{-# LANGUAGE CPP #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE FunctionalDependencies #-}
{-# LANGUAGE PolyKinds #-}
#include "lens-common.h"
module Control.Lens.Tuple
(
Field1(..)
, Field2(..)
, Field3(..)
, Field4(..)
, Field5(..)
, Field6(..)
, Field7(..)
, Field8(..)
, Field9(..)
, Field10(..)
, Field11(..)
, Field12(..)
, Field13(..)
, Field14(..)
, Field15(..)
, Field16(..)
, Field17(..)
, Field18(..)
, Field19(..)
, _1', _2', _3', _4', _5', _6', _7', _8', _9'
, _10', _11', _12', _13', _14', _15', _16'
, _17', _18', _19'
) where
import Prelude ()
import Control.Lens.Lens
import Control.Lens.Internal.Prelude
import Data.Functor.Product (Product (..))
import Data.Kind
import Data.Strict (Pair (..))
import GHC.Generics ((:*:) (..), Generic (..), K1 (..),
M1 (..), U1 (..))
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_1 :: Lens s t a b
default _1 :: (Generic s, Generic t, GIxed N0 (Rep s) (Rep t) a b)
=> Lens s t a b
_1 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N0
proxyN0
{-# INLINE _1 #-}
instance Field1 (Identity a) (Identity b) a b where
_1 :: Lens (Identity a) (Identity b) a b
_1 a -> f b
f (Identity a
a) = forall a. a -> Identity a
Identity forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a
instance Field1 (Product f g a) (Product f' g a) (f a) (f' a) where
_1 :: Lens (Product f g a) (Product f' g a) (f a) (f' a)
_1 f a -> f (f' a)
f (Pair f a
a g a
b) = forall a b c. (a -> b -> c) -> b -> a -> c
flip forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair g a
b forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f a -> f (f' a)
f f a
a
instance Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) where
_1 :: Lens ((:*:) f g p) ((:*:) f' g p) (f p) (f' p)
_1 f p -> f (f' p)
f (f p
l :*: g p
r) = (forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: g p
r) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> f p -> f (f' p)
f f p
l
instance Field1 (Pair a b) (Pair a' b) a a' where
_1 :: Lens (Pair a b) (Pair a' b) a a'
_1 a -> f a'
f (a
a :!: b
b) = (forall a b. a -> b -> Pair a b
:!: b
b) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f a'
f a
a
instance Field1 (a,b) (a',b) a a' where
_1 :: Lens (a, b) (a', b) a a'
_1 a -> f a'
k ~(a
a,b
b) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b)
{-# INLINE _1 #-}
instance Field1 (a,b,c) (a',b,c) a a' where
_1 :: Lens (a, b, c) (a', b, c) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d) (a',b,c,d) a a' where
_1 :: Lens (a, b, c, d) (a', b, c, d) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e) (a',b,c,d,e) a a' where
_1 :: Lens (a, b, c, d, e) (a', b, c, d, e) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f) (a',b,c,d,e,f) a a' where
_1 :: Lens (a, b, c, d, e, f) (a', b, c, d, e, f) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g) (a',b,c,d,e,f,g) a a' where
_1 :: Lens (a, b, c, d, e, f, g) (a', b, c, d, e, f, g) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h) (a',b,c,d,e,f,g,h) a a' where
_1 :: Lens (a, b, c, d, e, f, g, h) (a', b, c, d, e, f, g, h) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a' where
_1 :: Lens (a, b, c, d, e, f, g, h, i) (a', b, c, d, e, f, g, h, i) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j) (a',b,c,d,e,f,g,h,i,j) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a', b, c, d, e, f, g, h, i, j) a a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk) (a',b,c,d,e,f,g,h,i,j,kk) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a', b, c, d, e, f, g, h, i, j, kk)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l) (a',b,c,d,e,f,g,h,i,j,kk,l) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a', b, c, d, e, f, g, h, i, j, kk, l)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a',b,c,d,e,f,g,h,i,j,kk,l,m) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a', b, c, d, e, f, g, h, i, j, kk, l, m)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a',b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) a a' where
_1 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a', b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
a
a'
_1 a -> f a'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = a -> f a'
k a
a forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \a'
a' -> (a'
a',b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _1 #-}
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_2 :: Lens s t a b
default _2 :: (Generic s, Generic t, GIxed N1 (Rep s) (Rep t) a b)
=> Lens s t a b
_2 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N1
proxyN1
{-# INLINE _2 #-}
instance Field2 (Product f g a) (Product f g' a) (g a) (g' a) where
_2 :: Lens (Product f g a) (Product f g' a) (g a) (g' a)
_2 g a -> f (g' a)
f (Pair f a
a g a
b) = forall {k} (f :: k -> *) (g :: k -> *) (a :: k).
