{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DerivingVia #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE LinearTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# OPTIONS_HADDOCK hide #-}
module Data.Monoid.Linear.Internal.Semigroup
(
Semigroup (..),
Endo (..),
appEndo,
NonLinear (..),
All (..),
Any (..),
First (..),
Last (..),
Dual (..),
Sum (..),
Product (..),
)
where
import qualified Data.Functor.Compose as Functor
import Data.Functor.Const (Const (..))
import Data.Functor.Identity (Identity (..))
import qualified Data.Functor.Product as Functor
import qualified Data.Monoid as Monoid
import Data.Ord (Down (..))
import Data.Proxy (Proxy (..))
import Data.Semigroup
( All (..),
Any (..),
Dual (..),
First (..),
Last (..),
Product (..),
Sum (..),
)
import qualified Data.Semigroup as Prelude
import Data.Unrestricted.Linear.Internal.Consumable (Consumable, lseq)
import Data.Void (Void)
import GHC.Tuple
import GHC.Types hiding (Any)
import Prelude.Linear.Internal
import Prelude (Either (..), Maybe (..))
class Semigroup a where
(<>) :: a %1 -> a %1 -> a
infixr 6 <>
newtype Endo a = Endo (a %1 -> a)
deriving (NonEmpty (Endo a) -> Endo a
Endo a -> Endo a -> Endo a
(Endo a -> Endo a -> Endo a)
-> (NonEmpty (Endo a) -> Endo a)
-> (forall b. Integral b => b -> Endo a -> Endo a)
-> Semigroup (Endo a)
forall b. Integral b => b -> Endo a -> Endo a
forall a. NonEmpty (Endo a) -> Endo a
forall a. Endo a -> Endo a -> Endo a
forall a.
(a -> a -> a)
-> (NonEmpty a -> a)
-> (forall b. Integral b => b -> a -> a)
-> Semigroup a
forall a b. Integral b => b -> Endo a -> Endo a
stimes :: forall b. Integral b => b -> Endo a -> Endo a
$cstimes :: forall a b. Integral b => b -> Endo a -> Endo a
sconcat :: NonEmpty (Endo a) -> Endo a
$csconcat :: forall a. NonEmpty (Endo a) -> Endo a
<> :: Endo a -> Endo a -> Endo a
$c<> :: forall a. Endo a -> Endo a -> Endo a
Prelude.Semigroup) via NonLinear (Endo a)
appEndo :: Endo a %1 -> a %1 -> a
appEndo :: forall a. Endo a %1 -> a %1 -> a
appEndo (Endo a %1 -> a
f) = a %1 -> a
f
newtype NonLinear a = NonLinear a
instance Semigroup a => Prelude.Semigroup (NonLinear a) where
NonLinear a
a <> :: NonLinear a -> NonLinear a -> NonLinear a
<> NonLinear a
b = a -> NonLinear a
forall a. a -> NonLinear a
NonLinear (a
a a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
b)
instance Semigroup All where
All Bool
False <> :: All %1 -> All %1 -> All
<> All Bool
False = Bool -> All
All Bool
False
All Bool
False <> All Bool
True = Bool -> All
All Bool
False
All Bool
True <> All Bool
False = Bool -> All
All Bool
False
All Bool
True <> All Bool
True = Bool -> All
All Bool
True
instance Semigroup Any where
Any Bool
False <> :: Any %1 -> Any %1 -> Any
<> Any Bool
False = Bool -> Any
Any Bool
False
Any Bool
False <> Any Bool
True = Bool -> Any
Any Bool
True
Any Bool
True <> Any Bool
False = Bool -> Any
Any Bool
True
Any Bool
True <> Any Bool
True = Bool -> Any
Any Bool
True
instance Semigroup Void where
<> :: Void %1 -> Void %1 -> Void
(<>) = \case {}
instance Semigroup Ordering where
Ordering
LT <> :: Ordering %1 -> Ordering %1 -> Ordering
<> Ordering
LT = Ordering
LT
Ordering
LT <> Ordering
GT = Ordering
LT
Ordering
LT <> Ordering
EQ = Ordering
LT
Ordering
EQ <> Ordering
y = Ordering
y
Ordering
GT <> Ordering
LT = Ordering
GT
Ordering
GT <> Ordering
GT = Ordering
GT
Ordering
GT <> Ordering
EQ = Ordering
