{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ExistentialQuantification #-}
module Language.Fixpoint.Solver.PLE (instantiate) where
import Language.Fixpoint.Types hiding (simplify)
import Language.Fixpoint.Types.Config as FC
import qualified Language.Fixpoint.Types.Visitor as Vis
import qualified Language.Fixpoint.Misc as Misc
import qualified Language.Fixpoint.Smt.Interface as SMT
import Language.Fixpoint.Defunctionalize
import qualified Language.Fixpoint.Utils.Trie as T
import Language.Fixpoint.Utils.Progress
import Language.Fixpoint.SortCheck
import Language.Fixpoint.Graph.Deps (isTarget)
import Language.Fixpoint.Solver.Sanitize (symbolEnv)
import Language.Fixpoint.Solver.Rewrite
import Control.Monad.State
import Control.Monad.Trans.Maybe
import qualified Data.HashMap.Strict as M
import qualified Data.HashSet as S
import qualified Data.List as L
import qualified Data.Maybe as Mb
import Debug.Trace (trace)
mytracepp :: (PPrint a) => String -> a -> a
mytracepp = notracepp
traceE :: (Expr,Expr) -> (Expr,Expr)
traceE (e,e')
| False
, e /= e'
= trace ("\n" ++ showpp e ++ " ~> " ++ showpp e') (e,e')
| otherwise
= (e,e')
instantiate :: (Loc a) => Config -> SInfo a -> IO (SInfo a)
instantiate cfg fi' = do
let cs = [ (i, c) | (i, c) <- M.toList (cm fi), isPleCstr aEnv i c ]
let t = mkCTrie cs
res <- withProgress (1 + length cs) $
withCtx cfg file sEnv (pleTrie t . instEnv cfg fi cs)
return $ resSInfo cfg sEnv fi res
where
file = srcFile cfg ++ ".evals"
sEnv = symbolEnv cfg fi
aEnv = ae fi
fi = normalize fi'
instEnv :: (Loc a) => Config -> SInfo a -> [(SubcId, SimpC a)] -> SMT.Context -> InstEnv a
instEnv cfg fi cs ctx = InstEnv cfg ctx bEnv aEnv cs γ s0
where
bEnv = bs fi
aEnv = ae fi
γ = knowledge cfg ctx fi
s0 = EvalEnv (SMT.ctxSymEnv ctx) mempty
mkCTrie :: [(SubcId, SimpC a)] -> CTrie
mkCTrie ics = T.fromList [ (cBinds c, i) | (i, c) <- ics ]
where
cBinds = L.sort . elemsIBindEnv . senv
pleTrie :: CTrie -> InstEnv a -> IO InstRes
pleTrie t env = loopT env ctx0 diff0 Nothing res0 t
where
diff0 = []
res0 = M.empty
ctx0 = initCtx $ ((mkEq <$> es0) ++ (mkEq' <$> es0'))
es0 = L.filter (null . eqArgs) (aenvEqs . ieAenv $ env)
es0' = L.filter (null . smArgs) (aenvSimpl . ieAenv $ env)
mkEq eq = (EVar $ eqName eq, eqBody eq)
mkEq' rw = (EApp (EVar $ smName rw) (EVar $ smDC rw), smBody rw)
loopT :: InstEnv a -> ICtx -> Diff -> Maybe BindId -> InstRes -> CTrie -> IO InstRes
loopT env ctx delta i res t = case t of
T.Node [] -> return res
T.Node [b] -> loopB env ctx delta i res b
T.Node bs -> withAssms env ctx delta Nothing $ \ctx' -> do
(ctx'', res') <- ple1 env ctx' i res
foldM (loopB env ctx'' [] i) res' bs
loopB :: InstEnv a -> ICtx -> Diff -> Maybe BindId -> InstRes -> CBranch -> IO InstRes
