linear-1.22: Linear Algebra
Copyright(C) 2012-2015 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityexperimental
Portabilitynon-portable
Safe HaskellTrustworthy
LanguageHaskell2010

Linear.V

Description

n-D Vectors

Synopsis

Documentation

newtype V n a Source #

Constructors

V 

Fields

Instances

Instances details
FoldableWithIndex Int (V n) Source # 
Instance details

Defined in Linear.V

Methods

ifoldMap :: Monoid m => (Int -> a -> m) -> V n a -> m #

ifoldMap' :: Monoid m => (Int -> a -> m) -> V n a -> m #

ifoldr :: (Int -> a -> b -> b) -> b -> V n a -> b #

ifoldl :: (Int -> b -> a -> b) -> b -> V n a -> b #

ifoldr' :: (Int -> a -> b -> b) -> b -> V n a -> b #

ifoldl' :: (Int -> b -> a -> b) -> b -> V n a -> b #

FunctorWithIndex Int (V n) Source # 
Instance details

Defined in Linear.V

Methods

imap :: (Int -> a -> b) -> V n a -> V n b #

TraversableWithIndex Int (V n) Source # 
Instance details

Defined in Linear.V

Methods

itraverse :: Applicative f => (Int -> a -> f b) -> V n a -> f (V n b) #

(Dim n, Unbox a) => Vector Vector (V n a) Source # 
Instance details

Defined in Linear.V

Methods

basicUnsafeFreeze :: Mutable Vector s (V n a) -> ST s (Vector (V n a)) #

basicUnsafeThaw :: Vector (V n a) -> ST s (Mutable Vector s (V n a)) #

basicLength :: Vector (V n a) -> Int #

basicUnsafeSlice :: Int -> Int -> Vector (V n a) -> Vector (V n a) #

basicUnsafeIndexM :: Vector (V n a) -> Int -> Box (V n a) #

basicUnsafeCopy :: Mutable Vector s (V n a) -> Vector (V n a) -> ST s () #

elemseq :: Vector (V n a) -> V n a -> b -> b #

(Dim n, Unbox a) => MVector MVector (V n a) Source # 
Instance details

Defined in Linear.V

Methods

basicLength :: MVector s (V n a) -> Int #

basicUnsafeSlice :: Int -> Int -> MVector s (V n a) -> MVector s (V n a) #

basicOverlaps :: MVector s (V n a) -> MVector s (V n a) -> Bool #

basicUnsafeNew :: Int -> ST s (MVector s (V n a)) #

basicInitialize :: MVector s (V n a) -> ST s () #

basicUnsafeReplicate :: Int -> V n a -> ST s (MVector s (V n a)) #

basicUnsafeRead :: MVector s (V n a) -> Int -> ST s (V n a) #

basicUnsafeWrite :: MVector s (V n a) -> Int -> V n a -> ST s () #

basicClear :: MVector s (V n a) -> ST s () #

basicSet :: MVector s (V n a) -> V n a -> ST s () #

basicUnsafeCopy :: MVector s (V n a) -> MVector s (V n a) -> ST s () #

basicUnsafeMove :: MVector s (V n a) -> MVector s (V n a) -> ST s () #

basicUnsafeGrow :: MVector s (V n a) -> Int -> ST s (MVector s (V n a)) #

Generic1 (V n :: Type -> TYPE LiftedRep) Source # 
Instance details

Defined in Linear.V

Associated Types

type Rep1 (V n) :: k -> Type #

Methods

from1 :: forall (a :: k). V n a -> Rep1 (V n) a #

to1 :: forall (a :: k). Rep1 (V n) a -> V n a #

Dim n => Dim (V n a :: TYPE LiftedRep) Source # 
Instance details

Defined in Linear.V

Methods

reflectDim :: p (V n a) -> Int Source #

Dim n => Representable (V n) Source # 
Instance details

Defined in Linear.V

Associated Types

type Rep (V n) #

Methods

tabulate :: (Rep (V n) -> a) -> V n a #

index :: V n a -> Rep (V n) -> a #

Dim n => MonadFix (V n) Source # 
Instance details

Defined in Linear.V

Methods

mfix :: (a -> V n a) -> V n a #

Dim n => MonadZip (V n) Source # 
Instance details

Defined in Linear.V

Methods

mzip :: V n a -> V n b -> V n (a, b) #

mzipWith :: (a -> b -> c) -> V n a -> V n b -> V n c #

munzip :: V n (a, b) -> (V n a, V n b) #

Foldable (V n) Source # 
Instance details

Defined in Linear.V

Methods

fold :: Monoid m => V n m -> m #

foldMap :: Monoid m => (a -> m) -> V n a -> m #

foldMap' :: Monoid m => (a -> m) -> V n a -> m #

foldr :: (a -> b -> b) -> b -> V n a -> b #

foldr' :: (a -> b -> b) -> b -> V n a -> b #

foldl :: (b -> a -> b) -> b -> V n a -> b #

foldl' :: (b -> a -> b) -> b -> V n a -> b #

foldr1 :: (a -> a -> a) -> V n a -> a #

foldl1 :: (a -> a -> a) -> V n a -> a #

toList :: V n a -> [a] #

null :: V n a -> Bool #

length :: V n a -> Int #

elem :: Eq a => a -> V n a -> Bool #

maximum :: Ord a => V n a -> a #

minimum :: Ord a => V n a -> a #

sum :: Num a => V n a -> a #

product :: Num a => V n a -> a #

Eq1 (V n) Source # 
Instance details

Defined in Linear.V

Methods

liftEq :: (a -> b -> Bool) -> V n a -> V n b -> Bool #

Ord1 (V n) Source # 
Instance details

Defined in Linear.V

Methods

liftCompare :: (a -> b -> Ordering) -> V n a -> V n b -> Ordering #

Dim n => Read1 (V n) Source # 
Instance details

Defined in Linear.V

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (V n a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [V n a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (V n a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [V n a] #

Show1 (V n) Source # 
Instance details

Defined in Linear.V

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> V n a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [V n a] -> ShowS #

