su GradInfo
_ Expr
_)
| Just Expr
p' <- (KVar, Subst) -> Maybe Expr
f (KVar
k, Subst
su) = Subst -> Expr -> Expr
forall a. Subable a => Subst -> a -> a
subst Subst
su Expr
p'
txK p
_ Expr
p = Expr
p
mapExpr :: Visitable t => (Expr -> Expr) -> t -> t
mapExpr :: (Expr -> Expr) -> t -> t
mapExpr Expr -> Expr
f = Visitor () () -> () -> () -> t -> t
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> t
trans (Visitor () ()
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor {txExpr :: () -> Expr -> Expr
txExpr = (Expr -> Expr) -> () -> Expr -> Expr
forall a b. a -> b -> a
const Expr -> Expr
f}) () ()
mapMExpr :: (Monad m) => (Expr -> m Expr) -> Expr -> m Expr
mapMExpr :: (Expr -> m Expr) -> Expr -> m Expr
mapMExpr Expr -> m Expr
f = Expr -> m Expr
go
where
go :: Expr -> m Expr
go e :: Expr
e@(ESym SymConst
_) = Expr -> m Expr
f Expr
e
go e :: Expr
e@(ECon Constant
_) = Expr -> m Expr
f Expr
e
go e :: Expr
e@(EVar Symbol
_) = Expr -> m Expr
f Expr
e
go e :: Expr
e@(PKVar KVar
_ Subst
_) = Expr -> m Expr
f Expr
e
go (PGrad KVar
k Subst
s GradInfo
i Expr
e) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (KVar -> Subst -> GradInfo -> Expr -> Expr
PGrad KVar
k Subst
s GradInfo
i (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (ENeg Expr
e) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Expr -> Expr
ENeg (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (PNot Expr
p) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Expr -> Expr
PNot (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
p )
go (ECst Expr
e Sort
t) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ((Expr -> Sort -> Expr
`ECst` Sort
t) (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (PAll [(Symbol, Sort)]
xts Expr
p) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ([(Symbol, Sort)] -> Expr -> Expr
PAll [(Symbol, Sort)]
xts (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
p )
go (ELam (Symbol
x,Sort
t) Expr
e) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ((Symbol, Sort) -> Expr -> Expr
ELam (Symbol
x,Sort
t) (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (ECoerc Sort
a Sort
t Expr
e) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Sort -> Sort -> Expr -> Expr
ECoerc Sort
a Sort
t (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (PExist [(Symbol, Sort)]
xts Expr
p) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ([(Symbol, Sort)] -> Expr -> Expr
PExist [(Symbol, Sort)]
xts (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
p )
go (ETApp Expr
e Sort
s) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ((Expr -> Sort -> Expr
`ETApp` Sort
s) (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (ETAbs Expr
e Symbol
s) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ((Expr -> Symbol -> Expr
`ETAbs` Symbol
s) (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e )
go (EApp Expr
g Expr
e) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Expr -> Expr -> Expr
EApp (Expr -> Expr -> Expr) -> m Expr -> m (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
g m (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
e )
go (EBin Bop
o Expr
e1 Expr
e2) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Bop -> Expr -> Expr -> Expr
EBin Bop
o (Expr -> Expr -> Expr) -> m Expr -> m (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e1 m (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
e2 )
go (PImp Expr
p1 Expr
p2) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Expr -> Expr -> Expr