loopB env ctx delta iMb res b = case b of
T.Bind i t -> loopT env ctx (i:delta) (Just i) res t
T.Val cid -> withAssms env ctx delta (Just cid) $ \ctx' -> do
progressTick
(snd <$> ple1 env ctx' iMb res)
withAssms :: InstEnv a -> ICtx -> Diff -> Maybe SubcId -> (ICtx -> IO b) -> IO b
withAssms env@(InstEnv {..}) ctx delta cidMb act = do
let ctx' = updCtx env ctx delta cidMb
let assms = icAssms ctx'
SMT.smtBracket ieSMT "PLE.evaluate" $ do
forM_ assms (SMT.smtAssert ieSMT)
act ctx'
ple1 :: InstEnv a -> ICtx -> Maybe BindId -> InstRes -> IO (ICtx, InstRes)
ple1 (InstEnv {..}) ctx i res =
updCtxRes res i <$> evalCandsLoop ieCfg ctx ieSMT ieKnowl ieEvEnv
evalToSMT :: String -> Config -> SMT.Context -> (Expr, Expr) -> Pred
evalToSMT msg cfg ctx (e1,e2) = toSMT ("evalToSMT:" ++ msg) cfg ctx [] (EEq e1 e2)
evalCandsLoop :: Config -> ICtx -> SMT.Context -> Knowledge -> EvalEnv -> IO ICtx
evalCandsLoop cfg ictx0 ctx γ env = go ictx0
where
withRewrites exprs =
let
rws = [rewrite e rw | rw <- knSims γ
, e <- S.toList (snd `S.map` exprs)]
in
exprs <> (S.fromList $ concat rws)
go ictx | S.null (icCands ictx) = return ictx
go ictx = do let cands = icCands ictx
let env' = env { evAccum = icEquals ictx <> evAccum env }
evalResults <- SMT.smtBracket ctx "PLE.evaluate" $ do
SMT.smtAssert ctx (pAnd (S.toList $ icAssms ictx))
mapM (evalOne γ env' ictx) (S.toList cands)
let us = mconcat evalResults
if S.null (us `S.difference` icEquals ictx)
then return ictx
else do let oks = fst `S.map` us
let us' = withRewrites us
let eqsSMT = evalToSMT "evalCandsLoop" cfg ctx `S.map` us'
let ictx' = ictx { icSolved = icSolved ictx <> oks
, icEquals = icEquals ictx <> us'
, icAssms = icAssms ictx <> S.filter (not . isTautoPred) eqsSMT }
let newcands = mconcat (makeCandidates γ ictx' <$> S.toList (cands <> (snd `S.map` us)))
go (ictx' { icCands = S.fromList newcands})
rewrite :: Expr -> Rewrite -> [(Expr,Expr)]
rewrite e rw = Mb.catMaybes $ map (`rewriteTop` rw) (notGuardedApps e)
rewriteTop :: Expr -> Rewrite -> Maybe (Expr,Expr)
rewriteTop e rw
| (EVar f, es) <- splitEApp e
, f == smDC rw
, length es == length (smArgs rw)
= Just (EApp (EVar $ smName rw) e, subst (mkSubst $ zip (smArgs rw) es) (smBody rw))
| otherwise
= Nothing
resSInfo :: Config -> SymEnv -> SInfo a -> InstRes -> SInfo a
resSInfo cfg env fi res = strengthenBinds fi res'
where
res' = M.fromList $ zip is ps''
ps'' = zipWith (\i -> elaborate (atLoc dummySpan ("PLE1 " ++ show i)) env) is ps'
ps' = defuncAny cfg env ps
(is, ps) = unzip (M.toList res)
data InstEnv a = InstEnv
{ ieCfg :: !Config
, ieSMT :: !SMT.Context
, ieBEnv :: !BindEnv
, ieAenv :: !AxiomEnv
, ieCstrs :: ![(SubcId, SimpC a)]
, ieKnowl :: !Knowledge
, ieEvEnv :: !EvalEnv
