{-# LANGUAGE CPP #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE Trustworthy #-}
module Linear.Trace
  ( Trace(..)
  , frobenius
  ) where
import Control.Monad as Monad
import Linear.V0
import Linear.V1
import Linear.V2
import Linear.V3
import Linear.V4
import Linear.Plucker
import Linear.Quaternion
import Linear.V
import Linear.Vector
import Data.Complex
import Data.Distributive
import Data.Foldable as Foldable
import Data.Functor.Bind as Bind
import Data.Functor.Compose
import Data.Functor.Product
import Data.Hashable
import Data.HashMap.Lazy
import Data.IntMap (IntMap)
import Data.Map (Map)
class Functor m => Trace m where
  
  
  
  
  trace :: Num a => m (m a) -> a
#ifndef HLINT
  default trace :: (Foldable m, Num a) => m (m a) -> a
  trace = m a -> a
forall (t :: * -> *) a. (Foldable t, Num a) => t a -> a
Foldable.sum (m a -> a) -> (m (m a) -> m a) -> m (m a) -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. m (m a) -> m a
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal
  {-# INLINE trace #-}
#endif
  
  
  
  
  diagonal :: m (m a) -> m a
#ifndef HLINT
  default diagonal :: Monad m => m (m a) -> m a
  diagonal = m (m a) -> m a
forall (m :: * -> *) a. Monad m => m (m a) -> m a
Monad.join
  {-# INLINE diagonal #-}
#endif
instance Trace IntMap where
  diagonal :: IntMap (IntMap a) -> IntMap a
diagonal = IntMap (IntMap a) -> IntMap a
forall (m :: * -> *) a. Bind m => m (m a) -> m a
Bind.join
  {-# INLINE diagonal #-}
instance Ord k => Trace (Map k) where
  diagonal :: Map k (Map k a) -> Map k a
diagonal = Map k (Map k a) -> Map k a
forall (m :: * -> *) a. Bind m => m (m a) -> m a
Bind.join
  {-# INLINE diagonal #-}
instance (Eq k, Hashable k) => Trace (HashMap k) where
  diagonal :: HashMap k (HashMap k a) -> HashMap k a
diagonal = HashMap k (HashMap k a) -> HashMap k a
forall (m :: * -> *) a. Bind m => m (m a) -> m a
Bind.join
  {-# INLINE diagonal #-}
instance Dim n => Trace (V n)
instance Trace V0
instance Trace V1
instance Trace V2
instance Trace V3
instance Trace V4
instance Trace Plucker
instance Trace Quaternion
instance Trace Complex where
  trace :: Complex (Complex a) -> a
trace ((a
a :+ a
_) :+ (a
_ :+ a
b)) = a
a a -> a -> a
forall a. Num a => a -> a -> a
+ a
b
  {-# INLINE trace #-}
  diagonal :: Complex (Complex a) -> Complex a
diagonal ((a
a :+ a
_) :+ (a
_ :+ a
b)) = a
a a -> a -> Complex a
forall a. a -> a -> Complex a
:+ a
b
  {-# INLINE diagonal #-}
instance (Trace f, Trace g) => Trace (Product f g) where
  trace :: Product f g (Product f g a) -> a
trace (Pair f (Product f g a)
xx g (Product f g a)
yy) = f (f a) -> a
forall (m :: * -> *) a. (Trace m, Num a) => m (m a) -> a
trace (Product f g a -> f a
forall k (f :: k -> *) (g :: k -> *) (a :: k). Product f g a -> f a
pfst (Product f g a -> f a) -> f (Product f g a) -> f (f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Product f g a)
xx) a -> a -> a
forall a. Num a => a -> a -> a
+ g (g a) -> a
forall (m :: * -> *) a. (Trace m, Num a) => m (m a) -> a
trace (Product f g a -> g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). Product f g a -> g a
psnd (Product f g a -> g a) -> g (Product f g a) -> g (g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g (Product f g a)
yy) where
    pfst :: Product f g a -> f a
pfst (Pair f a
x g a
_) = f a
x
    psnd :: Product f g a -> g a
psnd (Pair f a
_ g a
y) = g a
y
  {-# INLINE trace #-}
  diagonal :: Product f g (Product f g a) -> Product f g a
diagonal (Pair f (Product f g a)
xx g (Product f g a)
yy) = f (f a) -> f a
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal (Product f g a -> f a
forall k (f :: k -> *) (g :: k -> *) (a :: k). Product f g a -> f a
pfst (Product f g a -> f a) -> f (Product f g a) -> f (f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f (Product f g a)
xx) f a -> g a -> Product f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
`Pair` g (g a) -> g a
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal (Product f g a -> g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). Product f g a -> g a
psnd (Product f g a -> g a) -> g (Product f g a) -> g (g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g (Product f g a)
yy) where
    pfst :: Product f g a -> f a
pfst (Pair f a
x g a
_) = f a
x
    psnd :: Product f g a -> g a
psnd (Pair f a
_ g a
y) = g a
y
  {-# INLINE diagonal #-}
instance (Distributive g, Trace g, Trace f) => Trace (Compose g f) where