PImp (Expr -> Expr -> Expr) -> m Expr -> m (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
p1 m (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
p2 )
go (PIff Expr
p1 Expr
p2) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Expr -> Expr -> Expr
PIff (Expr -> Expr -> Expr) -> m Expr -> m (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
p1 m (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
p2 )
go (PAtom Brel
r Expr
e1 Expr
e2) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Brel -> Expr -> Expr -> Expr
PAtom Brel
r (Expr -> Expr -> Expr) -> m Expr -> m (Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
e1 m (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
e2 )
go (EIte Expr
p Expr
e1 Expr
e2) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< (Expr -> Expr -> Expr -> Expr
EIte (Expr -> Expr -> Expr -> Expr)
-> m Expr -> m (Expr -> Expr -> Expr)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Expr -> m Expr
go Expr
p m (Expr -> Expr -> Expr) -> m Expr -> m (Expr -> Expr)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
e1 m (Expr -> Expr) -> m Expr -> m Expr
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Expr -> m Expr
go Expr
e2)
go (PAnd [Expr]
ps) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ([Expr] -> Expr
PAnd ([Expr] -> Expr) -> m [Expr] -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Expr -> m Expr
go (Expr -> m Expr) -> [Expr] -> m [Expr]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
<$$> [Expr]
ps) )
go (POr [Expr]
ps) = Expr -> m Expr
f (Expr -> m Expr) -> m Expr -> m Expr
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< ([Expr] -> Expr
POr ([Expr] -> Expr) -> m [Expr] -> m Expr
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Expr -> m Expr
go (Expr -> m Expr) -> [Expr] -> m [Expr]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
<$$> [Expr]
ps) )
mapKVarSubsts :: Visitable t => (KVar -> Subst -> Subst) -> t -> t
mapKVarSubsts :: (KVar -> Subst -> Subst) -> t -> t
mapKVarSubsts KVar -> Subst -> Subst
f = Visitor () () -> () -> () -> t -> t
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> t
trans Visitor () ()
forall p. Visitor () p
kvVis () ()
where
kvVis :: Visitor () p
kvVis = Visitor () p
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor { txExpr :: p -> Expr -> Expr
txExpr = p -> Expr -> Expr
forall p. p -> Expr -> Expr
txK }
txK :: p -> Expr -> Expr
txK p
_ (PKVar KVar
k Subst
su) = KVar -> Subst -> Expr
PKVar KVar
k (KVar -> Subst -> Subst
f KVar
k Subst
su)
txK p
_ (PGrad KVar
k Subst
su GradInfo
i Expr
e) = KVar -> Subst -> GradInfo -> Expr -> Expr
PGrad KVar
k (KVar -> Subst -> Subst
f KVar
k Subst
su) GradInfo
i Expr
e
txK p
_ Expr
p = Expr
p
newtype MInt = MInt Integer
instance Semigroup MInt where
MInt SubcId
m <> :: MInt -> MInt -> MInt
<> MInt SubcId
n = SubcId -> MInt
MInt (SubcId
m SubcId -> SubcId -> SubcId
forall a. Num a => a -> a -> a
+ SubcId
n)
instance Monoid MInt where
mempty :: MInt
mempty = SubcId -> MInt
MInt SubcId
0
mappend :: MInt -> MInt -> MInt
mappend = MInt -> MInt -> MInt
forall a. Semigroup a => a -> a -> a
(<>)
size :: Visitable t => t -> Integer
size :: t -> SubcId
size t
t = SubcId
n
where
MInt SubcId
n = Visitor MInt () -> () -> MInt -> t -> MInt
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> a
fold Visitor MInt ()
forall ctx. Visitor MInt ctx
szV () MInt
forall a. Monoid a => a
mempty t
t
szV :: Visitor MInt ctx
szV = (forall ctx. Visitor MInt ctx