Traversable (V n) Source # 
Instance details

Defined in Linear.V

Methods

traverse :: Applicative f => (a -> f b) -> V n a -> f (V n b) #

sequenceA :: Applicative f => V n (f a) -> f (V n a) #

mapM :: Monad m => (a -> m b) -> V n a -> m (V n b) #

sequence :: Monad m => V n (m a) -> m (V n a) #

Dim n => Applicative (V n) Source # 
Instance details

Defined in Linear.V

Methods

pure :: a -> V n a #

(<*>) :: V n (a -> b) -> V n a -> V n b #

liftA2 :: (a -> b -> c) -> V n a -> V n b -> V n c #

(*>) :: V n a -> V n b -> V n b #

(<*) :: V n a -> V n b -> V n a #

Functor (V n) Source # 
Instance details

Defined in Linear.V

Methods

fmap :: (a -> b) -> V n a -> V n b #

(<$) :: a -> V n b -> V n a #

Dim n => Monad (V n) Source # 
Instance details

Defined in Linear.V

Methods

(>>=) :: V n a -> (a -> V n b) -> V n b #

(>>) :: V n a -> V n b -> V n b #

return :: a -> V n a #

Dim n => Serial1 (V n) Source # 
Instance details

Defined in Linear.V

Methods

serializeWith :: MonadPut m => (a -> m ()) -> V n a -> m () #

deserializeWith :: MonadGet m => m a -> m (V n a) #

Dim n => Distributive (V n) Source # 
Instance details

Defined in Linear.V

Methods

distribute :: Functor f => f (V n a) -> V n (f a) #

collect :: Functor f => (a -> V n b) -> f a -> V n (f b) #

distributeM :: Monad m => m (V n a) -> V n (m a) #

collectM :: Monad m => (a -> V n b) -> m a -> V n (m b) #

Dim n => Hashable1 (V n) Source # 
Instance details

Defined in Linear.V

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> V n a -> Int #

Dim n => Affine (V n) Source # 
Instance details

Defined in Linear.Affine

Associated Types

type Diff (V n) :: Type -> Type Source #

Methods

(.-.) :: Num a => V n a -> V n a -> Diff (V n) a Source #

(.+^) :: Num a => V n a -> Diff (V n) a -> V n a Source #

(.-^) :: Num a => V n a -> Diff (V n) a -> V n a Source #

Dim n => Metric (V n) Source # 
Instance details

Defined in Linear.V

Methods

dot :: Num a => V n a -> V n a -> a Source #

quadrance :: Num a => V n a -> a Source #

qd :: Num a => V n a -> V n a -> a Source #

distance :: Floating a => V n a -> V n a -> a Source #

norm :: Floating a => V n a -> a Source #

signorm :: Floating a => V n a -> V n a Source #

Dim n => Trace (V n) Source # 
Instance details

Defined in Linear.Trace

Methods

trace :: Num a => V n (V n a) -> a Source #

diagonal :: V n (V n a) -> V n a Source #

Finite (V n) Source # 
Instance details

Defined in Linear.V

Associated Types

type Size (V n) :: Nat Source #

Methods

toV :: V n a -> V (Size (V n)) a Source #

fromV :: V (Size (V n)) a -> V n a Source #

Dim n => Additive (V n) Source # 
Instance details

Defined in Linear.V

Methods

zero :: Num a => V n a Source #

(^+^) :: Num a => V n a -> V n a -> V n a Source #

(^-^) :: Num a => V n a -> V n a -> V n a Source #

lerp :: Num a => a -> V n a -> V n a -> V n a Source #

liftU2 :: (a -> a -> a) -> V n a -> V n a -> V n a Source #

liftI2 :: (a -> b -> c) -> V n a -> V n b -> V n c Source #

Apply (V n) Source # 
Instance details

Defined in Linear.V

Methods

(<.>) :: V n (a -> b) -> V n a -> V n b #

(.>) :: V n a -> V n b -> V n b #

(<.) :: V n a -> V n b -> V n a #

liftF2 :: (a -> b -> c) -> V n a -> V n b -> V n c #

Bind (V n) Source # 
Instance details

Defined in Linear.V

Methods

(>>-) :: V n a -> (a -> V n b) -> V n b #

join :: V n (V n a) -> V n a #

(Typeable (V n), Typeable (V n a), Dim n, Data a) => Data (V n a) Source # 
Instance details

Defined in Linear.V

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V n a -> c (V n a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V n a) #

toConstr :: V n a -> Constr #

dataTypeOf :: V n a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V n a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V n a)) #

gmapT :: (forall b. Data b => b -> b) -> V n a -> V n a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V n a -> r #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V n a -> r #

gmapQ :: (forall d. Data d => d -> u) -> V n a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V n a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V n a -> m (V n a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V n a -> m (V n a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V n a -> m (V n a) #

