{-# LANGUAGE GADTs #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE LinearTypes #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Replicator.Linear.Internal.ReplicationStream
( ReplicationStream (..),
consume,
duplicate,
map,
pure,
(<*>),
liftA2,
)
where
import Data.Unrestricted.Linear.Internal.Ur
import Prelude.Linear.Internal
data ReplicationStream a where
ReplicationStream ::
s %1 ->
(s %1 -> a) ->
(s %1 -> (s, s)) ->
(s %1 -> ()) ->
ReplicationStream a
consume :: ReplicationStream a %1 -> ()
consume :: forall a. ReplicationStream a %1 -> ()
consume (ReplicationStream s
s s %1 -> a
_ s %1 -> (s, s)
_ s %1 -> ()
consumes) = s %1 -> ()
consumes s
s
{-# INLINEABLE consume #-}
duplicate :: ReplicationStream a %1 -> ReplicationStream (ReplicationStream a)
duplicate :: forall a.
ReplicationStream a %1 -> ReplicationStream (ReplicationStream a)
duplicate (ReplicationStream s
s s %1 -> a
give s %1 -> (s, s)
dups s %1 -> ()
consumes) =
forall s a.
s
-> (s %1 -> a)
-> (s %1 -> (s, s))
-> (s %1 -> ())
-> ReplicationStream a
ReplicationStream
s
s
(\s
s' -> forall s a.
s
-> (s %1 -> a)
-> (s %1 -> (s, s))
-> (s %1 -> ())
-> ReplicationStream a
ReplicationStream s
s' s %1 -> a
give s %1 -> (s, s)
dups s %1 -> ()
consumes)
s %1 -> (s, s)
dups
s %1 -> ()
consumes
map :: (a %1 -> b) -> ReplicationStream a %1 -> ReplicationStream b
map :: forall a b.
(a %1 -> b) -> ReplicationStream a %1 -> ReplicationStream b
map a %1 -> b
f (ReplicationStream s
s s %1 -> a
give s %1 -> (s, s)
dups s %1 -> ()
consumes) =
forall s a.
s
-> (s %1 -> a)
-> (s %1 -> (s, s))
-> (s %1 -> ())
-> ReplicationStream a
ReplicationStream s
s (a %1 -> b
f forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. s %1 -> a
give) s %1 -> (s, s)
dups s %1 -> ()
consumes
pure :: a -> ReplicationStream a
pure :: forall a. a -> ReplicationStream a
pure a
x =
forall s a.
s
-> (s %1 -> a)
-> (s %1 -> (s, s))
-> (s %1 -> ())
-> ReplicationStream a
ReplicationStream
(forall a. a -> Ur a
Ur a
x)
forall a. Ur a %1 -> a
unur
( \case
Ur a
x' -> (forall a. a -> Ur a
Ur a
x', forall a. a -> Ur a
Ur a
x')
)
( \case
Ur a
_ -> ()
)
(<*>) :: ReplicationStream (a %1 -> b) %1 -> ReplicationStream a %1 -> ReplicationStream b
(ReplicationStream s
sf s %1 -> a %1 -> b
givef s %1 -> (s, s)
dupsf s %1 -> ()
consumesf) <*> :: forall a b.
ReplicationStream (a %1 -> b)
%1 -> ReplicationStream a %1 -> ReplicationStream b
<*> (ReplicationStream s
sx s %1 -> a
givex s %1 -> (s, s)
dupsx s %1 -> ()
consumesx) =
forall s a.
s
-> (s %1 -> a)
-> (s %1 -> (s, s))
-> (s %1 -> ())
-> ReplicationStream a
ReplicationStream
(s
sf, s
sx)
(\(s
sf', s
sx') -> s %1 -> a %1 -> b
givef s
sf' (s %1 -> a
givex s
sx'))
( \(s
sf', s
sx') ->
(s %1 -> (s, s)
dupsf s
sf', s %1 -> (s, s)
dupsx s
sx') forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
((s
sf1, s
sf2), (s
sx1, s
sx2)) -> ((s
sf1, s
sx1), (s
sf2, s
sx2))
)
( \(s
sf', s
sx') ->
s %1 -> ()
consumesf s
sf' forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
() -> s %1 -> ()
consumesx s
sx'
)
liftA2 :: (a %1 -> b %1 -> c) -> ReplicationStream a %1 -> ReplicationStream b %1 -> ReplicationStream c
liftA2 :: forall a b c.
(a %1 -> b %1 -> c)
-> ReplicationStream a
%1 -> ReplicationStream b
%1 -> ReplicationStream c
liftA2 a %1 -> b %1 -> c
f (ReplicationStream s
sa s %1 -> a
givea s %1 -> (s, s)
dupsa s %1 -> ()
consumesa) (ReplicationStream s
sb s %1 -> b
giveb s %1 -> (s, s)
dupsb s %1 -> ()
consumesb) =
forall s a.
s
-> (s %1 -> a)
-> (s %1 -> (s, s))
-> (s %1 -> ())
-> ReplicationStream a
ReplicationStream
(s
sa, s
sb)
(\(s
sa', s
sb') -> a %1 -> b %1 -> c
f (s %1 -> a
givea s
sa') (s %1 -> b
giveb s
sb'))
( \(s
sa', s
sb') ->
(s %1 -> (s, s)
dupsa s
sa', s %1 -> (s, s)
dupsb s
sb') forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
((s
sa1, s
sa2), (s
sb1, s
sb2)) -> ((s
sa1, s
sb1), (s
sa2, s
sb2))
)
( \(s
sa', s
sb') ->
s %1 -> ()
consumesa s
sa' forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
() -> s %1 -> ()
consumesb s
sb'
)
{-# INLINE liftA2 #-}
infixl 4 <*>