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor :: Visitor MInt t) { accExpr :: ctx -> Expr -> MInt
accExpr = \ ctx
_ Expr
_ -> SubcId -> MInt
MInt SubcId
1 }
lamSize :: Visitable t => t -> Integer
lamSize :: t -> SubcId
lamSize t
t = SubcId
n
where
MInt SubcId
n = Visitor MInt () -> () -> MInt -> t -> MInt
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> a
fold Visitor MInt ()
forall ctx. Visitor MInt ctx
szV () MInt
forall a. Monoid a => a
mempty t
t
szV :: Visitor MInt p
szV = (forall ctx. Visitor MInt ctx
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor :: Visitor MInt t) { accExpr :: p -> Expr -> MInt
accExpr = p -> Expr -> MInt
forall p. p -> Expr -> MInt
accum }
accum :: p -> Expr -> MInt
accum p
_ (ELam (Symbol, Sort)
_ Expr
_) = SubcId -> MInt
MInt SubcId
1
accum p
_ Expr
_ = SubcId -> MInt
MInt SubcId
0
eapps :: Visitable t => t -> [Expr]
eapps :: t -> [Expr]
eapps = Visitor [Expr] () -> () -> [Expr] -> t -> [Expr]
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> a
fold Visitor [Expr] ()
forall p. Visitor [Expr] p
eappVis () []
where
eappVis :: Visitor [Expr] p
eappVis = (forall t. Visitor [KVar] t
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor :: Visitor [KVar] t) { accExpr :: p -> Expr -> [Expr]
accExpr = p -> Expr -> [Expr]
forall p. p -> Expr -> [Expr]
eapp' }
eapp' :: p -> Expr -> [Expr]
eapp' p
_ e :: Expr
e@(EApp Expr
_ Expr
_) = [Expr
e]
eapp' p
_ Expr
_ = []
kvars :: Visitable t => t -> [KVar]
kvars :: t -> [KVar]
kvars = Visitor [KVar] () -> () -> [KVar] -> t -> [KVar]
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> a
fold Visitor [KVar] ()
forall t. Visitor [KVar] t
kvVis () []
where
kvVis :: Visitor [KVar] p
kvVis = (forall t. Visitor [KVar] t
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor :: Visitor [KVar] t) { accExpr :: p -> Expr -> [KVar]
accExpr = p -> Expr -> [KVar]
forall p. p -> Expr -> [KVar]
kv' }
kv' :: p -> Expr -> [KVar]
kv' p
_ (PKVar KVar
k Subst
_) = [KVar
k]
kv' p
_ (PGrad KVar
k Subst
_ GradInfo
_ Expr
_) = [KVar
k]
kv' p
_ Expr
_ = []
envKVars :: (TaggedC c a) => BindEnv -> c a -> [KVar]
envKVars :: BindEnv -> c a -> [KVar]
envKVars BindEnv
be c a
c = [[KVar]] -> [KVar]
squish [ SortedReft -> [KVar]
kvs SortedReft
sr | (Symbol
_, SortedReft
sr) <- BindEnv -> c a -> [(Symbol, SortedReft)]
forall (c :: * -> *) a.
TaggedC c a =>
BindEnv -> c a -> [(Symbol, SortedReft)]
clhs BindEnv
be c a
c]
where
squish :: [[KVar]] -> [KVar]
squish = HashSet KVar -> [KVar]
forall a. HashSet a -> [a]
S.toList (HashSet KVar -> [KVar])
-> ([[KVar]] -> HashSet KVar) -> [[KVar]] -> [KVar]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [KVar] -> HashSet KVar
forall a. (Eq a, Hashable a) => [a] -> HashSet a
S.fromList ([KVar] -> HashSet KVar)
-> ([[KVar]] -> [KVar]) -> [[KVar]] -> HashSet KVar
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [[KVar]] -> [KVar]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
kvs :: SortedReft -> [KVar]
kvs = Reft -> [KVar]
forall t. Visitable t => t -> [KVar]
kvars (Reft -> [KVar]) -> (SortedReft -> Reft) -> SortedReft -> [KVar]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SortedReft -> Reft
sr_reft
envKVarsN :: (TaggedC c a) => BindEnv -> c a -> [(KVar, Int)]
envKVarsN :: BindEnv -> c a -> [(KVar, Int)]
envKVarsN BindEnv
be c a
c = [[KVar]] -> [(KVar, Int)]
tally [ SortedReft -> [KVar]
kvs SortedReft
sr | (Symbol
_, SortedReft
sr) <- BindEnv -> c a -> [(Symbol, SortedReft)]
forall (c :: * -> *) a.