(Dim n, Storable a) => Storable (V n a) Source # 
Instance details

Defined in Linear.V

Methods

sizeOf :: V n a -> Int #

alignment :: V n a -> Int #

peekElemOff :: Ptr (V n a) -> Int -> IO (V n a) #

pokeElemOff :: Ptr (V n a) -> Int -> V n a -> IO () #

peekByteOff :: Ptr b -> Int -> IO (V n a) #

pokeByteOff :: Ptr b -> Int -> V n a -> IO () #

peek :: Ptr (V n a) -> IO (V n a) #

poke :: Ptr (V n a) -> V n a -> IO () #

(Dim n, Monoid a) => Monoid (V n a) Source # 
Instance details

Defined in Linear.V

Methods

mempty :: V n a #

mappend :: V n a -> V n a -> V n a #

mconcat :: [V n a] -> V n a #

(Dim n, Semigroup a) => Semigroup (V n a) Source # 
Instance details

Defined in Linear.V

Methods

(<>) :: V n a -> V n a -> V n a #

sconcat :: NonEmpty (V n a) -> V n a #

stimes :: Integral b => b -> V n a -> V n a #

(Bounded a, Dim n) => Bounded (V n a) Source # 
Instance details

Defined in Linear.V

Methods

minBound :: V n a #

maxBound :: V n a #

(Dim n, Floating a) => Floating (V n a) Source # 
Instance details

Defined in Linear.V

Methods

pi :: V n a #

exp :: V n a -> V n a #

log :: V n a -> V n a #

sqrt :: V n a -> V n a #

(**) :: V n a -> V n a -> V n a #

logBase :: V n a -> V n a -> V n a #

sin :: V n a -> V n a #

cos :: V n a -> V n a #

tan :: V n a -> V n a #

asin :: V n a -> V n a #

acos :: V n a -> V n a #

atan :: V n a -> V n a #

sinh :: V n a -> V n a #

cosh :: V n a -> V n a #

tanh :: V n a -> V n a #

asinh :: V n a -> V n a #

acosh :: V n a -> V n a #

atanh :: V n a -> V n a #

log1p :: V n a -> V n a #

expm1 :: V n a -> V n a #

log1pexp :: V n a -> V n a #

log1mexp :: V n a -> V n a #

Generic (V n a) Source # 
Instance details

Defined in Linear.V

Associated Types

type Rep (V n a) :: Type -> Type #

Methods

from :: V n a -> Rep (V n a) x #

to :: Rep (V n a) x -> V n a #

(Dim n, Num a) => Num (V n a) Source # 
Instance details

Defined in Linear.V

Methods

(+) :: V n a -> V n a -> V n a #

(-) :: V n a -> V n a -> V n a #

(*) :: V n a -> V n a -> V n a #

negate :: V n a -> V n a #

abs :: V n a -> V n a #

signum :: V n a -> V n a #

fromInteger :: Integer -> V n a #

Read a => Read (V n a) Source # 
Instance details

Defined in Linear.V

Methods

readsPrec :: Int -> ReadS (V n a) #

readList :: ReadS [V n a] #

readPrec :: ReadPrec (V n a) #

readListPrec :: ReadPrec [V n a] #

(Dim n, Fractional a) => Fractional (V n a) Source # 