}
data ICtx = ICtx
{ icAssms :: S.HashSet Pred
, icCands :: S.HashSet Expr
, icEquals :: EvAccum
, icSolved :: S.HashSet Expr
, icSimpl :: !ConstMap
, icSubcId :: Maybe SubcId
}
type InstRes = M.HashMap BindId Expr
type CTrie = T.Trie SubcId
type CBranch = T.Branch SubcId
type Diff = [BindId]
initCtx :: [(Expr,Expr)] -> ICtx
initCtx es = ICtx
{ icAssms = mempty
, icCands = mempty
, icEquals = S.fromList es
, icSolved = mempty
, icSimpl = mempty
, icSubcId = Nothing
}
equalitiesPred :: S.HashSet (Expr, Expr) -> [Expr]
equalitiesPred eqs = [ EEq e1 e2 | (e1, e2) <- S.toList eqs, e1 /= e2 ]
updCtxRes :: InstRes -> Maybe BindId -> ICtx -> (ICtx, InstRes)
updCtxRes res iMb ctx = (ctx, res')
where
res' = updRes res iMb (pAnd $ equalitiesPred $ icEquals ctx)
updRes :: InstRes -> Maybe BindId -> Expr -> InstRes
updRes res (Just i) e = M.insert i e res
updRes res Nothing _ = res
updCtx :: InstEnv a -> ICtx -> Diff -> Maybe SubcId -> ICtx
updCtx InstEnv {..} ctx delta cidMb
= ctx { icAssms = S.fromList (filter (not . isTautoPred) ctxEqs)
, icCands = S.fromList cands <> icCands ctx
, icEquals = initEqs <> icEquals ctx
, icSimpl = M.fromList (S.toList sims) <> icSimpl ctx <> econsts
, icSubcId = fst <$> L.find (\(_, b) -> (head delta) `memberIBindEnv` (_cenv b)) ieCstrs
}
where
initEqs = S.fromList $ concat [rewrite e rw | e <- (cands ++ (snd <$> S.toList (icEquals ctx)))
, rw <- knSims ieKnowl]
cands = concatMap (makeCandidates ieKnowl ctx) (rhs:es)
sims = S.filter (isSimplification (knDCs ieKnowl)) (initEqs <> icEquals ctx)
econsts = M.fromList $ findConstants ieKnowl es
ctxEqs = toSMT "updCtx" ieCfg ieSMT [] <$> L.nub (concat
[ equalitiesPred initEqs
, equalitiesPred sims
, equalitiesPred (icEquals ctx)
, [ expr xr | xr@(_, r) <- bs, null (Vis.kvars r) ]
])
bs = unElab <$> binds
(rhs:es) = unElab <$> (eRhs : (expr <$> binds))
eRhs = maybe PTrue crhs subMb
binds = [ lookupBindEnv i ieBEnv | i <- delta ]
subMb = getCstr (M.fromList ieCstrs) <$> cidMb
findConstants :: Knowledge -> [Expr] -> [(Expr, Expr)]
findConstants γ es = [(EVar x, c) | (x,c) <- go [] (concatMap splitPAnd es)]
where
go su ess = if ess == ess'
then su
else go (su ++ su') ess'
where ess' = subst (mkSubst su') <$> ess
su' = makeSu ess
makeSu exprs = [(x,c) | (EEq (EVar x) c) <- exprs
, isConstant (knDCs γ) c
, EVar x /= c ]
makeCandidates :: Knowledge -> ICtx -> Expr -> [Expr]
makeCandidates γ ctx expr
= mytracepp ("\n" ++ show (length cands) ++ " New Candidates") cands
where
cands = filter (\e -> isRedex γ e && (not (e `S.member` icSolved ctx))) (notGuardedApps expr)
isRedex :: Knowledge -> Expr -> Bool
isRedex γ e = isGoodApp γ e || isIte e
where
isIte (EIte _ _ _) = True
isIte _ = False
isGoodApp :: Knowledge -> Expr -> Bool