TaggedC c a =>
BindEnv -> c a -> [(Symbol, SortedReft)]
clhs BindEnv
be c a
c]
where
tally :: [[KVar]] -> [(KVar, Int)]
tally = [KVar] -> [(KVar, Int)]
forall k. (Eq k, Hashable k) => [k] -> [(k, Int)]
Misc.count ([KVar] -> [(KVar, Int)])
-> ([[KVar]] -> [KVar]) -> [[KVar]] -> [(KVar, Int)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [[KVar]] -> [KVar]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
kvs :: SortedReft -> [KVar]
kvs = Reft -> [KVar]
forall t. Visitable t => t -> [KVar]
kvars (Reft -> [KVar]) -> (SortedReft -> Reft) -> SortedReft -> [KVar]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SortedReft -> Reft
sr_reft
rhsKVars :: (TaggedC c a) => c a -> [KVar]
rhsKVars :: c a -> [KVar]
rhsKVars = Expr -> [KVar]
forall t. Visitable t => t -> [KVar]
kvars (Expr -> [KVar]) -> (c a -> Expr) -> c a -> [KVar]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c a -> Expr
forall (c :: * -> *) a. TaggedC c a => c a -> Expr
crhs
isKvarC :: (TaggedC c a) => c a -> Bool
isKvarC :: c a -> Bool
isKvarC = (Expr -> Bool) -> [Expr] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Expr -> Bool
isKvar ([Expr] -> Bool) -> (c a -> [Expr]) -> c a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Expr -> [Expr]
conjuncts (Expr -> [Expr]) -> (c a -> Expr) -> c a -> [Expr]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c a -> Expr
forall (c :: * -> *) a. TaggedC c a => c a -> Expr
crhs
isConcC :: (TaggedC c a) => c a -> Bool
isConcC :: c a -> Bool
isConcC = (Expr -> Bool) -> [Expr] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Expr -> Bool
isConc ([Expr] -> Bool) -> (c a -> [Expr]) -> c a -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Expr -> [Expr]
conjuncts (Expr -> [Expr]) -> (c a -> Expr) -> c a -> [Expr]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. c a -> Expr
forall (c :: * -> *) a. TaggedC c a => c a -> Expr
crhs
isKvar :: Expr -> Bool
isKvar :: Expr -> Bool
isKvar (PKVar {}) = Bool
True
isKvar (PGrad {}) = Bool
True
isKvar Expr
_ = Bool
False
isConc :: Expr -> Bool
isConc :: Expr -> Bool
isConc = [KVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([KVar] -> Bool) -> (Expr -> [KVar]) -> Expr -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Expr -> [KVar]
forall t. Visitable t => t -> [KVar]
kvars
stripCasts :: (Visitable t) => t -> t
stripCasts :: t -> t
stripCasts = Visitor () () -> () -> () -> t -> t
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> t
trans (Visitor () ()
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor { txExpr :: () -> Expr -> Expr
txExpr = (Expr -> Expr) -> () -> Expr -> Expr
forall a b. a -> b -> a
const Expr -> Expr
go }) () ()
where
go :: Expr -> Expr
go (ECst Expr
e Sort
_) = Expr
e
go Expr
e = Expr
e
type CoSub = M.HashMap Symbol Sort
applyCoSub :: CoSub -> Expr -> Expr
applyCoSub :: CoSub -> Expr -> Expr
applyCoSub CoSub
coSub = (Expr -> Expr) -> Expr -> Expr
forall t. Visitable t => (Expr -> Expr) -> t -> t
mapExpr Expr -> Expr
fE
where
fE :: Expr -> Expr
fE (ECoerc Sort
s Sort
t Expr
e) = Sort -> Sort -> Expr -> Expr
ECoerc (Sort -> Sort
txS Sort
s) (Sort -> Sort
txS Sort
t) Expr
e
fE (ELam (Symbol
x,Sort
t) Expr
e) = (Symbol, Sort) -> Expr -> Expr
ELam (Symbol
x, Sort -> Sort
txS Sort
t) Expr
e
fE Expr
e = Expr
e
txS :: Sort -> Sort
txS = (Sort -> Sort) -> Sort -> Sort
mapSort Sort -> Sort
fS
fS :: Sort -> Sort
fS (FObj Symbol
a) = (Symbol -> Sort
txV Symbol
a)
fS Sort
t = Sort
t
txV :: Symbol -> Sort
txV Symbol
a = Sort -> Symbol -> CoSub -> Sort
forall k v. (Eq k, Hashable k) => v -> k -> HashMap k v -> v
M.lookupDefault (Symbol -> Sort
FObj Symbol
