{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE LinearTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Functor.Linear.Internal.Functor
( Functor (..),
(<$>),
(<$),
void,
)
where
import qualified Control.Monad.Trans.Cont as NonLinear
import qualified Control.Monad.Trans.Except as NonLinear
import qualified Control.Monad.Trans.Maybe as NonLinear
import qualified Control.Monad.Trans.Reader as NonLinear
import qualified Control.Monad.Trans.State.Strict as Strict
import Data.Functor.Compose
import Data.Functor.Const
import Data.Functor.Identity
import Data.Functor.Product
import Data.Functor.Sum
import Data.Kind (FUN)
import Data.Unrestricted.Linear.Internal.Consumable
import Data.Unrestricted.Linear.Internal.Ur
import GHC.Types (Multiplicity (..))
import Generics.Linear
import Prelude.Linear.Generically
import Prelude.Linear.Internal
import Prelude (Either (..), Maybe (..))
class Functor f where
fmap :: (a %1 -> b) -> f a %1 -> f b
(<$>) :: (Functor f) => (a %1 -> b) -> f a %1 -> f b
<$> :: forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
(<$>) = forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap
infixl 4 <$>
(<$) :: (Functor f, Consumable b) => a -> f b %1 -> f a
a
a <$ :: forall (f :: * -> *) b a.
(Functor f, Consumable b) =>
a -> f b %1 -> f a
<$ f b
fb = forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap (forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` a
a) f b
fb
infixl 4 <$
void :: (Functor f, Consumable a) => f a %1 -> f ()
void :: forall (f :: * -> *) a. (Functor f, Consumable a) => f a %1 -> f ()
void = forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap forall a. Consumable a => a %1 -> ()
consume
instance Functor [] where
fmap :: forall a b. (a %1 -> b) -> [a] %1 -> [b]
fmap (a %1 -> b
f :: a %1 -> b) = [a] %1 -> [b]
go
where
go :: [a] %1 -> [b]
go :: [a] %1 -> [b]
go [] = []
go (a
a : [a]
as) = a %1 -> b
f a
a forall a. a -> [a] -> [a]
: [a] %1 -> [b]
go [a]
as
deriving via
Generically1 (Const x)
instance
Functor (Const x)
deriving via
Generically1 Maybe
instance
Functor Maybe
deriving via
Generically1 (Either e)
instance
Functor (Either e)
deriving via
Generically1 ((,) a)
instance
Functor ((,) a)
deriving via
Generically1 ((,,) a b)
instance
Functor ((,,) a b)
deriving via
Generically1 ((,,,) a b c)
instance
Functor ((,,,) a b c)
deriving via
Generically1 ((,,,,) a b c d)
instance
Functor ((,,,,) a b c d)
deriving via
Generically1 Identity
instance
Functor Identity
instance (Functor f, Functor g) => Functor (Sum f g) where
fmap :: forall a b. (a %1 -> b) -> Sum f g a %1 -> Sum f g b
fmap a %1 -> b
f (InL f a
fa) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f f a
fa)
fmap a %1 -> b
f (InR g a
ga) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f g a
ga)
instance (Functor f, Functor g) => Functor (Product f g) where
fmap :: forall a b. (a %1 -> b) -> Product f g a %1 -> Product f g b
fmap a %1 -> b
f (Pair f a
fa g a
ga) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f f a
fa) (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f g a
ga)
instance (Functor f, Functor g) => Functor (Compose f g) where
fmap :: forall a b. (a %1 -> b) -> Compose f g a %1 -> Compose f g b
fmap a %1 -> b
f (Compose f (g a)
x) = forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f) f (g a)
x)
instance Functor Ur where
fmap :: forall a b. (a %1 -> b) -> Ur a %1 -> Ur b
fmap a %1 -> b
f (Ur a
a) = forall a. a -> Ur a
Ur (a %1 -> b
f a
a)
instance Functor (FUN 'One a) where
fmap :: forall a b. (a %1 -> b) -> (a %1 -> a) %1 -> a %1 -> b
fmap = forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
(.)
instance (Functor m) => Functor (NonLinear.ReaderT r m) where
fmap :: forall a b. (a %1 -> b) -> ReaderT r m a %1 -> ReaderT r m b
fmap a %1 -> b
f (NonLinear.ReaderT r -> m a
g) = forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
NonLinear.ReaderT (\r
r -> forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f (r -> m a
g r
r))
instance (Functor m) => Functor (NonLinear.MaybeT m) where
fmap :: forall a b. (a %1 -> b) -> MaybeT m a %1 -> MaybeT m b
fmap a %1 -> b
f (NonLinear.MaybeT m (Maybe a)
x) = forall (m :: * -> *) a. m (Maybe a) -> MaybeT m a
NonLinear.MaybeT forall a b (p :: Multiplicity) (q :: Multiplicity).
(a %p -> b) %q -> a %p -> b
$ forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f) m (Maybe a)
x
instance (Functor m) => Functor (NonLinear.ExceptT e m) where
fmap :: forall a b. (a %1 -> b) -> ExceptT e m a %1 -> ExceptT e m b
fmap a %1 -> b
f (NonLinear.ExceptT m (Either e a)
x) = forall e (m :: * -> *) a. m (Either e a) -> ExceptT e m a
NonLinear.ExceptT forall a b (p :: Multiplicity) (q :: Multiplicity).
(a %p -> b) %q -> a %p -> b
$ forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f) m (Either e a)
x
instance Functor (NonLinear.ContT r m) where
fmap :: forall a b. (a %1 -> b) -> ContT r m a %1 -> ContT r m b
fmap a %1 -> b
f (NonLinear.ContT (a -> m r) -> m r
x) = forall {k} (r :: k) (m :: k -> *) a.