isGoodApp γ e
| (EVar f, es) <- splitEApp e
, Just i <- L.lookup f (knSummary γ)
= length es >= i
| otherwise
= False
getCstr :: M.HashMap SubcId (SimpC a) -> SubcId -> SimpC a
getCstr env cid = Misc.safeLookup "Instantiate.getCstr" cid env
isPleCstr :: AxiomEnv -> SubcId -> SimpC a -> Bool
isPleCstr aenv sid c = isTarget c && M.lookupDefault False sid (aenvExpand aenv)
type EvAccum = S.HashSet (Expr, Expr)
data EvalEnv = EvalEnv
{ evEnv :: !SymEnv
, evAccum :: EvAccum
}
type EvalST a = StateT EvalEnv IO a
getAutoRws :: Knowledge -> ICtx -> [AutoRewrite]
getAutoRws γ ctx =
Mb.fromMaybe [] $ do
cid <- icSubcId ctx
M.lookup cid $ knAutoRWs γ
evalOne :: Knowledge -> EvalEnv -> ICtx -> Expr -> IO EvAccum
evalOne γ env ctx e | null $ getAutoRws γ ctx = do
(e',st) <- runStateT (fastEval γ ctx e) env
return $ if e' == e then evAccum st else S.insert (e, e') (evAccum st)
evalOne γ env ctx e =
evAccum <$> execStateT (eval γ ctx [(e, PLE)]) env
notGuardedApps :: Expr -> [Expr]
notGuardedApps = go
where
go e@(EApp e1 e2) = [e] ++ go e1 ++ go e2
go (PAnd es) = concatMap go es
go (POr es) = concatMap go es
go (PAtom _ e1 e2) = go e1 ++ go e2
go (PIff e1 e2) = go e1 ++ go e2
go (PImp e1 e2) = go e1 ++ go e2
go (EBin _ e1 e2) = go e1 ++ go e2
go (PNot e) = go e
go (ENeg e) = go e
go e@(EIte b _ _) = go b ++ [e]
go (ECoerc _ _ e) = go e
go (ECst e _) = go e
go (ESym _) = []
go (ECon _) = []
go (EVar _) = []
go (ELam _ _) = []
go (ETApp _ _) = []
go (ETAbs _ _) = []
go (PKVar _ _) = []
go (PAll _ _) = []
go (PExist _ _) = []
go (PGrad{}) = []
subsFromAssm :: Expr -> [(Symbol, Expr)]
subsFromAssm (PAnd es) = concatMap subsFromAssm es
subsFromAssm (EEq lhs rhs) | (EVar v) <- unElab lhs
, anfPrefix `isPrefixOfSym` v = [(v, unElab rhs)]
subsFromAssm _ = []
fastEval :: Knowledge -> ICtx -> Expr -> EvalST Expr
fastEval _ ctx e
| Just v <- M.lookup e (icSimpl ctx)
= return v
fastEval γ ctx e =
do acc <- S.toList . evAccum <$> get
case L.lookup e acc of
Just e' -> fastEval γ ctx e'
_ -> do
e' <- simplify γ ctx <$> go e
if e /= e'
then do modify (\st -> st { evAccum = S.insert (traceE (e, e')) (evAccum st)
})
fastEval γ (addConst (e,e') ctx) e'
else return e
where
addConst (e,e') ctx = if isConstant (knDCs γ) e'
then ctx { icSimpl = M.insert e e' $ icSimpl ctx} else ctx
go (ELam (x,s) e) = ELam (x, s) <$> fastEval γ' ctx e where γ' = γ { knLams = (x, s) : knLams γ }
go e@(EIte b e1 e2) = fastEvalIte γ ctx e b e1 e2
go (ECoerc s t e) = ECoerc s t <$> go e
go e@(EApp _ _) = case splitEApp e of
(f, es) -> do (f':es') <- mapM (fastEval γ ctx) (f:es)
evalApp γ ctx (eApps f' es) (f',es')
go e@(PAtom r e1 e2) = fromMaybeM (PAtom r <$> go e1 <*> go e2) (evalBool γ e)
go (ENeg e) = do e' <- fastEval γ ctx e