a) Symbol
a CoSub
coSub
foldSort :: (a -> Sort -> a) -> a -> Sort -> a
foldSort :: (a -> Sort -> a) -> a -> Sort -> a
foldSort a -> Sort -> a
f = a -> Sort -> a
step
where
step :: a -> Sort -> a
step a
b Sort
t = a -> Sort -> a
go (a -> Sort -> a
f a
b Sort
t) Sort
t
go :: a -> Sort -> a
go a
b (FFunc Sort
t1 Sort
t2) = (a -> Sort -> a) -> a -> [Sort] -> a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
L.foldl' a -> Sort -> a
step a
b [Sort
t1, Sort
t2]
go a
b (FApp Sort
t1 Sort
t2) = (a -> Sort -> a) -> a -> [Sort] -> a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
L.foldl' a -> Sort -> a
step a
b [Sort
t1, Sort
t2]
go a
b (FAbs Int
_ Sort
t) = a -> Sort -> a
go a
b Sort
t
go a
b Sort
_ = a
b
mapSort :: (Sort -> Sort) -> Sort -> Sort
mapSort :: (Sort -> Sort) -> Sort -> Sort
mapSort Sort -> Sort
f = Sort -> Sort
step
where
step :: Sort -> Sort
step !Sort
x = Sort -> Sort
go (Sort -> Sort
f Sort
x)
go :: Sort -> Sort
go !(FFunc Sort
t1 Sort
t2) = Sort -> Sort -> Sort
FFunc (Sort -> Sort
step Sort
t1) (Sort -> Sort
step Sort
t2)
go !(FApp Sort
t1 Sort
t2) = Sort -> Sort -> Sort
FApp (Sort -> Sort
step Sort
t1) (Sort -> Sort
step Sort
t2)
go !(FAbs Int
i Sort
t) = Int -> Sort -> Sort
FAbs Int
i (Sort -> Sort
step Sort
t)
go !Sort
t = Sort
t
foldDataDecl :: (a -> Sort -> a) -> a -> DataDecl -> a
foldDataDecl :: (a -> Sort -> a) -> a -> DataDecl -> a
foldDataDecl a -> Sort -> a
f a
acc = (a -> Sort -> a) -> a -> [Sort] -> a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
L.foldl' a -> Sort -> a
f a
acc ([Sort] -> a) -> (DataDecl -> [Sort]) -> DataDecl -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataDecl -> [Sort]
dataDeclSorts
dataDeclSorts :: DataDecl -> [Sort]
dataDeclSorts :: DataDecl -> [Sort]
dataDeclSorts = (DataCtor -> [Sort]) -> [DataCtor] -> [Sort]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap DataCtor -> [Sort]
dataCtorSorts ([DataCtor] -> [Sort])
-> (DataDecl -> [DataCtor]) -> DataDecl -> [Sort]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataDecl -> [DataCtor]
ddCtors
dataCtorSorts :: DataCtor -> [Sort]
dataCtorSorts :: DataCtor -> [Sort]
dataCtorSorts = (DataField -> Sort) -> [DataField] -> [Sort]
forall a b. (a -> b) -> [a] -> [b]
map DataField -> Sort
dfSort ([DataField] -> [Sort])
-> (DataCtor -> [DataField]) -> DataCtor -> [Sort]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCtor -> [DataField]
dcFields
class SymConsts a where
symConsts :: a -> [SymConst]
instance (SymConsts (c a)) => SymConsts (GInfo c a) where
symConsts :: GInfo c a -> [SymConst]
symConsts GInfo c a
fi = [SymConst] -> [SymConst]
forall a. Ord a => [a] -> [a]
Misc.sortNub ([SymConst] -> [SymConst]) -> [SymConst] -> [SymConst]
forall a b. (a -> b) -> a -> b
$ [SymConst]
csLits [SymConst] -> [SymConst] -> [SymConst]
forall a. [a] -> [a] -> [a]
++ [SymConst]
bsLits [SymConst] -> [SymConst] -> [SymConst]
forall a. [a] -> [a] -> [a]
++ [SymConst]
qsLits
where
csLits :: [SymConst]
csLits = (c a -> [SymConst]) -> [c a] -> [SymConst]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap c a -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts ([c a] -> [SymConst]) -> [c a] -> [SymConst]
forall a b. (a -> b) -> a -> b
$ HashMap SubcId (c a) -> [c a]
forall k v. HashMap k v -> [v]
M.elems (HashMap SubcId (c a) -> [c a]) -> HashMap SubcId (c a) -> [c a]
forall a b. (a -> b) -> a -> b
$ GInfo c a -> HashMap SubcId (c a)
forall (c :: * -> *) a. GInfo c a -> HashMap SubcId (c a)
cm GInfo c a
fi
bsLits :: [SymConst]
bsLits = BindEnv -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts (BindEnv -> [SymConst]) -> BindEnv -> [SymConst]