Instance details

Defined in Linear.V

Methods

(/) :: V n a -> V n a -> V n a #

recip :: V n a -> V n a #

fromRational :: Rational -> V n a #

Show a => Show (V n a) Source # 
Instance details

Defined in Linear.V

Methods

showsPrec :: Int -> V n a -> ShowS #

show :: V n a -> String #

showList :: [V n a] -> ShowS #

(Dim n, Binary a) => Binary (V n a) Source # 
Instance details

Defined in Linear.V

Methods

put :: V n a -> Put #

get :: Get (V n a) #

putList :: [V n a] -> Put #

(Dim n, Serial a) => Serial (V n a) Source # 
Instance details

Defined in Linear.V

Methods

serialize :: MonadPut m => V n a -> m () #

deserialize :: MonadGet m => m (V n a) #

(Dim n, Serialize a) => Serialize (V n a) Source # 
Instance details

Defined in Linear.V

Methods

put :: Putter (V n a) #

get :: Get (V n a) #

NFData a => NFData (V n a) Source # 
Instance details

Defined in Linear.V

Methods

rnf :: V n a -> () #

Eq a => Eq (V n a) Source # 
Instance details

Defined in Linear.V

Methods

(==) :: V n a -> V n a -> Bool #

(/=) :: V n a -> V n a -> Bool #

Ord a => Ord (V n a) Source # 
Instance details

Defined in Linear.V

Methods

compare :: V n a -> V n a -> Ordering #

(<) :: V n a -> V n a -> Bool #

(<=) :: V n a -> V n a -> Bool #

(>) :: V n a -> V n a -> Bool #

(>=) :: V n a -> V n a -> Bool #

max :: V n a -> V n a -> V n a #

min :: V n a -> V n a -> V n a #

Hashable a => Hashable (V n a) Source # 
Instance details

Defined in Linear.V

Methods

hashWithSalt :: Int -> V n a -> Int #

hash :: V n a -> Int #

Ixed (V n a) Source # 
Instance details

Defined in Linear.V

Methods

ix :: Index (V n a) -> Traversal' (V n a) (IxValue (V n a)) #

(Dim n, Epsilon a) => Epsilon (V n a) Source # 
Instance details

Defined in Linear.V

Methods

nearZero :: V n a -> Bool Source #

(Dim n, Random a) => Random (V n a) Source # 
Instance details

Defined in Linear.V

Methods

randomR :: RandomGen g => (V n a, V n a) -> g -> (V n a, g) #

random :: RandomGen g => g -> (V n a, g) #

randomRs :: RandomGen g => (V n a, V n a) -> g -> [V n a] #

randoms :: RandomGen g => g -> [V n a] #

(Dim n, Unbox a) => Unbox (V n a) Source # 
Instance details

Defined in Linear.V

Each (V n a) (V n b) a b Source # 
Instance details

Defined in Linear.V

Methods

each :: Traversal (V n a) (V n b) a b #

1 <= n => Field1 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_1 :: Lens (V n a) (V n a) a a #