return $ ENeg e'
go (EBin o e1 e2) = do e1' <- fastEval γ ctx e1
e2' <- fastEval γ ctx e2
return $ EBin o e1' e2'
go (ETApp e t) = flip ETApp t <$> go e
go (ETAbs e s) = flip ETAbs s <$> go e
go e@(PNot e') = fromMaybeM (PNot <$> go e') (evalBool γ e)
go e@(PImp e1 e2) = fromMaybeM (PImp <$> go e1 <*> go e2) (evalBool γ e)
go e@(PIff e1 e2) = fromMaybeM (PIff <$> go e1 <*> go e2) (evalBool γ e)
go e@(PAnd es) = fromMaybeM (PAnd <$> (go <$$> es)) (evalBool γ e)
go e@(POr es) = fromMaybeM (POr <$> (go <$$> es)) (evalBool γ e)
go e = return e
eval :: Knowledge -> ICtx -> [(Expr, TermOrigin)] -> EvalST ()
eval _ ctx path
| pathExprs <- map fst path
, e <- last pathExprs
, Just v <- M.lookup e (icSimpl ctx)
= when (v /= e) $ modify (\st -> st { evAccum = S.insert (e, v) (evAccum st)})
eval γ ctx path =
do
rws <- getRWs
e' <- simplify γ ctx <$> evalStep γ ctx e
let evalIsNewExpr = L.notElem e' pathExprs
let exprsToAdd = (if evalIsNewExpr then [e'] else []) ++ map fst rws
let evAccum' = S.fromList $ map (e,) $ exprsToAdd
modify (\st -> st { evAccum = S.union evAccum' (evAccum st)})
when evalIsNewExpr $ eval γ (addConst (e, e')) (path ++ [(e', PLE)])
mapM_ (\rw -> (eval γ ctx) (path ++ [rw])) rws
where
pathExprs = map fst path
e = last pathExprs
autorws = getAutoRws γ ctx
getRWs :: EvalST [(Expr, TermOrigin)]
getRWs =
let
ints = concatMap subsFromAssm (S.toList $ icAssms ctx)
su = Su (M.fromList ints)
e' = subst' e
subst' ee =
let ee' = subst su ee
in if ee == ee' then ee else subst' ee'
rwArgs = RWArgs (isValid γ) (knRWTerminationOpts γ)
getRWs' s =
Mb.catMaybes <$> mapM (liftIO . runMaybeT . getRewrite rwArgs path s) autorws
in concat <$> mapM getRWs' (subExprs e')
addConst (e,e') = if isConstant (knDCs γ) e'
then ctx { icSimpl = M.insert e e' $ icSimpl ctx} else ctx
evalStep :: Knowledge -> ICtx -> Expr -> EvalST Expr
evalStep γ ctx (ELam (x,s) e) = ELam (x, s) <$> evalStep γ' ctx e where γ' = γ { knLams = (x, s) : knLams γ }
evalStep γ ctx e@(EIte b e1 e2) = evalIte γ ctx e b e1 e2
evalStep γ ctx (ECoerc s t e) = ECoerc s t <$> evalStep γ ctx e
evalStep γ ctx e@(EApp _ _) = case splitEApp e of
(f, es) ->
do
f' <- evalStep γ ctx f
if f' /= f
then return (eApps f' es)
else
do
es' <- mapM (evalStep γ ctx) es
if es /= es'
then return (eApps f' es')
else evalApp γ ctx (eApps f' es') (f',es')
evalStep γ ctx e@(PAtom r e1 e2) =
fromMaybeM (PAtom r <$> evalStep γ ctx e1 <*> evalStep γ ctx e2) (evalBool γ e)
evalStep γ ctx (ENeg e) = ENeg <$> evalStep γ ctx e
evalStep γ ctx (EBin o e1 e2) = do
e1' <- evalStep γ ctx e1
if e1' /= e1
then return (EBin o e1' e2)
else EBin o e1 <$> evalStep γ ctx e2
evalStep γ ctx (ETApp e t) = flip ETApp t <$> evalStep γ ctx e
