-- | This is the main module for end-users of lens-families-core. -- If you are not building your own optics such as lenses, traversals, grates, etc., but just using optics made by others, this is the only module you need. module Lens.Family ( -- * Lenses -- -- | This module provides '^.' for accessing fields and '.~' and '%~' for setting and modifying fields. -- Lenses are composed with `Prelude..` from the @Prelude@ and `Prelude.id` is the identity lens. -- -- Lens composition in this library enjoys the following identities. -- -- * @x^.l1.l2 === x^.l1^.l2@ -- -- * @l1.l2 %~ f === l1 %~ l2 %~ f@ -- -- The identity lens behaves as follows. -- -- * @x^.id === x@ -- -- * @id %~ f === f@ -- -- The '&' operator, allows for a convenient way to sequence record updating: -- -- @record & l1 .~ value1 & l2 .~ value2@ -- -- Lenses are implemented in van Laarhoven style. -- Lenses have type @'Functor' f => (a -> f a) -> s -> f s@ and lens families have type @'Functor' f => (a i -> f (a j)) -> s i -> f (s j)@. -- -- Keep in mind that lenses and lens families can be used directly for functorial updates. -- For example, @_2 id@ gives you strength. -- -- > _2 id :: Functor f => (a, f b) -> f (a, b) -- -- Here is an example of code that uses the 'Maybe' functor to preserves sharing during update when possible. -- -- > -- | 'sharedUpdate' returns the *identical* object if the update doesn't change anything. -- > -- This is useful for preserving sharing. -- > sharedUpdate :: Eq a => LensLike' Maybe s a -> (a -> a) -> s -> s -- > sharedUpdate l f s = fromMaybe s (l f' s) -- > where -- > f' a | b == a = Nothing -- > | otherwise = Just b -- > where -- > b = f a -- * Traversals -- -- | '^.' can be used with traversals to access monoidal fields. -- The result will be a 'Data.Monid.mconcat' of all the fields referenced. -- The various @fooOf@ functions can be used to access different monoidal summaries of some kinds of values. -- -- '^?' can be used to access the first value of a traversal. -- 'Nothing' is returned when the traversal has no references. -- -- '^..' can be used with a traversals and will return a list of all fields referenced. -- -- When '.~' is used with a traversal, all referenced fields will be set to the same value, and when '%~' is used with a traversal, all referenced fields will be modified with the same function. -- -- A variant of '^?' call 'matching' returns 'Either' a 'Right' value which is the first value of the traversal, or a 'Left' value which is a "proof" that the traversal has no elements. -- The "proof" consists of the original input structure, but in the case of polymorphic families, the type parameter is replaced with a fresh type variable, thus proving that the type parameter was unused. -- -- Like all optics, traversals can be composed with '.', and because every lens is automatically a traversal, lenses and traversals can be composed with '.' yielding a traversal. -- -- Traversals are implemented in van Laarhoven style. -- Traversals have type @'Applicative' f => (a -> f a) -> s -> f s@ and traversal families have type @'Applicative' f => (a i -> f (a j)) -> s i -> f (s j)@. -- -- * Grates -- -- | 'zipWithOf' can be used with grates to zip two structure together provided a binary operation. -- -- 'under' can be to modify each value in a structure according to a function. This works analogous to how 'over' works for lenses and traversals. -- -- 'review' can be used with grates to construct a constant grate from a single value. This is like a 0-ary @zipWith@ function. -- -- 'degrating' can be used to build higher arity @zipWithOf@ functions: -- -- > zipWith3Of :: AGrate s t a b -> (a -> a -> a -> b) -> s -> s -> s -> t -- > zipWith3Of l f s1 s2 s3 = degrating l (\k -> f (k s1) (k s2) (k s3)) -- -- Like all optics, grates can be composed with '.', and 'id' is the identity grate. -- -- Grates are implemented in van Laarhoven style. -- -- Grates have type @'Functor' g => (g a -> a) -> g s -> s@ and grate families have type @'Functor' g => (g (a i) -> a j) -> g (s i) -> s