lens-labels-0.1.0.1: Integration of lenses with OverloadedLabels.

Safe HaskellNone
LanguageHaskell2010

Lens.Labels

Contents

Description

A lens library that integrates with OverloadedLabels.

Unlike the lens package (and others), lenses are defined as a newtype instead of a type synonym, to avoid overlapping with other IsLabel instances. However, the LensFn and runLens functions allow converting between the two types; for example:

LensFn :: Control.Lens.LensLike f s t a b -> Lens.Labels.LensLike f s t a b
runLens :: Lens.Labels.LensLike f s t a b -> Control.Lens.LensLike f s t a b

TODO: support more general optic types (e.g., prisms).

Synopsis

Lenses

newtype LensFn a b Source #

A newtype for defining lenses. Can be composed using `(Control.Category..)` (also exported from this module).

Constructors

LensFn 

Fields

Instances

((~) * p (a -> f b), (~) * q (s -> f t), HasLens x f s t a b) => IsLabel x (LensFn p q) Source # 

Methods

fromLabel :: Proxy# Symbol x -> LensFn p q #

Category * LensFn Source # 

Methods

id :: cat a a #

(.) :: cat b c -> cat a b -> cat a c #

type LensLike f s t a b = LensFn (a -> f b) (s -> f t) Source #

type LensLike' f s a = LensLike f s s a a Source #

(&) :: a -> (a -> b) -> b infixl 1 #

& is a reverse application operator. This provides notational convenience. Its precedence is one higher than that of the forward application operator $, which allows & to be nested in $.

Since: 4.8.0.0

(.) :: Category k cat => forall b c a. cat b c -> cat a b -> cat a c #

morphism composition

type Lens s t a b = forall f. Functor f => LensLike f s t a b Source #

HasLens

class HasLens x f s t a b | x s -> a, x t -> b, x s b -> t, x t a -> s where Source #

A type class for lens fields.

Minimal complete definition

lensOf

Methods

lensOf :: Proxy# x -> (a -> f b) -> s -> f t Source #

data Proxy# :: forall k. k -> TYPE VoidRep #

The type constructor Proxy# is used to bear witness to some type variable. It's used when you want to pass around proxy values for doing things like modelling type applications. A Proxy# is not only unboxed, it also has a polymorphic kind, and has no runtime representation, being totally free.

proxy# :: Proxy# k a #

Witness for an unboxed Proxy# value, which has no runtime representation.

Setters

type ASetter s t a b = LensLike Identity s t a b Source #

(.~) :: ASetter s t a b -> b -> s -> t infixr 4 Source #

(%~) :: ASetter s t a b -> (a -> b) -> s -> t infixr 4 Source #

set :: ASetter s t a b -> b -> s -> t Source #

over :: ASetter s t a b -> (a -> b) -> s -> t Source #

Getters

newtype Const k a b :: forall k. * -> k -> * #

The Const functor.

Constructors

Const 

Fields

Instances

Functor (Const * m) 

Methods

fmap :: (a -> b) -> Const * m a -> Const * m b #

(<$) :: a -> Const * m b -> Const * m a #

Monoid m => Applicative (Const * m) 

Methods

pure :: a -> Const * m a #

(<*>) :: Const * m (a -> b) -> Const * m a -> Const * m b #

(*>) :: Const * m a -> Const * m b -> Const * m b #

(<*) :: Const * m a -> Const * m b -> Const * m a #

Foldable (Const * m) 

Methods

fold :: Monoid m => Const * m m -> m #

foldMap :: Monoid m => (a -> m) -> Const * m a -> m #

foldr :: (a -> b -> b) -> b -> Const * m a -> b #

foldr' :: (a -> b -> b) -> b -> Const * m a -> b #

foldl :: (b -> a -> b) -> b -> Const * m a -> b #

foldl' :: (b -> a -> b) -> b -> Const * m a -> b #

foldr1 :: (a -> a -> a) -> Const * m a -> a #

foldl1 :: (a -> a -> a) -> Const * m a -> a #

toList :: Const * m a -> [a] #

null :: Const * m a -> Bool #

length :: Const * m a -> Int #

elem :: Eq a => a -> Const * m a -> Bool #

maximum :: Ord a => Const * m a -> a #

minimum :: Ord a => Const * m a -> a #

sum :: Num a => Const * m a -> a #

product :: Num a => Const * m a -> a #

Generic1 (Const * a) 

Associated Types

type Rep1 (Const * a :: * -> *) :: * -> * #

Methods

from1 :: Const * a a -> Rep1 (Const * a) a #

to1 :: Rep1 (Const * a) a -> Const * a a #

Bounded a => Bounded (Const k a b) 