GT
instance Semigroup () where
() <> :: () %1 -> () %1 -> ()
<> () = ()
instance Semigroup a => Semigroup (Identity a) where
Identity a
x <> :: Identity a %1 -> Identity a %1 -> Identity a
<> Identity a
y = a %1 -> Identity a
forall a. a -> Identity a
Identity (a
x a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y)
instance Consumable a => Semigroup (Monoid.First a) where
(Monoid.First Maybe a
Nothing) <> :: First a %1 -> First a %1 -> First a
<> First a
y = First a
y
First a
x <> (Monoid.First Maybe a
y) =
Maybe a
y Maybe a %1 -> (Maybe a %1 -> First a) %1 -> First a
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
Maybe a
Nothing -> First a
x
Just a
y' -> a
y' a %1 -> First a %1 -> First a
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` First a
x
instance Consumable a => Semigroup (Monoid.Last a) where
Last a
x <> :: Last a %1 -> Last a %1 -> Last a
<> (Monoid.Last Maybe a
Nothing) = Last a
x
(Monoid.Last Maybe a
x) <> Last a
y =
Maybe a
x Maybe a %1 -> (Maybe a %1 -> Last a) %1 -> Last a
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
Maybe a
Nothing -> Last a
y
Just a
x' -> a
x' a %1 -> Last a %1 -> Last a
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Last a
y
instance Semigroup a => Semigroup (Down a) where
(Down a
x) <> :: Down a %1 -> Down a %1 -> Down a
<> (Down a
y) = a %1 -> Down a
forall a. a -> Down a
Down (a
x a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y)
instance Consumable a => Semigroup (First a) where
First a
x <> :: First a %1 -> First a %1 -> First a
<> (First a
y) = a
y a %1 -> First a %1 -> First a
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` First a
x
instance Consumable a => Semigroup (Last a) where
(Last a
x) <> :: Last a %1 -> Last a %1 -> Last a
<> Last a
y = a
x a %1 -> Last a %1 -> Last a
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Last a
y
instance Semigroup a => Semigroup (Dual a) where
Dual a
x <> :: Dual a %1 -> Dual a %1 -> Dual a
<> Dual a
y = a %1 -> Dual a
forall a. a -> Dual a
Dual (a
y a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
x)
instance Semigroup (Endo a) where
Endo a %1 -> a
f <> :: Endo a %1 -> Endo a %1 -> Endo a
<> Endo a %1 -> a
g = (a %1 -> a) %1 -> Endo a
forall a. (a %1 -> a) -> Endo a
Endo (a %1 -> a
f (a %1 -> a) %1 -> (a %1 -> a) %1 -> a %1 -> a
forall b c a (q :: Multiplicity) (m :: Multiplicity)
(n :: Multiplicity).
(b %1 -> c) %q -> (a %1 -> b) %m -> a %n -> c
. a %1 -> a
g)
instance Semigroup a => Semigroup (Maybe a) where
Maybe a
x <> :: Maybe a %1 -> Maybe a %1 -> Maybe a
<> Maybe a
Nothing = Maybe a
x
Maybe a
Nothing <> Maybe a
y = Maybe a
y
Just a
x <> Just a
y = a %1 -> Maybe a
forall a. a -> Maybe a
Just (a
x a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y)
instance Semigroup a => Semigroup (Solo a) where
Solo a
x <> :: Solo a %1 -> Solo a %1 -> Solo a
<> Solo a
y = a %1 -> Solo a
forall a. a -> Solo a
Solo (a
x a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y)
instance (Consumable a, Consumable b) => Semigroup (Either a b) where
Left a
x <> :: Either a b %1 -> Either a b %1 -> Either a b
<> Either a b
y = a
x a %1 -> Either a b %1 -> Either a b
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Either a b
y
Either a b
x <> Either a b
y =
Either a b
y Either a b %1 -> (Either a b %1 -> Either a b) %1 -> Either a b
forall a b (p :: Multiplicity) (q :: Multiplicity).