j@. -- -- Keep in mind that grates and grate families can be used directly for functorial zipping. For example, -- -- > both sum :: Num a => [(a, a)] -> (a, a) -- -- will take a list of pairs return the sum of the first components and the sum of the second components. For another example, -- -- > cod id :: Functor f => f (r -> a) -> r -> f a -- -- will turn a functor full of functions into a function returning a functor full of results. -- * Adapters, Grids, and Prisms -- -- | The Adapter, Prism, and Grid optics are all 'AdapterLike' optics and typically not used directly, but either converted to a 'LensLike' optic using 'under', or into a 'GrateLike' optic using 'over'. -- See 'under' and 'over' for details about which conversions are possible. -- -- These optics are implemented in van Laarhoven style. -- -- * Adapters have type @('Functor' f, 'Functor' g) => (g a -> f a) -> g s -> f s@ and Adapters families have type @('Functor' f, 'Functor' g) => (g (a i) -> f (a j)) -> g (s i) -> f (s j)@. -- -- * Grids have type @('Applicative' f, 'Functor' g) => (g a -> f a) -> g s -> f s@ and Grids families have type @('Applicative' f, 'Functor' g) => (g (a i) -> f (a j)) -> g (s i) -> f (s j)@. -- -- * Prisms have type @('Applicative' f, 'Traversable' g) => (g a -> f a) -> g s -> f s@ and Prisms families have type @('Applicative' f, 'Traversable' g) => (g (a i) -> f (a j)) -> g (s i) -> f (s j)@. -- -- Keep in mind that these optics and their families can sometimes be used directly, without using 'over' and 'under'. Sometimes you can take advantage of the fact that -- -- @ -- LensLike f (g s) t (g a) b -- == -- AdapterLike f g s t a b -- == -- GrateLike g s (f t) a (f b) -- @ -- -- For example, if you have a grid for your structure to another type that has an @Arbitray@ instance, such as grid from a custom word type to 'Bool', e.g. @myWordBitVector :: (Applicative f, Functor g) => AdapterLike' f g MyWord Bool@, you can use the grid to create an @Arbitrary@ instance for your structure by directly applying 'review': -- -- > instance Arbitrary MyWord where -- > arbitrary = review myWordBitVector arbitrary -- * Building and Finding Optics -- -- | To build your own optics, see "Lens.Family.Unchecked". -- -- For stock optics, see "Lens.Family.Stock". -- -- References: -- -- * <http://www.twanvl.nl/blog/haskell/cps-functional-references> -- -- * <http://r6.ca/blog/20120623T104901Z.html> -- -- * <http://comonad.com/reader/2012/mirrored-lenses/> -- -- * <http://conal.net/blog/posts/semantic-editor-combinators> -- -- * <https://r6research.livejournal.com/28050.html> -- * Documentation to, view, (^.) , folding, views, (^..), (^?) , toListOf, allOf, anyOf, firstOf, lastOf, sumOf, productOf , lengthOf, nullOf , matching , over, (%~), set, (.~) , review, zipWithOf, degrating , under, reset , (&) -- * Pseudo-imperatives , (+~), (*~), (-~), (//~), (&&~), (||~), (<>~) -- * Types , AdapterLike, AdapterLike' , LensLike, LensLike' , FoldLike, FoldLike' , GrateLike, GrateLike' , AGrate, AGrate' , ASetter, ASetter' , AResetter, AResetter' , PCont , First, Last , Phantom -- * Re-exports , Constant, Identity, Prod , All, Any, Sum, Product ) where import Data.Foldable (traverse_) import Data.Functor.Constant (Constant(..)) import Data.Functor.Identity (Identity(..)) import qualified Data.Functor.Product import Data.Monoid ( All(..), Any(..) , Sum(..), Product(..) ) import Lens.Family.Phantom import Lens.Family.Unchecked type Prod = Data.Functor.Product.Product newtype PCont i j a = PCont ((a -> j) -> i) instance Functor (PCont i j) where fmap f (PCont h) = PCont $ \k -> h (k . f) runPCont :: PCont i a a -> i runPCont (PCont h) = h id type FoldLike r s t a b = LensLike (Constant r) s t a b type FoldLike' r s a = LensLike' (Constant r) s a type AGrate s t a b = GrateLike (PCont b a) s t a b type AGrate' s a = GrateLike' (PCont a a) s a type ASetter s t a b = LensLike Identity s t a b type ASetter' s a = LensLike' Identity s a type AResetter s t a b = GrateLike Identity s t a b type AResetter' s a = GrateLike' Identity s a to :: Phantom