Methods

minBound :: Const k a b #

maxBound :: Const k a b #

Enum a => Enum (Const k a b) 

Methods

succ :: Const k a b -> Const k a b #

pred :: Const k a b -> Const k a b #

toEnum :: Int -> Const k a b #

fromEnum :: Const k a b -> Int #

enumFrom :: Const k a b -> [Const k a b] #

enumFromThen :: Const k a b -> Const k a b -> [Const k a b] #

enumFromTo :: Const k a b -> Const k a b -> [Const k a b] #

enumFromThenTo :: Const k a b -> Const k a b -> Const k a b -> [Const k a b] #

Eq a => Eq (Const k a b) 

Methods

(==) :: Const k a b -> Const k a b -> Bool #

(/=) :: Const k a b -> Const k a b -> Bool #

Floating a => Floating (Const k a b) 

Methods

pi :: Const k a b #

exp :: Const k a b -> Const k a b #

log :: Const k a b -> Const k a b #

sqrt :: Const k a b -> Const k a b #

(**) :: Const k a b -> Const k a b -> Const k a b #

logBase :: Const k a b -> Const k a b -> Const k a b #

sin :: Const k a b -> Const k a b #

cos :: Const k a b -> Const k a b #

tan :: Const k a b -> Const k a b #

asin :: Const k a b -> Const k a b #

acos :: Const k a b -> Const k a b #

atan :: Const k a b -> Const k a b #

sinh :: Const k a b -> Const k a b #

cosh :: Const k a b -> Const k a b #

tanh :: Const k a b -> Const k a b #

asinh :: Const k a b -> Const k a b #

acosh :: Const k a b -> Const k a b #

atanh :: Const k a b -> Const k a b #

log1p :: Const k a b -> Const k a b #

expm1 :: Const k a b -> Const k a b #

log1pexp :: Const k a b -> Const k a b #

log1mexp :: Const k a b -> Const k a b #

Fractional a => Fractional (Const k a b) 

Methods

(/) :: Const k a b -> Const k a b -> Const k a b #

recip :: Const k a b -> Const k a b #

fromRational :: Rational -> Const k a b #

Integral a => Integral (Const k a b) 

Methods

quot :: Const k a b -> Const k a b -> Const k a b #

rem :: Const k a b -> Const k a b -> Const k a b #

div :: Const k a b -> Const k a b -> Const k a b #

mod :: Const k a b -> Const k a b -> Const k a b #

quotRem :: Const k a b -> Const k a b -> (Const k a b, Const k a b) #

divMod :: Const k a b -> Const k a b -> (Const k a b, Const k a b) #

toInteger :: Const k a b -> Integer #

Num a => Num (Const k a b) 

Methods

(+) :: Const k a b -> Const k a b -> Const k a b #

(-) :: Const k a b -> Const k a b -> Const k a b #

(*) :: Const k a b -> Const k a b -> Const k a b #

negate :: Const k a b -> Const k a b #

abs :: Const k a b -> Const k a b #

signum :: Const k a b -> Const k a b #

fromInteger :: Integer -> Const k a b #

Ord a => Ord (Const k a b) 

Methods

compare :: Const k a b -> Const k a b -> Ordering #

(<) :: Const k a b -> Const k a b -> Bool #

(<=) :: Const k a b -> Const k a b -> Bool #

(>) :: Const k a b -> Const k a b -> Bool #

(>=) :: Const k a b -> Const k a b -> Bool #

max :: Const k a b -> Const k a b -> Const k a b #

min :: Const k a b -> Const k a b -> Const k a b #

Read a => Read (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Methods

readsPrec :: Int -> ReadS (Const k a b) #

readList :: ReadS [Const k a b] #

readPrec :: ReadPrec (Const k a b) #

readListPrec :: ReadPrec [Const k a b] #

Real a => Real (Const k a b) 

Methods

toRational :: Const k a b -> Rational #

RealFloat a => RealFloat (Const k a b) 

Methods

floatRadix :: Const k a b -> Integer #

floatDigits :: Const k a b -> Int #

floatRange :: Const k a b -> (Int, Int) #

decodeFloat :: Const k a b -> (Integer, Int) #

encodeFloat :: Integer -> Int -> Const k a b #

exponent :: Const k a b -> Int #

significand :: Const k a b -> Const k a b #

scaleFloat :: Int -> Const k a b -> Const k a b #

isNaN :: Const k a b -> Bool #

isInfinite :: Const k a b -> Bool #

isDenormalized :: Const k a b -> Bool #

isNegativeZero :: Const k a b -> Bool #

isIEEE :: Const k a b -> Bool #

atan2 :: Const k a b -> Const k a b -> Const k a b #

RealFrac a => RealFrac (Const k a b) 