evalStep γ ctx (ETAbs e s) = flip ETAbs s <$> evalStep γ ctx e
evalStep γ ctx e@(PNot e') = fromMaybeM (PNot <$> evalStep γ ctx e') (evalBool γ e)
evalStep γ ctx e@(PImp e1 e2) = fromMaybeM (PImp <$> evalStep γ ctx e1 <*> evalStep γ ctx e2) (evalBool γ e)
evalStep γ ctx e@(PIff e1 e2) = fromMaybeM (PIff <$> evalStep γ ctx e1 <*> evalStep γ ctx e2) (evalBool γ e)
evalStep γ ctx e@(PAnd es) = fromMaybeM (PAnd <$> (evalStep γ ctx <$$> es)) (evalBool γ e)
evalStep γ ctx e@(POr es) = fromMaybeM (POr <$> (evalStep γ ctx <$$> es)) (evalBool γ e)
evalStep _ _ e = return e
fromMaybeM :: (Monad m) => m a -> m (Maybe a) -> m a
fromMaybeM a ma = do
mx <- ma
case mx of
Just x -> return x
Nothing -> a
(<$$>) :: (Monad m) => (a -> m b) -> [a] -> m [b]
f <$$> xs = f Misc.<$$> xs
evalApp :: Knowledge -> ICtx -> Expr -> (Expr, [Expr]) -> EvalST Expr
evalApp γ ctx _ (EVar f, es)
| Just eq <- L.find ((== f) . eqName) (knAms γ)
, length (eqArgs eq) <= length es
= do env <- seSort <$> gets evEnv
let (es1,es2) = splitAt (length (eqArgs eq)) es
shortcut (substEq env eq es1) es2
where
shortcut (EIte i e1 e2) es2 = do
b <- fastEval γ ctx i
b' <- liftIO $ (mytracepp ("evalEIt POS " ++ showpp b) <$> isValid γ b)
nb' <- liftIO $ (mytracepp ("evalEIt NEG " ++ showpp (PNot b)) <$> isValid γ (PNot b))
r <- if b'
then shortcut e1 es2
else if nb' then shortcut e2 es2
else return $ eApps (EIte b e1 e2) es2
return r
shortcut e' es2 = return $ eApps e' es2
evalApp γ _ _ (EVar f, e:es)
| (EVar dc, as) <- splitEApp e
, Just rw <- L.find (\rw -> smName rw == f && smDC rw == dc) (knSims γ)
, length as == length (smArgs rw)
= return $ eApps (subst (mkSubst $ zip (smArgs rw) as) (smBody rw)) es
evalApp _ _ e _
= return e
substEq :: SEnv Sort -> Equation -> [Expr] -> Expr
substEq env eq es = subst su (substEqCoerce env eq es)
where su = mkSubst $ zip (eqArgNames eq) es
substEqCoerce :: SEnv Sort -> Equation -> [Expr] -> Expr
substEqCoerce env eq es = Vis.applyCoSub coSub $ eqBody eq
where
ts = snd <$> eqArgs eq
sp = panicSpan "mkCoSub"
eTs = sortExpr sp env <$> es
coSub = mkCoSub env eTs ts
mkCoSub :: SEnv Sort -> [Sort] -> [Sort] -> Vis.CoSub
mkCoSub env eTs xTs = M.fromList [ (x, unite ys) | (x, ys) <- Misc.groupList xys ]
where
unite ts = Mb.fromMaybe (uError ts) (unifyTo1 senv ts)
senv = mkSearchEnv env
uError ts = panic ("mkCoSub: cannot build CoSub for " ++ showpp xys ++ " cannot unify " ++ showpp ts)
xys = Misc.sortNub $ concat $ zipWith matchSorts _xTs _eTs
(_xTs,_eTs) = (xTs, eTs)
matchSorts :: Sort -> Sort -> [(Symbol, Sort)]
matchSorts s1 s2 = go s1 s2
where
go (FObj x) y = [(x, y)]
go (FAbs _ t1) (FAbs _ t2) = go t1 t2
go (FFunc s1 t1) (FFunc s2 t2) = go s1 s2 ++ go t1 t2
go (FApp s1 t1) (FApp s2 t2) = go s1 s2 ++ go t1 t2
