Safe Haskell | None |
---|---|
Language | Haskell2010 |
Standard form for programs: only equalities and all variables >= 0 To convert an arbitrary program to this form, we need to:
Convert unconstrained (-inf <= x <= +inf) variable into two separate parts, x+ and x- wherever x occurs, it will be replaced with "x+" - "x-".
Convert variables with non-zero lower bounds (c <= x) to a new variable x', so that x = x' + c
The opposite of these conversions must be performed when extracting a variable assignment from the solved program.
All constraints are converted into a less-than with a constant on the right, and then these less-than constraints (f <= c) have a slack variable s added such that f + s == c && s >= 0
Synopsis
- type StandardRow z r c = (StandardLinear z r c, R c)
- data Standard z r c = Standard {
- _objective :: StandardRow z r c
- _constraints :: Map (StandardVar z r) (StandardRow z r c)
- _substs :: StandardSubst z r c
- type StandardSubst z r c = Map (Either z r) (StandardRow z r c)
- type StandardLinear z r c = Map (StandardVar z r) (R c)
- data StandardVar z r
- addLinears :: (Ord z, Ord r, Rep c) => [(StandardLinear z r c, R c)] -> (StandardLinear z r c, R c)
- substLinear :: (Ord z, Ord r, Rep c) => StandardSubst z r c -> (StandardLinear z r c, R c) -> (StandardLinear z r c, R c)
- standard :: (Ord z, Ord r, Rep c) => Program z r c -> Standard z r c
- lookupRow :: (Ord z, Ord r, Rep c) => StandardRow z r c -> StandardVar z r -> R c
- objOfRow :: StandardRow z r c -> R c
Documentation
type StandardRow z r c = (StandardLinear z r c, R c) Source #
A single linear function with a constant summand
Entire program in standard form, as well as substitutions required to extract an assignment
Standard | |
|
type StandardSubst z r c = Map (Either z r) (StandardRow z r c) Source #
type StandardLinear z r c = Map (StandardVar z r) (R c) Source #
data StandardVar z r Source #
SV (Either z r) | A normal variable |
SVS Int | A slack variable, introduced to make less-eq constraints into equalities |
SVO | Magic objective, used when hiding an existing objective as a constraint and creating a new objective |
SVLower (Either z r) | When a variable has a lower bound other than 0, we replace all occurences with with a new version minus the lower bound. x >= 5 ==> Lx - 5 >= 5 ==> Lx >= 0 |
SVPos (Either z r) | When unconstrained variables are encountered, they are replaced with x = SVPos x - SVNeg x so both parts can be constrained to >= 0. |
SVNeg (Either z r) |
Instances
(Eq z, Eq r) => Eq (StandardVar z r) Source # | |
Defined in Numeric.Limp.Solve.Simplex.StandardForm (==) :: StandardVar z r -> StandardVar z r -> Bool # (/=) :: StandardVar z r -> StandardVar z r -> Bool # | |
(Ord z, Ord r) => Ord (StandardVar z r) Source # | |
Defined in Numeric.Limp.Solve.Simplex.StandardForm compare :: StandardVar z r -> StandardVar z r -> Ordering # (<) :: StandardVar z r -> StandardVar z r -> Bool # (<=) :: StandardVar z r -> StandardVar z r -> Bool # (>) :: StandardVar z r -> StandardVar z r -> Bool # (>=) :: StandardVar z r -> StandardVar z r -> Bool # max :: StandardVar z r -> StandardVar z r -> StandardVar z r # min :: StandardVar z r -> StandardVar z r -> StandardVar z r # | |
(Show z, Show r) => Show (StandardVar z r) Source # | |
Defined in Numeric.Limp.Solve.Simplex.StandardForm showsPrec :: Int -> StandardVar z r -> ShowS # show :: StandardVar z r -> String # showList :: [StandardVar z r] -> ShowS # |
addLinears :: (Ord z, Ord r, Rep c) => [(StandardLinear z r c, R c)] -> (StandardLinear z r c, R c) Source #
Sum a list of linear functions together
substLinear :: (Ord z, Ord r, Rep c) => StandardSubst z r c -> (StandardLinear z r c, R c) -> (StandardLinear z r c, R c) Source #
Perform substitution over a linear function/row
standard :: (Ord z, Ord r, Rep c) => Program z r c -> Standard z r c Source #
Convert canon program into standard form
lookupRow :: (Ord z, Ord r, Rep c) => StandardRow z r c -> StandardVar z r -> R c Source #
Get the coefficient of a variable in given row
objOfRow :: StandardRow z r c -> R c Source #
Get objective or basis value of a row