f a -> g a -> Product f g a
Pair f a
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g a -> f (g' a)
f g a
b
instance Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) where
_2 :: Lens ((:*:) f g p) ((:*:) f g' p) (g p) (g' p)
_2 g p -> f (g' p)
f (f p
l :*: g p
r) = (f p
l forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> g p -> f (g' p)
f g p
r
instance Field2 (Pair a b) (Pair a b') b b' where
_2 :: Lens (Pair a b) (Pair a b') b b'
_2 b -> f b'
f (a
a :!: b
b) = (a
a forall a b. a -> b -> Pair a b
:!:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> b -> f b'
f b
b
instance Field2 (a,b) (a,b') b b' where
_2 :: Lens (a, b) (a, b') b b'
_2 b -> f b'
k ~(a
a,b
b) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b')
{-# INLINE _2 #-}
instance Field2 (a,b,c) (a,b',c) b b' where
_2 :: Lens (a, b, c) (a, b', c) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d) (a,b',c,d) b b' where
_2 :: Lens (a, b, c, d) (a, b', c, d) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e) (a,b',c,d,e) b b' where
_2 :: Lens (a, b, c, d, e) (a, b', c, d, e) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f) (a,b',c,d,e,f) b b' where
_2 :: Lens (a, b, c, d, e, f) (a, b', c, d, e, f) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g) (a,b',c,d,e,f,g) b b' where
_2 :: Lens (a, b, c, d, e, f, g) (a, b', c, d, e, f, g) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h) (a,b',c,d,e,f,g,h) b b' where
_2 :: Lens (a, b, c, d, e, f, g, h) (a, b', c, d, e, f, g, h) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i) (a,b',c,d,e,f,g,h,i) b b' where
_2 :: Lens (a, b, c, d, e, f, g, h, i) (a, b', c, d, e, f, g, h, i) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j) (a,b',c,d,e,f,g,h,i,j) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b', c, d, e, f, g, h, i, j) b b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk) (a,b',c,d,e,f,g,h,i,j,kk) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b', c, d, e, f, g, h, i, j, kk)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b',c,d,e,f,g,h,i,j,kk,l) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b', c, d, e, f, g, h, i, j, kk, l)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b',c,d,e,f,g,h,i,j,kk,l,m) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b', c, d, e, f, g, h, i, j, kk, l, m)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b',c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) b b' where
_2 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b', c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
b
b'
_2 b -> f b'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = b -> f b'
k b
b forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \b'
b' -> (a
a,b'
b',c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _2 #-}
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_3 :: Lens s t a b
default _3 :: (Generic s, Generic t, GIxed N2 (Rep s) (Rep t) a b)
=> Lens s t a b
_3 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N2
proxyN2
{-# INLINE _3 #-}
instance Field3 (a,b,c) (a,b,c') c c' where
_3 :: Lens (a, b, c) (a, b, c') c c'
_3 c -> f c'
k ~(a
a,b
b,c
c) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c')
{-# INLINE _3 #-}
instance Field3 (a,b,c,d) (a,b,c',d) c c' where
_3 :: Lens (a, b, c, d) (a, b, c', d) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e) (a,b,c',d,e) c c' where
_3 :: Lens (a, b, c, d, e) (a, b, c', d, e) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f) (a,b,c',d,e,f) c c' where
_3 :: Lens (a, b, c, d, e, f) (a, b, c', d, e, f) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g) (a,b,c',d,e,f,g) c c' where
_3 :: Lens (a, b, c, d, e, f, g) (a, b, c', d, e, f, g) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h) (a,b,c',d,e,f,g,h) c c' where
_3 :: Lens (a, b, c, d, e, f, g, h) (a, b, c', d, e, f, g, h) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i) (a,b,c',d,e,f,g,h,i) c c' where
_3 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c', d, e, f, g, h, i) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j) (a,b,c',d,e,f,g,h,i,j) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c', d, e, f, g, h, i, j) c c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c',d,e,f,g,h,i,j,kk) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c', d, e, f, g, h, i, j, kk)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c',d,e,f,g,h,i,j,kk,l) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c', d, e, f, g, h, i, j, kk, l)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c',d,e,f,g,h,i,j,kk,l,m) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c', d, e, f, g, h, i, j, kk, l, m)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p,q) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c',d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) c c' where
_3 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c', d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
c
c'
_3 c -> f c'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = c -> f c'
k c
c forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \c'
c' -> (a
a,b
b,c'
c',d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _3 #-}
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_4 :: Lens s t a b
default _4 :: (Generic s, Generic t, GIxed N3 (Rep s) (Rep t) a b)
=> Lens s t a b
_4 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N3
proxyN3