((a -> m r) -> m r) -> ContT r m a
NonLinear.ContT forall a b (p :: Multiplicity) (q :: Multiplicity).
(a %p -> b) %q -> a %p -> b
$ \b -> m r
k -> (a -> m r) -> m r
x (\a
a -> b -> m r
k (a %1 -> b
f a
a))
instance (Functor m) => Functor (Strict.StateT s m) where
fmap :: forall a b. (a %1 -> b) -> StateT s m a %1 -> StateT s m b
fmap a %1 -> b
f (Strict.StateT s -> m (a, s)
x) = forall s (m :: * -> *) a. (s -> m (a, s)) -> StateT s m a
Strict.StateT (\s
s -> forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap (\(a
a, s
s') -> (a %1 -> b
f a
a, s
s')) (s -> m (a, s)
x s
s))
instance (Generic1 f, Functor (Rep1 f)) => Functor (Generically1 f) where
fmap :: forall a b. (a %1 -> b) -> Generically1 f a %1 -> Generically1 f b
fmap a %1 -> b
f = forall (f :: * -> *) a. f a -> Generically1 f a
Generically1 forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. forall {k} (f :: k -> *) (p :: k) (m :: Multiplicity).
Generic1 f =>
Rep1 f p %m -> f p
to1 forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. forall {k} (f :: k -> *) (p :: k) (m :: Multiplicity).
Generic1 f =>
f p %m -> Rep1 f p
from1 forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. forall (f :: * -> *) a. Generically1 f a %1 -> f a
unGenerically1
instance Functor U1 where
fmap :: forall a b. (a %1 -> b) -> U1 a %1 -> U1 b
fmap a %1 -> b
_ U1 a
U1 = forall k (p :: k). U1 p
U1
instance Functor V1 where
fmap :: forall a b. (a %1 -> b) -> V1 a %1 -> V1 b
fmap a %1 -> b
_ = \case {}
instance (Functor f, Functor g) => Functor (f :*: g) where
fmap :: forall a b. (a %1 -> b) -> (:*:) f g a %1 -> (:*:) f g b
fmap a %1 -> b
f (f a
l :*: g a
r) = forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f f a
l forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f g a
r
instance (Functor f, Functor g) => Functor (f :+: g) where
fmap :: forall a b. (a %1 -> b) -> (:+:) f g a %1 -> (:+:) f g b
fmap a %1 -> b
f (L1 f a
a) = forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1 (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f f a
a)
fmap a %1 -> b
f (R1 g a
a) = forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1 (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f g a
a)
instance Functor (K1 i v) where
fmap :: forall a b. (a %1 -> b) -> K1 i v a %1 -> K1 i v b
fmap a %1 -> b
_ (K1 v
c) = forall k i c (p :: k). c -> K1 i c p
K1 v
c
instance (Functor f) => Functor (M1 i c f) where
fmap :: forall a b. (a %1 -> b) -> M1 i c f a %1 -> M1 i c f b
fmap a %1 -> b
f (M1 f a
a) = forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1 (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f f a
a)
instance Functor Par1 where
fmap :: forall a b. (a %1 -> b) -> Par1 a %1 -> Par1 b
fmap a %1 -> b
f (Par1 a
a) = forall p. p -> Par1 p
Par1 (a %1 -> b
f a
a)
instance (Functor f, Functor g) => Functor (f :.: g) where
fmap :: forall a b. (a %1 -> b) -> (:.:) f g a %1 -> (:.:) f g b
fmap a %1 -> b
f (Comp1 f (g a)
a) = forall k2 k1 (f :: k2 -> *) (g :: k1 -> k2) (x :: k1).
f (g x) -> (:.:) f g x
Comp1 (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f) f (g a)
a)
instance (Functor f) => Functor (MP1 m f) where
fmap :: forall a b. (a %1 -> b) -> MP1 m f a %1 -> MP1 m f b
fmap a %1 -> b
f (MP1 f a
x) = forall {k} (b :: k -> *) (c :: k) (a :: Multiplicity).
b c %a -> MP1 a b c
MP1 (forall (f :: * -> *) a b. Functor f => (a %1 -> b) -> f a %1 -> f b
fmap a %1 -> b
f f a
x)
instance Functor UAddr where
fmap :: forall a b. (a %1 -> b) -> UAddr a %1 -> UAddr b
fmap a %1 -> b
_ (UAddr Addr#
c) = forall k (p :: k). Addr# -> URec (Ptr ()) p
UAddr Addr#
c
instance Functor UChar where
fmap :: forall a b. (a %1 -> b) -> UChar a %1 -> UChar b
fmap a %1 -> b
_ (UChar Char#
c) = forall k (p :: k). Char# -> URec Char p
UChar Char#
c
instance Functor UDouble where
fmap :: forall a b. (a %1 -> b) -> UDouble a %1 -> UDouble b
fmap a %1 -> b
_ (UDouble Double#
c) = forall k (p :: k). Double# -> URec Double p
UDouble Double#
c
instance Functor UFloat where
fmap :: forall a b. (a %1 -> b) -> UFloat a %1 -> UFloat b
fmap a %1 -> b
_ (UFloat Float#
c) = forall k (p :: k). Float# -> URec Float p
UFloat Float#
c
instance Functor UInt where
fmap :: forall a b. (a %1 -> b) -> UInt a %1 -> UInt b
fmap a %1 -> b
_ (UInt Int#
c) = forall k (p :: k). Int# -> URec Int p
UInt Int#
c
instance Functor UWord where
fmap :: forall a b. (a %1 -> b) -> UWord a %1 -> UWord b
fmap a %1 -> b
_ (UWord Word#
c) = forall k (p :: k). Word# -> URec Word p
UWord Word#
c