10 <= n => Field10 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_10 :: Lens (V n a) (V n a) a a #

11 <= n => Field11 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_11 :: Lens (V n a) (V n a) a a #

12 <= n => Field12 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_12 :: Lens (V n a) (V n a) a a #

13 <= n => Field13 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_13 :: Lens (V n a) (V n a) a a #

14 <= n => Field14 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_14 :: Lens (V n a) (V n a) a a #

15 <= n => Field15 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_15 :: Lens (V n a) (V n a) a a #

16 <= n => Field16 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_16 :: Lens (V n a) (V n a) a a #

17 <= n => Field17 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_17 :: Lens (V n a) (V n a) a a #

18 <= n => Field18 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_18 :: Lens (V n a) (V n a) a a #

19 <= n => Field19 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_19 :: Lens (V n a) (V n a) a a #

2 <= n => Field2 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_2 :: Lens (V n a) (V n a) a a #

3 <= n => Field3 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_3 :: Lens (V n a) (V n a) a a #

4 <= n => Field4 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_4 :: Lens (V n a) (V n a) a a #

5 <= n => Field5 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_5 :: Lens (V n a) (V n a) a a #

6 <= n => Field6 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_6 :: Lens (V n a) (V n a) a a #

7 <= n => Field7 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_7 :: Lens (V n a) (V n a) a a #

8 <= n => Field8 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_8 :: Lens (V n a) (V n a) a a #

9 <= n => Field9 (V n a) (V n a) a a Source # 
Instance details

Defined in Linear.V

Methods

_9 :: Lens (V n a) (V n a) a a #

data MVector s (V n a) Source # 
Instance details

Defined in Linear.V

data MVector s (V n a) = MV_VN !Int !(MVector s a)
type Rep1 (V n :: Type -> TYPE LiftedRep) Source # 
Instance details

Defined in Linear.V

type Rep1 (V n :: Type -> TYPE LiftedRep) = D1 ('MetaData "V" "Linear.V" "linear-1.22-azR7kz4en7IbThf75KgP8" 'True) (C1 ('MetaCons "V" 'PrefixI 'True) (S1 ('MetaSel ('Just "toVector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 Vector)))
type Rep (V n) Source # 
Instance details

Defined in Linear.V

type Rep (V n) = Int
type Diff (V n) Source # 
Instance details

Defined in Linear.Affine

type Diff (V n) = V n
type Size (V n) Source # 
Instance details

Defined in Linear.V

type Size (V n) = n
type Rep (V n a) Source # 
Instance details

Defined in Linear.V

type Rep (V n a) = D1 ('MetaData "V" "Linear.V" "linear-1.22-azR7kz4en7IbThf75KgP8" 'True) (C1 ('MetaCons "V" 'PrefixI 'True) (S1 ('MetaSel ('Just "toVector") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (Vector a))))
type Index (V n a) Source # 
Instance details

Defined in Linear.V

type Index (V n a) = Int
type IxValue (V n a) Source # 
Instance details

Defined in Linear.V

type IxValue (V n a) = a
data Vector (V n a) Source # 
Instance details

Defined in Linear.V

data Vector (V n a) = V_VN !Int !(Vector a)

int :: Int -> TypeQ #

This can be used to generate a template haskell splice for a type level version of a given int.