go _ _ = []
eqArgNames :: Equation -> [Symbol]
eqArgNames = map fst . eqArgs
evalBool :: Knowledge -> Expr -> EvalST (Maybe Expr)
evalBool γ e = do
bt <- liftIO $ isValid γ e
if bt then return $ Just PTrue
else do
bf <- liftIO $ isValid γ (PNot e)
if bf then return $ Just PFalse
else return Nothing
fastEvalIte :: Knowledge -> ICtx -> Expr -> Expr -> Expr -> Expr -> EvalST Expr
fastEvalIte γ ctx _ b0 e1 e2 = do
b <- fastEval γ ctx b0
b' <- liftIO $ (mytracepp ("evalEIt POS " ++ showpp b) <$> isValid γ b)
nb' <- liftIO $ (mytracepp ("evalEIt NEG " ++ showpp (PNot b)) <$> isValid γ (PNot b))
if b'
then return $ e1
else if nb' then return $ e2
else return $ EIte b e1 e2
evalIte :: Knowledge -> ICtx -> Expr -> Expr -> Expr -> Expr -> EvalST Expr
evalIte γ ctx _ b0 e1 e2 = do
b <- evalStep γ ctx b0
if b /= b0 then return (EIte b e1 e2) else
do
b' <- liftIO $ isValid γ b
nb' <- liftIO $ isValid γ (PNot b)
return $
if b'
then e1
else if nb' then e2
else EIte b e1 e2
data Knowledge = KN
{ knSims :: ![Rewrite]
, knAms :: ![Equation]
, knContext :: SMT.Context
, knPreds :: SMT.Context -> [(Symbol, Sort)] -> Expr -> IO Bool
, knLams :: ![(Symbol, Sort)]
, knSummary :: ![(Symbol, Int)]
, knDCs :: !(S.HashSet Symbol)
, knSels :: !(SelectorMap)
, knConsts :: !(ConstDCMap)
, knAutoRWs :: M.HashMap SubcId [AutoRewrite]
, knRWTerminationOpts :: RWTerminationOpts
}
isValid :: Knowledge -> Expr -> IO Bool
isValid γ e = do
contra <- knPreds γ (knContext γ) (knLams γ) PFalse
if contra
then return False
else knPreds γ (knContext γ) (knLams γ) e
knowledge :: Config -> SMT.Context -> SInfo a -> Knowledge
knowledge cfg ctx si = KN
{ knSims = sims
, knAms = aenvEqs aenv
, knContext = ctx
, knPreds = askSMT cfg
, knLams = []
, knSummary = ((\s -> (smName s, 1)) <$> sims)
++ ((\s -> (eqName s, length (eqArgs s))) <$> aenvEqs aenv)
, knDCs = S.fromList (smDC <$> sims)
, knSels = Mb.catMaybes $ map makeSel sims
, knConsts = Mb.catMaybes $ map makeCons sims
, knAutoRWs = aenvAutoRW aenv
, knRWTerminationOpts =
if (rwTerminationCheck cfg)
then RWTerminationCheckEnabled (maxRWOrderingConstraints cfg)
else RWTerminationCheckDisabled
}
where
sims = aenvSimpl aenv ++ concatMap reWriteDDecl (ddecls si)
aenv = ae si
makeCons rw
| null (syms $ smBody rw)
= Just (smName rw, (smDC rw, smBody rw))
| otherwise
= Nothing
makeSel rw
| EVar x <- smBody rw
= (smName rw,) . (smDC rw,) <$> L.elemIndex x (smArgs rw)
| otherwise
= Nothing
reWriteDDecl :: DataDecl -> [Rewrite]
reWriteDDecl ddecl = concatMap go (ddCtors ddecl)
where
go (DCtor f xs) = zipWith (\r i -> SMeasure r f' ys (EVar (ys!!i)) ) rs [0..]
where
f' = symbol f
rs = (val . dfName) <$> xs
mkArg ws = zipWith (\_ i -> intSymbol (symbol ("darg"::String)) i) ws [0..]