{-# INLINE _4 #-}
instance Field4 (a,b,c,d) (a,b,c,d') d d' where
_4 :: Lens (a, b, c, d) (a, b, c, d') d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d')
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e) (a,b,c,d',e) d d' where
_4 :: Lens (a, b, c, d, e) (a, b, c, d', e) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f) (a,b,c,d',e,f) d d' where
_4 :: Lens (a, b, c, d, e, f) (a, b, c, d', e, f) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g) (a,b,c,d',e,f,g) d d' where
_4 :: Lens (a, b, c, d, e, f, g) (a, b, c, d', e, f, g) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h) (a,b,c,d',e,f,g,h) d d' where
_4 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d', e, f, g, h) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i) (a,b,c,d',e,f,g,h,i) d d' where
_4 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d', e, f, g, h, i) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d',e,f,g,h,i,j) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d', e, f, g, h, i, j) d d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d',e,f,g,h,i,j,kk) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d', e, f, g, h, i, j, kk)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d',e,f,g,h,i,j,kk,l) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d', e, f, g, h, i, j, kk, l)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d',e,f,g,h,i,j,kk,l,m) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d', e, f, g, h, i, j, kk, l, m)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p,q) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p,q,r) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d',e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) d d' where
_4 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d', e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
d
d'
_4 d -> f d'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = d -> f d'
k d
d forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \d'
d' -> (a
a,b
b,c
c,d'
d',e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _4 #-}
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_5 :: Lens s t a b
default _5 :: (Generic s, Generic t, GIxed N4 (Rep s) (Rep t) a b)
=> Lens s t a b
_5 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N4
proxyN4
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e) (a,b,c,d,e') e e' where
_5 :: Lens (a, b, c, d, e) (a, b, c, d, e') e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e')
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f) (a,b,c,d,e',f) e e' where
_5 :: Lens (a, b, c, d, e, f) (a, b, c, d, e', f) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g) (a,b,c,d,e',f,g) e e' where
_5 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e', f, g) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h) (a,b,c,d,e',f,g,h) e e' where
_5 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e', f, g, h) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e',f,g,h,i) e e' where
_5 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e', f, g, h, i) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e',f,g,h,i,j) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e', f, g, h, i, j) e e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e',f,g,h,i,j,kk) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e', f, g, h, i, j, kk)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e',f,g,h,i,j,kk,l) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e', f, g, h, i, j, kk, l)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e',f,g,h,i,j,kk,l,m) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e', f, g, h, i, j, kk, l, m)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p,q) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p,q,r) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e',f,g,h,i,j,kk,l,m,n,o,p,q,r,s) e e' where
_5 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e', f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
e
e'
_5 e -> f e'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = e -> f e'
k e
e forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \e'
e' -> (a
a,b
b,c
c,d
d,e'
e',f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _5 #-}
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_6 :: Lens s t a b
default _6 :: (Generic s, Generic t, GIxed N5 (Rep s) (Rep t) a b)
=> Lens s t a b
_6 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N5
proxyN5
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f) (a,b,c,d,e,f') f f' where
_6 :: Lens (a, b, c, d, e, f) (a, b, c, d, e, f') f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f')
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g) (a,b,c,d,e,f',g) f f' where
_6 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f', g) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f',g,h) f f' where
_6 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f', g, h) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f',g,h,i) f f' where