f => (s -> a) -> LensLike f s t a b -- ^ @ -- to :: (s -> a) -> Getter s t a b -- @ -- -- 'to' promotes a projection function to a read-only lens called a getter. -- To demote a lens to a projection function, use the section @(^.l)@ or @view l@. -- -- >>> (3 :+ 4, "example")^._1.to(abs) -- 5.0 :+ 0.0 to p f = coerce . f . p view :: FoldLike a s t a b -> s -> a -- ^ @ -- view :: Getter s t a b -> s -> a -- @ -- -- Demote a lens or getter to a projection function. -- -- @ -- view :: Monoid a => Fold s t a b -> s -> a -- @ -- -- Returns the monoidal summary of a traversal or a fold. view l = (^.l) folding :: (Foldable g, Phantom f, Applicative f) => (s -> g a) -> LensLike f s t a b -- ^ @ -- folding :: (s -> [a]) -> Fold s t a b -- @ -- -- 'folding' promotes a \"toList\" function to a read-only traversal called a fold. -- -- To demote a traversal or fold to a \"toList\" function use the section @(^..l)@ or @toListOf l@. folding p f = coerce . traverse_ f . p views :: FoldLike r s t a b -> (a -> r) -> s -> r -- ^ @ -- views :: Monoid r => Fold s t a b -> (a -> r) -> s -> r -- @ -- -- Given a fold or traversal, return the 'foldMap' of all the values using the given function. -- -- @ -- views :: Getter s t a b -> (a -> r) -> s -> r -- @ -- -- 'views' is not particularly useful for getters or lenses, but given a getter or lens, it returns the referenced value passed through the given function. -- -- @ -- views l f s = f (view l s) -- @ views l f = getConstant . l (Constant . f) toListOf :: FoldLike [a] s t a b -> s -> [a] -- ^ @ -- toListOf :: Fold s t a b -> s -> [a] -- @ -- -- Returns a list of all of the referenced values in order. toListOf l = views l (:[]) allOf :: FoldLike All s t a b -> (a -> Bool) -> s -> Bool -- ^ @ -- allOf :: Fold s t a b -> (a -> Bool) -> s -> Bool -- @ -- -- Returns true if all of the referenced values satisfy the given predicate. allOf l p = getAll . views l (All . p) anyOf :: FoldLike Any s t a b -> (a -> Bool) -> s -> Bool -- ^ @ -- anyOf :: Fold s t a b -> (a -> Bool) -> s -> Bool -- @ -- -- Returns true if any of the referenced values satisfy the given predicate. anyOf l p = getAny . views l (Any . p) firstOf :: FoldLike (First a) s t a b -> s -> Maybe a -- ^ @ -- firstOf :: Fold s t a b -> s -> Maybe a -- @ -- -- Returns 'Just' the first referenced value. -- Returns 'Nothing' if there are no referenced values. -- See '^?' for an infix version of 'firstOf' firstOf l = getFirst . views l (First . Just) lastOf :: FoldLike (Last a) s t a b -> s -> Maybe a -- ^ @ -- lastOf :: Fold s t a b -> s -> Maybe a -- @ -- -- Returns 'Just' the last referenced value. -- Returns 'Nothing' if there are no referenced values. lastOf l = getLast . views l (Last . Just) sumOf :: Num a => FoldLike (Sum a) s t a b -> s -> a -- ^ @ -- sumOf :: Num a => Fold s t a b -> s -> a -- @ -- -- Returns the sum of all the referenced values. sumOf l = getSum . views l Sum productOf :: Num a => FoldLike (Product a) s t a b -> s -> a -- ^ @ -- productOf :: Num a => Fold s t a b -> s -> a -- @ -- -- Returns the product of all the referenced values. productOf l = getProduct . views l Product lengthOf :: Num r => FoldLike (Sum r) s t a b -> s -> r -- ^ @ -- lengthOf :: Num r => Fold s t a b -> s -> r -- @ -- -- Counts the number of references in a traversal or fold for the input. lengthOf l = getSum . views l (const (Sum 1)) nullOf :: FoldLike All s t a b -> s -> Bool -- ^ @ -- nullOf :: Fold s t a b -> s -> Bool -- @ -- -- Returns true if the number of references in the input is zero. nullOf l = allOf l (const False) infixl 8 ^. (^.) :: s -> FoldLike a s t a b -> a -- ^ @ -- (^.) :: s -> Getter s t a b -> a -- @ -- -- Access the value referenced by a getter or lens. -- -- @ -- (^.) :: Monoid a => s -> Fold s t a b -> a -- @ -- -- Access the monoidal summary referenced by a traversal or a fold. s^.l = getConstant $ l Constant s infixl 8 ^.. (^..) :: s -> FoldLike [a] s t a b -> [a] -- ^ @ -- (^..) :: s -> Fold s t a b -> [a] -- @ -- -- Returns a list of all of the referenced values in order. s^..l = toListOf l s infixl 8 ^? (^?) :: s -> FoldLike (First a) s t a b -> Maybe a -- ^ @ -- (^?) :: s -> Fold s t a b -> Maybe a -- @ -- -- Returns 'Just' the first referenced value. -- Returns 'Nothing' if there are no referenced values. s^?l = firstOf l s matching :: LensLike (Either a) s t a b -> s -> Either t a -- ^ @ -- matching :: Traversal s t a b -> s -> Either t a -- @ -- -- Returns 'Right' of the first referenced value. -- Returns 'Left' the original value when there are no referenced values. -- In case there are no referenced values, the result might have a fresh type parameter, thereby proving the original value had no referenced values. matching l = either Right Left . l Left review :: GrateLike (Constant ()) s t a b -> b -> t -- ^ @ -- review :: Grate s t a b -> b -> t -- review :: Reviewer s t a b -> b -> t -- @ review l b = l (const b) (Constant ()) zipWithOf :: GrateLike (Prod Identity Identity) s t a b -> (a -> a -> b) -> s -> s -> t -- ^ @ -- zipWithOf :: Grate s t a b -> (a -> a -> b) -> s -> s -> t -- @ -- -- Returns a binary instance of a grate. -- -- @ -- zipWithOf l f x y = degrating l (\k -> f (k x) (k y)) -- @ zipWithOf l f s1 s2 = l (\(Data.Functor.Product.Pair (Identity a1) (Identity a2)) -> f a1 a2) (Data.Functor.Product.Pair (Identity s1) (Identity s2)) degrating :: AGrate s t a b -> ((s -> a) -> b) -> t -- ^ @ -- degrating :: Grate s t a b -> ((s -> a) -> b) -> t -- @ -- -- Demote a grate to its normal, higher-order function, form. -- -- @ -- degrating . grate = id -- grate . degrating = id -- @ degrating l = l runPCont . PCont under :: AResetter s t a b -> (a -> b) -> s -> t -- ^ @ -- under :: Resetter s t a b -> (a -> b) -> s -> t -- @ -- -- Demote a resetter to a semantic editor combinator. -- -- @ -- under :: Prism s t a b -> Traversal s t a b -- under :: Grid s t a b -> Traversal s t a b -- under :: Adapter s t a b -> Lens s t a b -- @ -- -- Covert an 'AdapterLike' optic into a 'LensLike' optic. -- -- Note: this function is unrelated to the lens package's @under@ function. under l f = l (f . runIdentity) . Identity reset :: AResetter s t a b -> b -> s -> t -- ^ @ -- reset :: Resetter s t a b -> b -> s -> t -- @ -- Set all referenced fields to the given value. reset l b = under l (const b) over :: ASetter s t a b -> (a -> b) -> s -> t -- ^ @ -- over :: Setter s t a b -> (a -> b) -> s -> t -- @ -- Demote a setter to a semantic editor combinator. -- -- @ -- over :: Prism s t a b -> Reviwer s t a b -- over :: Grid s t a b -> Grate s t a b -- over :: Adapter s t a b -> Grate s t a b -- @ -- -- Covert an 'AdapterLike' optic into a 'GrateLike' optic. over l = (l %~) infixr 4 %~ -- | Modify all referenced fields. (%~) :: ASetter s t a b -> (a -> b) -> s -> t l %~ f = runIdentity . l (Identity . f) infixr 4 .~ -- | Set all referenced fields to the given value. (.~) :: ASetter s t a b -> b -> s -> t l .~ b = l %~ const b -- | Set all referenced fields to the given value. set :: ASetter s t a b -> b -> s -> t set = (.~) infixl 1 & -- | A flipped version of @($)@. (&) :: s -> (s -> t) -> t (&) = flip ($) infixr 4 +~, -~, *~ (+~), (-~), (*~) :: Num a => ASetter s t a a -> a -> s -> t l +~ a = l %~ (+ a) l -~ a = l %~ subtract a l *~ a = l %~ (* a) infixr 4 //~ (//~) :: Fractional a => ASetter s t a a -> a -> s -> t l //~ a = l %~ (/ a) infixr 4 &&~, ||~ (&&~), (||~) :: ASetter s t Bool Bool -> Bool -> s -> t l &&~ a = l %~ (&& a) l ||~ a = l %~ (|| a) infixr 4 <>~ -- | Monoidally append a value to all referenced fields. (<>~) :: (Monoid a) => ASetter s t a a -> a -> s -> t l <>~ a = l %~ (<> a) -- Local copies of First and Last to hide it from Data.Moniod's pending deprication newtype First a = First { getFirst :: Maybe a } newtype Last a = Last { getLast :: Maybe a } instance Monoid (First a) where mempty = First Nothing (First Nothing) `mappend` b = b a `mappend` _ = a instance Monoid (Last a) where mempty = Last Nothing a `mappend` (Last Nothing) = a _ `mappend` b = b instance Semigroup (First a) where (<>) = mappend instance Semigroup (Last a) where (<>) = mappend