ys = mkArg xs
askSMT :: Config -> SMT.Context -> [(Symbol, Sort)] -> Expr -> IO Bool
askSMT cfg ctx bs e
| isTautoPred e = return True
| null (Vis.kvars e) = SMT.checkValidWithContext ctx [] PTrue e'
| otherwise = return False
where
e' = toSMT "askSMT" cfg ctx bs e
toSMT :: String -> Config -> SMT.Context -> [(Symbol, Sort)] -> Expr -> Pred
toSMT msg cfg ctx bs e = defuncAny cfg senv . elaborate "makeKnowledge" (elabEnv bs) . mytracepp ("toSMT from " ++ msg ++ showpp e)
$ e
where
elabEnv = insertsSymEnv senv
senv = SMT.ctxSymEnv ctx
withCtx :: Config -> FilePath -> SymEnv -> (SMT.Context -> IO a) -> IO a
withCtx cfg file env k = do
ctx <- SMT.makeContextWithSEnv cfg file env
_ <- SMT.smtPush ctx
res <- k ctx
_ <- SMT.cleanupContext ctx
return res
type SelectorMap = [(Symbol, (Symbol, Int))]
type ConstDCMap = [(Symbol, (Symbol, Expr))]
type ConstMap = M.HashMap Expr Expr
type LDataCon = Symbol
isSimplification :: S.HashSet LDataCon -> (Expr,Expr) -> Bool
isSimplification dcs (_,c) = isConstant dcs c
isConstant :: S.HashSet LDataCon -> Expr -> Bool
isConstant dcs e = S.null (S.difference (S.fromList $ syms e) dcs)
class Simplifiable a where
simplify :: Knowledge -> ICtx -> a -> a
instance Simplifiable Expr where
simplify γ ictx e = mytracepp ("simplification of " ++ showpp e) $ fix (Vis.mapExpr tx) e
where
fix f e = if e == e' then e else fix f e' where e' = f e
tx e
| Just e' <- M.lookup e (icSimpl ictx)
= e'
tx (EApp (EVar f) a)
| Just (dc, c) <- L.lookup f (knConsts γ)
, (EVar dc', _) <- splitEApp a
, dc == dc'
= c
tx (EIte b e1 e2)
| isTautoPred b = e1
| isContraPred b = e2
tx (ECoerc s t e)
| s == t = e
tx (EApp (EVar f) a)
| Just (dc, i) <- L.lookup f (knSels γ)
, (EVar dc', es) <- splitEApp a
, dc == dc'
= es!!i
tx e = e
class Normalizable a where
normalize :: a -> a
instance Normalizable (GInfo c a) where
normalize si = si {ae = normalize $ ae si}
instance Normalizable AxiomEnv where
normalize aenv = aenv { aenvEqs = mytracepp "aenvEqs" (normalize <$> aenvEqs aenv)
, aenvSimpl = mytracepp "aenvSimpl" (normalize <$> aenvSimpl aenv) }
instance Normalizable Rewrite where
normalize rw = rw { smArgs = xs', smBody = normalizeBody (smName rw) $ subst su $ smBody rw }
where
su = mkSubst $ zipWith (\x y -> (x,EVar y)) xs xs'
xs = smArgs rw
xs' = zipWith mkSymbol xs [0..]
mkSymbol x i = x `suffixSymbol` intSymbol (smName rw) i
instance Normalizable Equation where
normalize eq = eq {eqArgs = zip xs' ss, eqBody = normalizeBody (eqName eq) $ subst su $ eqBody eq }
where
su = mkSubst $ zipWith (\x y -> (x,EVar y)) xs xs'
(xs,ss) = unzip (eqArgs eq)
xs' = zipWith mkSymbol xs [0..]
mkSymbol x i = x `suffixSymbol` intSymbol (eqName eq) i
normalizeBody :: Symbol -> Expr -> Expr
normalizeBody f = go
where
go e
| any (== f) (syms e)
= go' e
go e
= e
go' (PAnd [PImp c e1,PImp (PNot c') e2])
| c == c' = EIte c e1 (go' e2)
go' e = e
_splitBranches :: Symbol -> Expr -> [(Expr, Expr)]
_splitBranches f = go
where
go (PAnd es)
| any (== f) (syms es)
= go' <$> es
go e
= [(PTrue, e)]
go' (PImp c e) = (c, e)
go' e = (PTrue, e)