{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE PolyKinds #-}
-----------------------------------------------------------------------------

-- |

-- Module      :  GHC.Generics.Lens

-- Copyright   :  (C) 2012-16 Edward Kmett

-- License     :  BSD-style (see the file LICENSE)

-- Maintainer  :  Edward Kmett <ekmett@gmail.com>

-- Stability   :  experimental

-- Portability :  GHC

--

-- Note: @GHC.Generics@ exports a number of names that collide with @Control.Lens@.

--

-- You can use hiding or imports to mitigate this to an extent, and the following imports,

-- represent a fair compromise for user code:

--

-- > import Control.Lens hiding (Rep)

-- > import GHC.Generics hiding (from, to)

--

-- You can use 'generic' to replace 'GHC.Generics.from' and 'GHC.Generics.to' from @GHC.Generics@,

-- and probably won't be explicitly referencing 'Control.Lens.Representable.Rep' from @Control.Lens@

-- in code that uses generics.

--

-- This module provides compatibility with older GHC versions by using the

-- <http://hackage.haskell.org/package/generic-deriving generic-deriving>

-- package.

----------------------------------------------------------------------------

module GHC.Generics.Lens
  (
    generic
  , generic1
  , _V1
  , _U1
  , _Par1
  , _Rec1
  , _K1
  , _M1
  , _L1
  , _R1
  , _UAddr
  , _UChar
  , _UDouble
  , _UFloat
  , _UInt
  , _UWord
  ) where

import           Control.Lens
import           GHC.Exts (Char(..), Double(..), Float(..),
                           Int(..), Ptr(..), Word(..))
import qualified GHC.Generics as Generic
import           GHC.Generics hiding (from, to)

-- $setup

-- >>> :set -XNoOverloadedStrings

-- >>> import Control.Lens


-- | Convert from the data type to its representation (or back)

--

-- >>> "hello"^.generic.from generic :: String

-- "hello"

generic :: (Generic a, Generic b) => Iso a b (Rep a g) (Rep b h)
generic :: forall a b g h.
(Generic a, Generic b) =>
Iso a b (Rep a g) (Rep b h)
generic = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall a x. Generic a => a -> Rep a x
Generic.from forall a x. Generic a => Rep a x -> a
Generic.to
{-# INLINE generic #-}

-- | Convert from the data type to its representation (or back)

generic1 :: (Generic1 f, Generic1 g) => Iso (f a) (g b) (Rep1 f a) (Rep1 g b)
generic1 :: forall {k} {k} (f :: k -> *) (g :: k -> *) (a :: k) (b :: k).
(Generic1 f, Generic1 g) =>
Iso (f a) (g b) (Rep1 f a) (Rep1 g b)
generic1 = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall k (f :: k -> *) (a :: k). Generic1 f => f a -> Rep1 f a
from1 forall k (f :: k -> *) (a :: k). Generic1 f => Rep1 f a -> f a
to1
{-# INLINE generic1 #-}

_V1 :: Over p f (V1 s) (V1 t) a b
_V1 :: forall {k} {k} {k} (p :: k -> * -> *) (f :: * -> *) (s :: k)
       (t :: k) (a :: k) b.
Over p f (V1 s) (V1 t) a b
_V1 p a (f b)
_ = V1 s -> f (V1 t)
\case
{-# INLINE _V1 #-}

_U1 :: Iso (U1 p) (U1 q) () ()
_U1 :: forall {k} {k} (p :: k) (q :: k). Iso (U1 p) (U1 q) () ()
_U1 = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso (forall a b. a -> b -> a
const ()) (forall a b. a -> b -> a
const forall k (p :: k). U1 p
U1)
{-# INLINE _U1 #-}

_Par1 :: Iso (Par1 p) (Par1 q) p q
_Par1 :: forall p q. Iso (Par1 p) (Par1 q) p q
_Par1 = forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
coerced
{-# INLINE _Par1 #-}

_Rec1 :: Iso (Rec1 f p) (Rec1 g q) (f p) (g q)
_Rec1 :: forall {k} {k} (f :: k -> *) (p :: k) (g :: k -> *) (q :: k).
Iso (Rec1 f p) (Rec1 g q) (f p) (g q)
_Rec1 = forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
coerced
{-# INLINE _Rec1 #-}

_K1 :: Iso (K1 i c p) (K1 j d q) c d
_K1 :: forall {k} {k} i c (p :: k) j d (q :: k).
Iso (K1 i c p) (K1 j d q) c d
_K1 = forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
coerced
{-# INLINE _K1 #-}

_M1 :: Iso (M1 i c f p) (M1 j d g q) (f p) (g q)
_M1 :: forall {k} {k} i (c :: Meta) (f :: k -> *) (p :: k) j (d :: Meta)
       (g :: k -> *) (q :: k).
Iso (M1 i c f p) (M1 j d g q) (f p) (g q)
_M1 = forall s t a b. (Coercible s a, Coercible t b) => Iso s t a b
coerced
{-# INLINE _M1 #-}

_L1 :: Prism' ((f :+: g) a) (f a)
_L1 :: forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
Prism' ((:+:) f g a) (f a)
_L1 = forall b t s a. (b -> t) -> (s -> Either t a) -> Prism s t a b
prism forall {k} {f :: k -> *} {p :: k} {g :: k -> *}. f p -> (:+:) f g p
remitter forall {k} {f :: k -> *} {g :: k -> *} {p :: k}.
(:+:) f g p -> Either ((:+:) f g p) (f p)
reviewer
  where
  remitter :: f p -> (:+:) f g p
remitter = forall k (f :: k -> *) (g :: k -> *) (p :: k). f p -> (:+:) f g p
L1
  reviewer :: (:+:) f g p -> Either ((:+:) f g p) (f p)
reviewer (L1 f p
l) = forall a b. b -> Either a b
Right f p
l
  reviewer (:+:) f g p
x = forall a b. a -> Either a b
Left (:+:) f g p
x
{-# INLINE _L1 #-}

-- | You can access fields of `data (f :*: g) p` by using its `Field1` and

-- `Field2` instances.