This does not use GHC TypeLits, instead it generates a numeric type by hand similar to the ones used in the "Functional Pearl: Implicit Configurations" paper by Oleg Kiselyov and Chung-Chieh Shan.

instance Num (Q Exp) provided in this package allows writing $(3) instead of $(int 3). Sometimes the two will produce the same representation (if compiled without the -DUSE_TYPE_LITS preprocessor directive).

dim :: forall n a. Dim n => V n a -> Int Source #

class Dim n where Source #

Methods

reflectDim :: p n -> Int Source #

Instances

Instances details
KnownNat n => Dim (n :: Nat) Source # 
Instance details

Defined in Linear.V

Methods

reflectDim :: p n -> Int Source #

Dim n => Dim (V n a :: TYPE LiftedRep) Source # 
Instance details

Defined in Linear.V

Methods

reflectDim :: p (V n a) -> Int Source #

reifyDim :: Int -> (forall (n :: Type). Dim n => Proxy n -> r) -> r Source #

reifyVector :: forall a r. Vector a -> (forall (n :: Type). Dim n => V n a -> r) -> r Source #

reifyDimNat :: Int -> (forall (n :: Nat). KnownNat n => Proxy n -> r) -> r Source #

reifyVectorNat :: forall a r. Vector a -> (forall (n :: Nat). KnownNat n => V n a -> r) -> r Source #

fromVector :: forall n a. Dim n => Vector a -> Maybe (V n a) Source #

class Finite v where Source #

Minimal complete definition

fromV

Associated Types

type Size (v :: Type -> Type) :: Nat Source #

Methods

toV :: v a -> V (Size v) a Source #

default toV :: Foldable v => v a -> V (Size v) a Source #

fromV :: V (Size v) a -> v a Source #

Instances

Instances details
Finite Complex Source # 
Instance details

Defined in Linear.V

Associated Types

type Size Complex :: Nat Source #

Methods

toV :: Complex a -> V (Size Complex) a Source #

fromV :: V (Size Complex) a -> Complex a Source #

Finite Plucker Source # 
Instance details

Defined in Linear.Plucker

Associated Types

type Size Plucker :: Nat Source #

Methods

toV :: Plucker a -> V (Size Plucker) a Source #

fromV :: V (Size Plucker) a -> Plucker a Source #

Finite Quaternion Source # 
Instance details

Defined in Linear.Quaternion

Associated Types

type Size Quaternion :: Nat Source #

Finite V0 Source # 
Instance details

Defined in Linear.V0

Associated Types

type Size V0 :: Nat Source #

Methods

toV :: V0 a -> V (Size V0) a Source #

fromV :: V (Size V0) a -> V0 a Source #

Finite V1 Source # 
Instance details

Defined in Linear.V1

Associated Types

type Size V1 :: Nat Source #

Methods

toV :: V1 a -> V (Size V1) a Source #

fromV :: V (Size V1) a -> V1 a Source #

Finite V2 Source # 
Instance details

Defined in Linear.V2

Associated Types

type Size V2 :: Nat Source #

Methods

toV :: V2 a -> V (Size V2) a Source #

fromV :: V (Size V2) a -> V2 a Source #

Finite V3 Source # 
Instance details

Defined in Linear.V3

Associated Types

type Size V3 :: Nat Source #

Methods

toV :: V3 a -> V (Size V3) a Source #

fromV :: V (Size V3) a -> V3 a Source #

Finite V4 Source # 
Instance details

Defined in Linear.V4

Associated Types

type Size V4 :: Nat Source #

Methods

toV :: V4 a -> V (Size V4) a Source #

fromV :: V (Size V4) a -> V4 a Source #

Finite f => Finite (Point f) Source # 
Instance details

Defined in Linear.Affine

Associated Types

type Size (Point f) :: Nat Source #

Methods

toV :: Point f a -> V (Size (Point f)) a Source #

fromV :: V (Size (Point f)) a -> Point f a Source #

Finite (V n) Source # 
Instance details

Defined in Linear.V

Associated Types

type Size (V n) :: Nat Source #

Methods

toV :: V n a -> V (Size (V n)) a Source #

fromV :: V (Size (V n)) a -> V n a Source #

_V :: (Finite u, Finite v) => Iso (V (Size u) a) (V (Size v) b) (u a) (v b) Source #

_V' :: Finite v => Iso (V (Size v) a) (V (Size v) b) (v a) (v b) Source #