a %p -> (a %p -> b) %q -> b
& \case
Left a
y' -> a
y' a %1 -> Either a b %1 -> Either a b
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Either a b
x
Right b
y' -> b
y' b %1 -> Either a b %1 -> Either a b
forall a b. Consumable a => a %1 -> b %1 -> b
`lseq` Either a b
x
instance Semigroup (Proxy a) where
Proxy a
Proxy <> :: Proxy a %1 -> Proxy a %1 -> Proxy a
<> Proxy a
Proxy = Proxy a
forall {k} (t :: k). Proxy t
Proxy
instance (Semigroup a, Semigroup b) => Semigroup (a, b) where
(a
x1, b
x2) <> :: (a, b) %1 -> (a, b) %1 -> (a, b)
<> (a
y1, b
y2) = (a
x1 a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y1, b
x2 b %1 -> b %1 -> b
forall a. Semigroup a => a %1 -> a %1 -> a
<> b
y2)
instance Semigroup a => Semigroup (Const a b) where
Const a
x <> :: Const a b %1 -> Const a b %1 -> Const a b
<> Const a
y = a %1 -> Const a b
forall {k} a (b :: k). a -> Const a b
Const (a
x a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y)
instance (Semigroup a, Semigroup b, Semigroup c) => Semigroup (a, b, c) where
(a
x1, b
x2, c
x3) <> :: (a, b, c) %1 -> (a, b, c) %1 -> (a, b, c)
<> (a
y1, b
y2, c
y3) = (a
x1 a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y1, b
x2 b %1 -> b %1 -> b
forall a. Semigroup a => a %1 -> a %1 -> a
<> b
y2, c
x3 c %1 -> c %1 -> c
forall a. Semigroup a => a %1 -> a %1 -> a
<> c
y3)
instance (Semigroup (f a), Semigroup (g a)) => Semigroup (Functor.Product f g a) where
Functor.Pair f a
x1 g a
x2 <> :: Product f g a %1 -> Product f g a %1 -> Product f g a
<> Functor.Pair f a
y1 g a
y2 = f a %1 -> g a %1 -> Product f g a
forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Functor.Pair (f a
x1 f a %1 -> f a %1 -> f a
forall a. Semigroup a => a %1 -> a %1 -> a
<> f a
y1) (g a
x2 g a %1 -> g a %1 -> g a
forall a. Semigroup a => a %1 -> a %1 -> a
<> g a
y2)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d) => Semigroup (a, b, c, d) where
(a
x1, b
x2, c
x3, d
x4) <> :: (a, b, c, d) %1 -> (a, b, c, d) %1 -> (a, b, c, d)
<> (a
y1, b
y2, c
y3, d
y4) = (a
x1 a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y1, b
x2 b %1 -> b %1 -> b
forall a. Semigroup a => a %1 -> a %1 -> a
<> b
y2, c
x3 c %1 -> c %1 -> c
forall a. Semigroup a => a %1 -> a %1 -> a
<> c
y3, d
x4 d %1 -> d %1 -> d
forall a. Semigroup a => a %1 -> a %1 -> a
<> d
y4)
instance (Semigroup (f (g a))) => Semigroup (Functor.Compose f g a) where
Functor.Compose f (g a)
x <> :: Compose f g a %1 -> Compose f g a %1 -> Compose f g a
<> Functor.Compose f (g a)
y = f (g a) %1 -> Compose f g a
forall {k} {k1} (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Functor.Compose (f (g a)
x f (g a) %1 -> f (g a) %1 -> f (g a)
forall a. Semigroup a => a %1 -> a %1 -> a
<> f (g a)
y)
instance (Semigroup a, Semigroup b, Semigroup c, Semigroup d, Semigroup e) => Semigroup (a, b, c, d, e) where
(a
x1, b
x2, c
x3, d
x4, e
x5) <> :: (a, b, c, d, e) %1 -> (a, b, c, d, e) %1 -> (a, b, c, d, e)
<> (a
y1, b
y2, c
y3, d
y4, e
y5) = (a
x1 a %1 -> a %1 -> a
forall a. Semigroup a => a %1 -> a %1 -> a
<> a
y1, b
x2 b %1 -> b %1 -> b
forall a. Semigroup a => a %1 -> a %1 -> a
<> b
y2, c
x3 c %1 -> c %1 -> c
forall a. Semigroup a => a %1 -> a %1 -> a
<> c
y3, d
x4 d %1 -> d %1 -> d
forall a. Semigroup a => a %1 -> a %1 -> a
<> d
y4, e
x5 e %1 -> e %1 -> e
forall a. Semigroup a => a %1 -> a %1 -> a
<> e
y5)