{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE LinearTypes #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Ord.Linear.Internal.Eq
( Eq (..),
)
where
import Data.Bool.Linear
import Data.Int (Int16, Int32, Int64, Int8)
import Data.Unrestricted.Linear
import Data.Word (Word16, Word32, Word64, Word8)
import Prelude.Linear.Internal
import qualified Prelude
class Eq a where
{-# MINIMAL (==) | (/=) #-}
(==) :: a %1 -> a %1 -> Bool
a
x == a
y = Bool %1 -> Bool
not (a
x forall a. Eq a => a %1 -> a %1 -> Bool
/= a
y)
infix 4 ==
(/=) :: a %1 -> a %1 -> Bool
a
x /= a
y = Bool %1 -> Bool
not (a
x forall a. Eq a => a %1 -> a %1 -> Bool
== a
y)
infix 4 /=
instance (Prelude.Eq a) => Eq (Ur a) where
Ur a
x == :: Ur a %1 -> Ur a %1 -> Bool
== Ur a
y = a
x forall a. Eq a => a -> a -> Bool
Prelude.== a
y
Ur a
x /= :: Ur a %1 -> Ur a %1 -> Bool
/= Ur a
y = a
x forall a. Eq a => a -> a -> Bool
Prelude./= a
y
instance (Consumable a, Eq a) => Eq [a] where
[] == :: [a] %1 -> [a] %1 -> Bool
== [] = Bool
True
(a
x : [a]
xs) == (a
y : [a]
ys) = a
x forall a. Eq a => a %1 -> a %1 -> Bool
== a
y Bool %1 -> Bool %1 -> Bool
&& [a]
xs forall a. Eq a => a %1 -> a %1 -> Bool
== [a]
ys
[a]
xs == [a]
ys = ([a]
xs, [a]
ys) forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Bool
False
instance (Consumable a, Eq a) => Eq (Prelude.Maybe a) where
Maybe a
Prelude.Nothing == :: Maybe a %1 -> Maybe a %1 -> Bool
== Maybe a
Prelude.Nothing = Bool
True
Prelude.Just a
x == Prelude.Just a
y = a
x forall a. Eq a => a %1 -> a %1 -> Bool
== a
y
Maybe a
x == Maybe a
y = (Maybe a
x, Maybe a
y) forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Bool
False
instance
(Consumable a, Consumable b, Eq a, Eq b) =>
Eq (Prelude.Either a b)
where
Prelude.Left a
x == :: Either a b %1 -> Either a b %1 -> Bool
== Prelude.Left a
y = a
x forall a. Eq a => a %1 -> a %1 -> Bool
== a
y
Prelude.Right b
x == Prelude.Right b
y = b
x forall a. Eq a => a %1 -> a %1 -> Bool
== b
y
Either a b
x == Either a b
y = (Either a b
x, Either a b
y) forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Bool
False
instance (Eq a, Eq b) => Eq (a, b) where
(a
a, b
b) == :: (a, b) %1 -> (a, b) %1 -> Bool
== (a
a', b
b') =
a
a forall a. Eq a => a %1 -> a %1 -> Bool
== a
a' Bool %1 -> Bool %1 -> Bool
&& b
b forall a. Eq a => a %1 -> a %1 -> Bool
== b
b'
instance (Eq a, Eq b, Eq c) => Eq (a, b, c) where
(a
a, b
b, c
c) == :: (a, b, c) %1 -> (a, b, c) %1 -> Bool
== (a
a', b
b', c
c') =
a
a forall a. Eq a => a %1 -> a %1 -> Bool
== a
a' Bool %1 -> Bool %1 -> Bool
&& b
b forall a. Eq a => a %1 -> a %1 -> Bool
== b
b' Bool %1 -> Bool %1 -> Bool
&& c
c forall a. Eq a => a %1 -> a %1 -> Bool
== c
c'
instance (Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) where
(a
a, b
b, c
c, d
d) == :: (a, b, c, d) %1 -> (a, b, c, d) %1 -> Bool
== (a
a', b
b', c
c', d
d') =
a
a forall a. Eq a => a %1 -> a %1 -> Bool
== a
a' Bool %1 -> Bool %1 -> Bool
&& b
b forall a. Eq a => a %1 -> a %1 -> Bool
== b
b' Bool %1 -> Bool %1 -> Bool
&& c
c forall a. Eq a => a %1 -> a %1 -> Bool
== c
c' Bool %1 -> Bool %1 -> Bool
&& d
d forall a. Eq a => a %1 -> a %1 -> Bool
== d
d'
deriving via MovableEq () instance Eq ()
deriving via MovableEq Prelude.Int instance Eq Prelude.Int
deriving via MovableEq Prelude.Double instance Eq Prelude.Double
deriving via MovableEq Prelude.Bool instance Eq Prelude.Bool
deriving via MovableEq Prelude.Char instance Eq Prelude.Char
deriving via MovableEq Prelude.Ordering instance Eq Prelude.Ordering
deriving via MovableEq Int16 instance Eq Int16
deriving via MovableEq Int32 instance Eq Int32
deriving via MovableEq Int64 instance Eq Int64
deriving via MovableEq Int8 instance Eq Int8
deriving via MovableEq Word16 instance Eq Word16
deriving via MovableEq Word32 instance Eq Word32
deriving via MovableEq Word64 instance Eq Word64
deriving via MovableEq Word8 instance Eq Word8
newtype MovableEq a = MovableEq a
instance (Prelude.Eq a, Movable a) => Eq (MovableEq a) where
MovableEq a
ar == :: MovableEq a %1 -> MovableEq a %1 -> Bool
== MovableEq a
br =
forall a. Movable a => a %1 -> Ur a
move (a
ar, a
br) forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(Ur (a
a, a
b)) ->
a
a forall a. Eq a => a -> a -> Bool
Prelude.== a
b
MovableEq a
ar /= :: MovableEq a %1 -> MovableEq a %1 -> Bool
/= MovableEq a
br =
forall a. Movable a => a %1 -> Ur a
move (a
ar, a
br) forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \(Ur (a
a, a
b)) ->
a
a forall a. Eq a => a -> a -> Bool
Prelude./= a
b