  trace :: Compose g f (Compose g f a) -> a
trace = g (g a) -> a
forall (m :: * -> *) a. (Trace m, Num a) => m (m a) -> a
trace (g (g a) -> a)
-> (Compose g f (Compose g f a) -> g (g a))
-> Compose g f (Compose g f a)
-> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f (g (f a)) -> g a) -> g (f (g (f a))) -> g (g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((f (f a) -> a) -> g (f (f a)) -> g a
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (f a) -> a
forall (m :: * -> *) a. (Trace m, Num a) => m (m a) -> a
trace (g (f (f a)) -> g a)
-> (f (g (f a)) -> g (f (f a))) -> f (g (f a)) -> g a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f (g (f a)) -> g (f (f a))
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
distribute) (g (f (g (f a))) -> g (g a))
-> (Compose g f (Compose g f a) -> g (f (g (f a))))
-> Compose g f (Compose g f a)
-> g (g a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose g f (g (f a)) -> g (f (g (f a)))
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose g f (g (f a)) -> g (f (g (f a))))
-> (Compose g f (Compose g f a) -> Compose g f (g (f a)))
-> Compose g f (Compose g f a)
-> g (f (g (f a)))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Compose g f a -> g (f a))
-> Compose g f (Compose g f a) -> Compose g f (g (f a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Compose g f a -> g (f a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
  {-# INLINE trace #-}
  diagonal :: Compose g f (Compose g f a) -> Compose g f a
diagonal = g (f a) -> Compose g f a
forall k k1 (f :: k -> *) (g :: k1 -> k) (a :: k1).
f (g a) -> Compose f g a
Compose (g (f a) -> Compose g f a)
-> (Compose g f (Compose g f a) -> g (f a))
-> Compose g f (Compose g f a)
-> Compose g f a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f (f a) -> f a) -> g (f (f a)) -> g (f a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (f a) -> f a
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal (g (f (f a)) -> g (f a))
-> (Compose g f (Compose g f a) -> g (f (f a)))
-> Compose g f (Compose g f a)
-> g (f a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. g (g (f (f a))) -> g (f (f a))
forall (m :: * -> *) a. Trace m => m (m a) -> m a
diagonal (g (g (f (f a))) -> g (f (f a)))
-> (Compose g f (Compose g f a) -> g (g (f (f a))))
-> Compose g f (Compose g f a)
-> g (f (f a))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (f (g (f a)) -> g (f (f a))) -> g (f (g (f a))) -> g (g (f (f a)))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap f (g (f a)) -> g (f (f a))
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
distribute (g (f (g (f a))) -> g (g (f (f a))))
-> (Compose g f (Compose g f a) -> g (f (g (f a))))
-> Compose g f (Compose g f a)
-> g (g (f (f a)))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Compose g f (g (f a)) -> g (f (g (f a)))
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose (Compose g f (g (f a)) -> g (f (g (f a))))
-> (Compose g f (Compose g f a) -> Compose g f (g (f a)))
-> Compose g f (Compose g f a)
-> g (f (g (f a)))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Compose g f a -> g (f a))
-> Compose g f (Compose g f a) -> Compose g f (g (f a))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Compose g f a -> g (f a)
forall k1 (f :: k1 -> *) k2 (g :: k2 -> k1) (a :: k2).
Compose f g a -> f (g a)
getCompose
  {-# INLINE diagonal #-}
frobenius :: (Num a, Foldable f, Additive f, Additive g, Distributive g, Trace g) => f (g a) -> a
frobenius :: f (g a) -> a
frobenius f (g a)
m = g (g a) -> a
forall (m :: * -> *) a. (Trace m, Num a) => m (m a) -> a
trace (g (g a) -> a) -> g (g a) -> a
forall a b. (a -> b) -> a -> b
$ (f a -> g a) -> g (f a) -> g (g a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\ f a
f' -> (g a -> g a -> g a) -> g a -> f (g a) -> g a
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' g a -> g a -> g a
forall (f :: * -> *) a. (Additive f, Num a) => f a -> f a -> f a
(^+^) g a
forall (f :: * -> *) a. (Additive f, Num a) => f a
zero (f (g a) -> g a) -> f (g a) -> g a
forall a b. (a -> b) -> a -> b
$ (a -> g a -> g a) -> f a -> f (g a) -> f (g a)
forall (f :: * -> *) a b c.
Additive f =>
(a -> b -> c) -> f a -> f b -> f c
liftI2 a -> g a -> g a
forall (f :: * -> *) a. (Functor f, Num a) => a -> f a -> f a
(*^) f a
f' f (g a)
m) (f (g a) -> g (f a)
forall (g :: * -> *) (f :: * -> *) a.
(Distributive g, Functor f) =>
f (g a) -> g (f a)
distribute f (g a)
m)