_6 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f', g, h, i) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f',g,h,i,j) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f', g, h, i, j) f f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f',g,h,i,j,kk) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f', g, h, i, j, kk)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f',g,h,i,j,kk,l) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f', g, h, i, j, kk, l)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f',g,h,i,j,kk,l,m) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f', g, h, i, j, kk, l, m)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p,q) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p,q,r) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f',g,h,i,j,kk,l,m,n,o,p,q,r,s) f f' where
_6 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f', g, h, i, j, kk, l, m, n, o, p, q, r, s)
f
f'
_6 f -> f f'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = f -> f f'
k f
f forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \f'
f' -> (a
a,b
b,c
c,d
d,e
e,f'
f',g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _6 #-}
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_7 :: Lens s t a b
default _7 :: (Generic s, Generic t, GIxed N6 (Rep s) (Rep t) a b)
=> Lens s t a b
_7 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N6
proxyN6
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g) (a,b,c,d,e,f,g') g g' where
_7 :: Lens (a, b, c, d, e, f, g) (a, b, c, d, e, f, g') g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g')
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g',h) g g' where
_7 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g', h) g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g',h,i) g g' where
_7 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g', h, i) g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g',h,i,j) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g', h, i, j) g g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g',h,i,j,kk) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g', h, i, j, kk)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g',h,i,j,kk,l) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g', h, i, j, kk, l)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g',h,i,j,kk,l,m) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g', h, i, j, kk, l, m)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p,q) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p,q,r) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g',h,i,j,kk,l,m,n,o,p,q,r,s) g g' where
_7 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g', h, i, j, kk, l, m, n, o, p, q, r, s)
g
g'
_7 g -> f g'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = g -> f g'
k g
g forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \g'
g' -> (a
a,b
b,c
c,d
d,e
e,f
f,g'
g',h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _7 #-}
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_8 :: Lens s t a b
default _8 :: (Generic s, Generic t, GIxed N7 (Rep s) (Rep t) a b)
=> Lens s t a b
_8 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N7
proxyN7
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g,h') h h' where
_8 :: Lens (a, b, c, d, e, f, g, h) (a, b, c, d, e, f, g, h') h h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h')
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h',i) h h' where
_8 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h', i) h h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g,h',i,j) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h', i, j) h h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h',i,j,kk) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h', i, j, kk)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h',i,j,kk,l) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h', i, j, kk, l)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h',i,j,kk,l,m) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h', i, j, kk, l, m)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p,q) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p,q,r) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h',i,j,kk,l,m,n,o,p,q,r,s) h h' where
_8 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h', i, j, kk, l, m, n, o, p, q, r, s)
h
h'
_8 h -> f h'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = h -> f h'
k h
h forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \h'
h' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h'
h',i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _8 #-}
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_9 :: Lens s t a b
default _9 :: (Generic s, Generic t, GIxed N8 (Rep s) (Rep t) a b)
=> Lens s t a b
_9 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N8
proxyN8
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h,i') i i' where
_9 :: Lens (a, b, c, d, e, f, g, h, i) (a, b, c, d, e, f, g, h, i') i i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i')
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g,h,i',j) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i', j) i i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h,i',j,kk) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h, i', j, kk)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i',j,kk,l) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i', j, kk, l)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i',j,kk,l,m) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i', j, kk, l, m)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p,q) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p,q,r) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i',j,kk,l,m,n,o,p,q,r,s) i i' where