_R1 :: Prism' ((f :+: g) a) (g a)
_R1 :: forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
Prism' ((:+:) f g a) (g a)
_R1 = forall b t s a. (b -> t) -> (s -> Either t a) -> Prism s t a b
prism forall {k} {g :: k -> *} {p :: k} {f :: k -> *}. g p -> (:+:) f g p
remitter forall {k} {f :: k -> *} {g :: k -> *} {p :: k}.
(:+:) f g p -> Either ((:+:) f g p) (g p)
reviewer
  where
  remitter :: g p -> (:+:) f g p
remitter = forall k (f :: k -> *) (g :: k -> *) (p :: k). g p -> (:+:) f g p
R1
  reviewer :: (:+:) f g p -> Either ((:+:) f g p) (g p)
reviewer (R1 g p
l) = forall a b. b -> Either a b
Right g p
l
  reviewer (:+:) f g p
x = forall a b. a -> Either a b
Left (:+:) f g p
x
{-# INLINE _R1 #-}

_UAddr :: Iso (UAddr p) (UAddr q) (Ptr c) (Ptr d)
_UAddr :: forall {k} {k} (p :: k) (q :: k) c d.
Iso (UAddr p) (UAddr q) (Ptr c) (Ptr d)
_UAddr = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall {k} {p :: k} {a}. URec (Ptr ()) p -> Ptr a
remitter forall {k} {a} {p :: k}. Ptr a -> URec (Ptr ()) p
reviewer
  where
  remitter :: URec (Ptr ()) p -> Ptr a
remitter (UAddr Addr#
a) = forall a. Addr# -> Ptr a
Ptr Addr#
a
  reviewer :: Ptr a -> URec (Ptr ()) p
reviewer (Ptr Addr#
a) = forall k (p :: k). Addr# -> URec (Ptr ()) p
UAddr Addr#
a
{-# INLINE _UAddr #-}

_UChar :: Iso (UChar p) (UChar q) Char Char
_UChar :: forall {k} {k} (p :: k) (q :: k). Iso (UChar p) (UChar q) Char Char
_UChar = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall {k} {p :: k}. URec Char p -> Char
remitter forall {k} {p :: k}. Char -> URec Char p
reviewer
  where
  remitter :: URec Char p -> Char
remitter (UChar Char#
c) = Char# -> Char
C# Char#
c
  reviewer :: Char -> URec Char p
reviewer (C# Char#
c) = forall k (p :: k). Char# -> URec Char p
UChar Char#
c
{-# INLINE _UChar #-}

_UDouble :: Iso (UDouble p) (UDouble q) Double Double
_UDouble :: forall {k} {k} (p :: k) (q :: k).
Iso (UDouble p) (UDouble q) Double Double
_UDouble = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall {k} {p :: k}. URec Double p -> Double
remitter forall {k} {p :: k}. Double -> URec Double p
reviewer
  where
  remitter :: URec Double p -> Double
remitter (UDouble Double#
d) = Double# -> Double
D# Double#
d
  reviewer :: Double -> URec Double p
reviewer (D# Double#
d) = forall k (p :: k). Double# -> URec Double p
UDouble Double#
d
{-# INLINE _UDouble #-}

_UFloat :: Iso (UFloat p) (UFloat q) Float Float
_UFloat :: forall {k} {k} (p :: k) (q :: k).
Iso (UFloat p) (UFloat q) Float Float
_UFloat = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall {k} {p :: k}. URec Float p -> Float
remitter forall {k} {p :: k}. Float -> URec Float p
reviewer
  where
  remitter :: URec Float p -> Float
remitter (UFloat Float#
f) = Float# -> Float
F# Float#
f
  reviewer :: Float -> URec Float p
reviewer (F# Float#
f) = forall k (p :: k). Float# -> URec Float p
UFloat Float#
f
{-# INLINE _UFloat #-}

_UInt :: Iso (UInt p) (UInt q) Int Int
_UInt :: forall {k} {k} (p :: k) (q :: k). Iso (UInt p) (UInt q) Int Int
_UInt = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall {k} {p :: k}. URec Int p -> Int
remitter forall {k} {p :: k}. Int -> URec Int p
reviewer
  where
  remitter :: URec Int p -> Int
remitter (UInt Int#
i) = Int# -> Int
I# Int#
i
  reviewer :: Int -> URec Int p
reviewer (I# Int#
i) = forall k (p :: k). Int# -> URec Int p
UInt Int#
i
{-# INLINE _UInt #-}

_UWord :: Iso (UWord p) (UWord q) Word Word
_UWord :: forall {k} {k} (p :: k) (q :: k). Iso (UWord p) (UWord q) Word Word
_UWord = forall s a b t. (s -> a) -> (b -> t) -> Iso s t a b
iso forall {k} {p :: k}. URec Word p -> Word
remitter forall {k} {p :: k}. Word -> URec Word p
reviewer
  where
  remitter :: URec Word p -> Word
remitter (UWord Word#
w) = Word# -> Word
W# Word#
w
  reviewer :: Word -> URec Word p
reviewer (W# Word#
w) = forall k (p :: k). Word# -> URec Word p
UWord Word#
w
{-# INLINE _UWord #-}