Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
This module provides linear prisms.
A Prism s t a b
is equivalent to (s %1-> Either a t, b %1-> t)
for some
sum type s
. In the non-polymorphic version, this is a (s %1-> Either a
s, a %1-> s)
which represents taking one case of a sum type and a way to
build the sum-type given that one case. A prism is a traversal focusing on
one branch or case that a sum type could be.
Example
{-# LANGUAGE LinearTypes #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE GADTs #-}
import Control.Optics.Linear.Internal
import Prelude.Linear
import qualified Data.Functor.Linear as Data
-- We can use a prism to do operations on one branch of a sum-type
-- (This is a bit of a toy example since we could use over
for this.)
formatLicenceName :: PersonId %1-> PersonId
formatLicenceName personId =
Data.fmap modLisc (match pIdLiscPrism personId) & case
Left personId' -> personId'
Right lisc -> build pIdLiscPrism lisc
where
modLisc :: Licence %1-> Licence
modLisc (Licence nm x) = Licence (nm ++ "n") x
data PersonId where
IdLicence :: Licence %1-> PersonId
SSN :: Int %1-> PersonId
BirthCertif :: String %1-> PersonId
-- And there could be many more constructors ...
-- A Licence is a name and number
data Licence = Licence String Int
pIdLiscPrism :: Prism' PersonId Licence
pIdLiscPrism = prism IdLicence decompose where
decompose :: PersonId %1-> Either PersonId Licence
decompose (IdLicence l) = Right l
decompose x = Left x
Synopsis
- type Prism s t a b = Optic (Strong Either Void) s t a b
- type Prism' s a = Prism s s a a
- (.>) :: Optic_ arr s t a b -> Optic_ arr a b x y -> Optic_ arr s t x y
- _Left :: Prism (Either a c) (Either b c) a b
- _Right :: Prism (Either c a) (Either c b) a b
- _Just :: Prism (Maybe a) (Maybe b) a b
- _Nothing :: Prism' (Maybe a) ()
- match :: Optic_ (Market a b) s t a b -> s %1 -> Either t a
- build :: Optic_ (CoKleisli (Const b)) s t a b -> b %1 -> t
- withPrism :: Optic_ (Market a b) s t a b -> ((b %1 -> t) -> (s %1 -> Either t a) -> r) -> r
- prism :: (b %1 -> t) -> (s %1 -> Either t a) -> Prism s t a b
Types
Composing optics
Common optics
Using optics
withPrism :: Optic_ (Market a b) s t a b -> ((b %1 -> t) -> (s %1 -> Either t a) -> r) -> r Source #