_9 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i', j, kk, l, m, n, o, p, q, r, s)
i
i'
_9 i -> f i'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = i -> f i'
k i
i forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \i'
i' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i'
i',j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _9 #-}
class Field10 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_10 :: Lens s t a b
default _10 :: (Generic s, Generic t, GIxed N9 (Rep s) (Rep t) a b)
=> Lens s t a b
_10 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N9
proxyN9
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j) (a,b,c,d,e,f,g,h,i,j') j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j) (a, b, c, d, e, f, g, h, i, j') j j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j')
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h,i,j',kk) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h, i, j', kk)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i,j',kk,l) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i, j', kk, l)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j',kk,l,m) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j', kk, l, m)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p,q) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p,q,r) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _10 #-}
instance Field10 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j',kk,l,m,n,o,p,q,r,s) j j' where
_10 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j', kk, l, m, n, o, p, q, r, s)
j
j'
_10 j -> f j'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = j -> f j'
k j
j forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \j'
j' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j'
j',kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _10 #-}
class Field11 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_11 :: Lens s t a b
default _11 :: (Generic s, Generic t, GIxed N10 (Rep s) (Rep t) a b)
=> Lens s t a b
_11 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N10
proxyN10
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk) (a,b,c,d,e,f,g,h,i,j,kk') kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk)
(a, b, c, d, e, f, g, h, i, j, kk')
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk')
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i,j,kk',l) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i, j, kk', l)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j,kk',l,m) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j, kk', l, m)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p,q) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p,q
q)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p,q,r) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _11 #-}
instance Field11 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk',l,m,n,o,p,q,r,s) kk kk' where
_11 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk', l, m, n, o, p, q, r, s)
kk
kk'
_11 kk -> f kk'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = kk -> f kk'
k kk
kk forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \kk'
kk' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk'
kk',l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _11 #-}
class Field12 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_12 :: Lens s t a b
default _12 :: (Generic s, Generic t, GIxed N11 (Rep s) (Rep t) a b)
=> Lens s t a b
_12 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N11
proxyN11
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l) (a,b,c,d,e,f,g,h,i,j,kk,l') l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l)
(a, b, c, d, e, f, g, h, i, j, kk, l')
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l')
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j,kk,l',m) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j, kk, l', m)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p,q) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p,q
q)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p,q,r) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p,q
q,r
r)
{-# INLINE _12 #-}
instance Field12 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l',m,n,o,p,q,r,s) l l' where
_12 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l', m, n, o, p, q, r, s)
l
l'
_12 l -> f l'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = l -> f l'
k l
l forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \l'
l' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l'
l',m
m,n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _12 #-}
class Field13 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_13 :: Lens s t a b
default _13 :: (Generic s, Generic t, GIxed N12 (Rep s) (Rep t) a b)
=> Lens s t a b
_13 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N12
proxyN12
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m) (a,b,c,d,e,f,g,h,i,j,kk,l,m') m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m)
(a, b, c, d, e, f, g, h, i, j, kk, l, m')
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m')
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p,q) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p,q
q)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p,q,r) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p,q
q,r
r)
{-# INLINE _13 #-}