forall a b. (a -> b) -> a -> b
$ GInfo c a -> BindEnv
forall (c :: * -> *) a. GInfo c a -> BindEnv
bs GInfo c a
fi
qsLits :: [SymConst]
qsLits = (Expr -> [SymConst]) -> [Expr] -> [SymConst]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap Expr -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts ([Expr] -> [SymConst]) -> [Expr] -> [SymConst]
forall a b. (a -> b) -> a -> b
$ Qualifier -> Expr
qBody (Qualifier -> Expr) -> [Qualifier] -> [Expr]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> GInfo c a -> [Qualifier]
forall (c :: * -> *) a. GInfo c a -> [Qualifier]
quals GInfo c a
fi
instance SymConsts BindEnv where
symConsts :: BindEnv -> [SymConst]
symConsts = ((Symbol, SortedReft) -> [SymConst])
-> [(Symbol, SortedReft)] -> [SymConst]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (SortedReft -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts (SortedReft -> [SymConst])
-> ((Symbol, SortedReft) -> SortedReft)
-> (Symbol, SortedReft)
-> [SymConst]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Symbol, SortedReft) -> SortedReft
forall a b. (a, b) -> b
snd) ([(Symbol, SortedReft)] -> [SymConst])
-> (BindEnv -> [(Symbol, SortedReft)]) -> BindEnv -> [SymConst]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HashMap Int (Symbol, SortedReft) -> [(Symbol, SortedReft)]
forall k v. HashMap k v -> [v]
M.elems (HashMap Int (Symbol, SortedReft) -> [(Symbol, SortedReft)])
-> (BindEnv -> HashMap Int (Symbol, SortedReft))
-> BindEnv
-> [(Symbol, SortedReft)]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BindEnv -> HashMap Int (Symbol, SortedReft)
forall a. SizedEnv a -> BindMap a
beBinds
instance SymConsts (SubC a) where
symConsts :: SubC a -> [SymConst]
symConsts SubC a
c = SortedReft -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts (SubC a -> SortedReft
forall a. SubC a -> SortedReft
slhs SubC a
c) [SymConst] -> [SymConst] -> [SymConst]
forall a. [a] -> [a] -> [a]
++
SortedReft -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts (SubC a -> SortedReft
forall a. SubC a -> SortedReft
srhs SubC a
c)
instance SymConsts (SimpC a) where
symConsts :: SimpC a -> [SymConst]
symConsts SimpC a
c = Expr -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts (SimpC a -> Expr
forall (c :: * -> *) a. TaggedC c a => c a -> Expr
crhs SimpC a
c)
instance SymConsts SortedReft where
symConsts :: SortedReft -> [SymConst]
symConsts = Reft -> [SymConst]
forall a. SymConsts a => a -> [SymConst]
symConsts (Reft -> [SymConst])
-> (SortedReft -> Reft) -> SortedReft -> [SymConst]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SortedReft -> Reft
sr_reft
instance SymConsts Reft where
symConsts :: Reft -> [SymConst]
symConsts (Reft (Symbol
_, Expr
ra)) = Expr -> [SymConst]
forall t. Visitable t => t -> [SymConst]
getSymConsts Expr
ra
instance SymConsts Expr where
symConsts :: Expr -> [SymConst]
symConsts = Expr -> [SymConst]
forall t. Visitable t => t -> [SymConst]
getSymConsts
getSymConsts :: Visitable t => t -> [SymConst]
getSymConsts :: t -> [SymConst]
getSymConsts = Visitor [SymConst] () -> () -> [SymConst] -> t -> [SymConst]
forall t a ctx.
(Visitable t, Monoid a) =>
Visitor a ctx -> ctx -> a -> t -> a
fold Visitor [SymConst] ()
forall p. Visitor [SymConst] p
scVis () []
where
scVis :: Visitor [SymConst] p
scVis = (forall p. Visitor [SymConst] p
forall acc ctx. Monoid acc => Visitor acc ctx
defaultVisitor :: Visitor [SymConst] t) { accExpr :: p -> Expr -> [SymConst]
accExpr = p -> Expr -> [SymConst]
forall p. p -> Expr -> [SymConst]
sc }
sc :: p -> Expr -> [SymConst]
sc p
_ (ESym SymConst
c) = [SymConst
c]
sc p
_ Expr
_ = []