Methods

properFraction :: Integral b => Const k a b -> (b, Const k a b) #

truncate :: Integral b => Const k a b -> b #

round :: Integral b => Const k a b -> b #

ceiling :: Integral b => Const k a b -> b #

floor :: Integral b => Const k a b -> b #

Show a => Show (Const k a b)

This instance would be equivalent to the derived instances of the Const newtype if the runConst field were removed

Methods

showsPrec :: Int -> Const k a b -> ShowS #

show :: Const k a b -> String #

showList :: [Const k a b] -> ShowS #

Ix a => Ix (Const k a b) 

Methods

range :: (Const k a b, Const k a b) -> [Const k a b] #

index :: (Const k a b, Const k a b) -> Const k a b -> Int #

unsafeIndex :: (Const k a b, Const k a b) -> Const k a b -> Int

inRange :: (Const k a b, Const k a b) -> Const k a b -> Bool #

rangeSize :: (Const k a b, Const k a b) -> Int #

unsafeRangeSize :: (Const k a b, Const k a b) -> Int

Generic (Const k a b) 

Associated Types

type Rep (Const k a b) :: * -> * #

Methods

from :: Const k a b -> Rep (Const k a b) x #

to :: Rep (Const k a b) x -> Const k a b #

Semigroup a => Semigroup (Const k a b) 

Methods

(<>) :: Const k a b -> Const k a b -> Const k a b #

sconcat :: NonEmpty (Const k a b) -> Const k a b #

stimes :: Integral b => b -> Const k a b -> Const k a b #

Monoid a => Monoid (Const k a b) 

Methods

mempty :: Const k a b #

mappend :: Const k a b -> Const k a b -> Const k a b #

mconcat :: [Const k a b] -> Const k a b #

Storable a => Storable (Const k a b) 

Methods

sizeOf :: Const k a b -> Int #

alignment :: Const k a b -> Int #

peekElemOff :: Ptr (Const k a b) -> Int -> IO (Const k a b) #

pokeElemOff :: Ptr (Const k a b) -> Int -> Const k a b -> IO () #

peekByteOff :: Ptr b -> Int -> IO (Const k a b) #

pokeByteOff :: Ptr b -> Int -> Const k a b -> IO () #

peek :: Ptr (Const k a b) -> IO (Const k a b) #

poke :: Ptr (Const k a b) -> Const k a b -> IO () #

Bits a => Bits (Const k a b) 

Methods

(.&.) :: Const k a b -> Const k a b -> Const k a b #

(.|.) :: Const k a b -> Const k a b -> Const k a b #

xor :: Const k a b -> Const k a b -> Const k a b #

complement :: Const k a b -> Const k a b #

shift :: Const k a b -> Int -> Const k a b #

rotate :: Const k a b -> Int -> Const k a b #

zeroBits :: Const k a b #

bit :: Int -> Const k a b #

setBit :: Const k a b -> Int -> Const k a b #

clearBit :: Const k a b -> Int -> Const k a b #

complementBit :: Const k a b -> Int -> Const k a b #

testBit :: Const k a b -> Int -> Bool #

bitSizeMaybe :: Const k a b -> Maybe Int #

bitSize :: Const k a b -> Int #

isSigned :: Const k a b -> Bool #

shiftL :: Const k a b -> Int -> Const k a b #

unsafeShiftL :: Const k a b -> Int -> Const k a b #

shiftR :: Const k a b -> Int -> Const k a b #

unsafeShiftR :: Const k a b -> Int -> Const k a b #

rotateL :: Const k a b -> Int -> Const k a b #

rotateR :: Const k a b -> Int -> Const k a b #

popCount :: Const k a b -> Int #

FiniteBits a => FiniteBits (Const k a b) 

Methods

finiteBitSize :: Const k a b -> Int #

countLeadingZeros :: Const k a b -> Int #

countTrailingZeros :: Const k a b -> Int #

type Rep1 (Const * a) 
type Rep1 (Const * a) = D1 (MetaData "Const" "Data.Functor.Const" "base" True) (C1 (MetaCons "Const" PrefixI True) (S1 (MetaSel (Just Symbol "getConst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))
type Rep (Const k a b) 
type Rep (Const k a b) = D1 (MetaData "Const" "Data.Functor.Const" "base" True) (C1 (MetaCons "Const" PrefixI True) (S1 (MetaSel (Just Symbol "getConst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a)))

type Getting r s t a b = LensLike (Const r) s t a b Source #

(^.) :: s -> Getting a s t a b -> a infixl 8 Source #

view :: s -> Getting a s t a b -> a Source #