instance Field13 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m',n,o,p,q,r,s) m m' where
_13 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m', n, o, p, q, r, s)
m
m'
_13 m -> f m'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = m -> f m'
k m
m forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \m'
m' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m'
m',n
n,o
o,p
p,q
q,r
r,s
s)
{-# INLINE _13 #-}
class Field14 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_14 :: Lens s t a b
default _14 :: (Generic s, Generic t, GIxed N13 (Rep s) (Rep t) a b)
=> Lens s t a b
_14 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N13
proxyN13
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n') n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n')
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n) = n -> f n'
k n
n forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n')
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = n -> f n'
k n
n forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = n -> f n'
k n
n forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p,q) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = n -> f n'
k n
n forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p,q
q)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p,q,r) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = n -> f n'
k n
n forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p,q
q,r
r)
{-# INLINE _14 #-}
instance Field14 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n',o,p,q,r,s) n n' where
_14 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n', o, p, q, r, s)
n
n'
_14 n -> f n'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = n -> f n'
k n
n forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \n'
n' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n'
n',o
o,p
p,q
q,r
r,s
s)
{-# INLINE _14 #-}
class Field15 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_15 :: Lens s t a b
default _15 :: (Generic s, Generic t, GIxed N14 (Rep s) (Rep t) a b)
=> Lens s t a b
_15 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N14
proxyN14
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o') o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o')
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o) = o -> f o'
k o
o forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o')
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = o -> f o'
k o
o forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p)
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p,q) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = o -> f o'
k o
o forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p,q
q)
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p,q,r) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = o -> f o'
k o
o forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p,q
q,r
r)
{-# INLINE _15 #-}
instance Field15 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o',p,q,r,s) o o' where
_15 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o', p, q, r, s)
o
o'
_15 o -> f o'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = o -> f o'
k o
o forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \o'
o' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o'
o',p
p,q
q,r
r,s
s)
{-# INLINE _15 #-}
class Field16 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_16 :: Lens s t a b
default _16 :: (Generic s, Generic t, GIxed N15 (Rep s) (Rep t) a b)
=> Lens s t a b
_16 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N15
proxyN15
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p') p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p')
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p) = p -> f p'
k p
p forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p')
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p',q) p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q)
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = p -> f p'
k p
p forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p',q
q)
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p',q,r) p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r)
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = p -> f p'
k p
p forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p',q
q,r
r)
{-# INLINE _16 #-}
instance Field16 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p',q,r,s) p p' where
_16 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p', q, r, s)
p
p'
_16 p -> f p'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = p -> f p'
k p
p forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \p'
p' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p'
p',q
q,r
r,s
s)
{-# INLINE _16 #-}
class Field17 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_17 :: Lens s t a b
default _17 :: (Generic s, Generic t, GIxed N16 (Rep s) (Rep t) a b)
=> Lens s t a b
_17 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N16
proxyN16
{-# INLINE _17 #-}
instance Field17 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q') q q' where
_17 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q')
q
q'
_17 q -> f q'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q) = q -> f q'
k q
q forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \q'
q' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q'
q')
{-# INLINE _17 #-}
instance Field17 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q',r) q q' where
_17 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r)
q
q'
_17 q -> f q'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = q -> f q'
k q
q forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \q'
q' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q'
q',r
r)
{-# INLINE _17 #-}
instance Field17 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q',r,s) q q' where
_17 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q', r, s)
q
q'
_17 q -> f q'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = q -> f q'
k q
q forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \q'
q' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q'
q',r
r,s
s)
{-# INLINE _17 #-}
class Field18 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_18 :: Lens s t a b
default _18 :: (Generic s, Generic t, GIxed N17 (Rep s) (Rep t) a b)
=> Lens s t a b
_18 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N17
proxyN17
{-# INLINE _18 #-}
instance Field18 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r') r r' where
_18 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r')
r
r'
_18 r -> f r'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r) = r -> f r'
k r
r forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \r'
r' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r'
r')
{-# INLINE _18 #-}
instance Field18 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r',s) r r' where
_18 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r', s)
r
r'
_18 r -> f r'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = r -> f r'
k r
r forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \r'
r' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r'
r',s
s)
{-# INLINE _18 #-}
class Field19 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_19 :: Lens s t a b
default _19 :: (Generic s, Generic t, GIxed N18 (Rep s) (Rep t) a b)
=> Lens s t a b
_19 = forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix Proxy N18
proxyN18
{-# INLINE _19 #-}
instance Field19 (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s) (a,b,c,d,e,f,g,h,i,j,kk,l,m,n,o,p,q,r,s') s s' where
_19 :: Lens
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s)
(a, b, c, d, e, f, g, h, i, j, kk, l, m, n, o, p, q, r, s')
s
s'
_19 s -> f s'
k ~(a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s
s) = s -> f s'
k s
s forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> \s'
s' -> (a
a,b
b,c
c,d
d,e
e,f
f,g
g,h
h,i
i,j
j,kk
kk,l
l,m
m,n
n,o
o,p
p,q
q,r
r,s'
s')
{-# INLINE _19 #-}
_1' :: Field1 s t a b => Lens s t a b
_1' :: forall s t a b. Field1 s t a b => Lens s t a b
_1' = \a -> f b
f !s
x -> forall s t a b. Field1 s t a b => Lens s t a b
_1 a -> f b
f s
x
{-# INLINE _1' #-}
_2' :: Field2 s t a b => Lens s t a b
_2' :: forall s t a b. Field2 s t a b => Lens s t a b
_2' = \a -> f b
f !s
x -> forall s t a b. Field2 s t a b => Lens s t a b
_2 a -> f b
f s
x
{-# INLINE _2' #-}
_3' :: Field3 s t a b => Lens s t a b
_3' :: forall s t a b. Field3 s t a b => Lens s t a b
_3' = \a -> f b
f !s
x -> forall s t a b. Field3 s t a b => Lens s t a b
_3 a -> f b
f s
x
{-# INLINE _3' #-}
_4' :: Field4 s t a b => Lens s t a b
_4' :: forall s t a b. Field4 s t a b => Lens s t a b
_4' = \a -> f b
f !s
x -> forall s t a b. Field4 s t a b => Lens s t a b
_4 a -> f b
f s
x
{-# INLINE _4' #-}
_5' :: Field5 s t a b => Lens s t a b
_5' :: forall s t a b. Field5 s t a b => Lens s t a b
_5' = \a -> f b
f !s
x -> forall s t a b. Field5 s t a b => Lens s t a b
_5 a -> f b
f s
x
{-# INLINE _5' #-}
_6' :: Field6 s t a b => Lens s t a b
_6' :: forall s t a b. Field6 s t a b => Lens s t a b
_6' = \a -> f b
f !s
x -> forall s t a b. Field6 s t a b => Lens s t a b
_6 a -> f b
f s
x
{-# INLINE _6' #-}
_7' :: Field7 s t a b => Lens s t a b
_7' :: forall s t a b. Field7 s t a b => Lens s t a b
_7' = \a -> f b
f !s
x -> forall s t a b. Field7 s t a b => Lens s t a b
_7 a -> f b
f s
x
{-# INLINE _7' #-}
_8' :: Field8 s t a b => Lens s t a b
_8' :: forall s t a b. Field8 s t a b => Lens s t a b
_8' = \a -> f b
f !s
x -> forall s t a b. Field8 s t a b => Lens s t a b
_8 a -> f b
f s
x
{-# INLINE _8' #-}
_9' :: Field9 s t a b => Lens s t a b
_9' :: forall s t a b. Field9 s t a b => Lens s t a b
_9' = \a -> f b
f !s
x -> forall s t a b. Field9 s t a b => Lens s t a b
_9 a -> f b
f s
x
{-# INLINE _9' #-}
_10' :: Field10 s t a b => Lens s t a b
_10' :: forall s t a b. Field10 s t a b => Lens s t a b
_10' = \a -> f b
f !s
x -> forall s t a b. Field10 s t a b => Lens s t a b
_10 a -> f b
f s
x
{-# INLINE _10' #-}
_11' :: Field11 s t a b => Lens s t a b
_11' :: forall s t a b. Field11 s t a b => Lens s t a b
_11' = \a -> f b
f !s
x -> forall s t a b. Field11 s t a b => Lens s t a b
_11 a -> f b
f s
x
{-# INLINE _11' #-}
_12' :: Field12 s t a b => Lens s t a b
_12' :: forall s t a b. Field12 s t a b => Lens s t a b
_12' = \a -> f b
f !s
x -> forall s t a b. Field12 s t a b => Lens s t a b
_12 a -> f b
f s
x
{-# INLINE _12' #-}
_13' :: Field13 s t a b => Lens s t a b
_13' :: forall s t a b. Field13 s t a b => Lens s t a b
_13' = \a -> f b
f !s
x -> forall s t a b. Field13 s t a b => Lens s t a b
_13 a -> f b
f s
x
{-# INLINE _13' #-}
_14' :: Field14 s t a b => Lens s t a b
_14' :: forall s t a b. Field14 s t a b => Lens s t a b
_14' = \a -> f b
f !s
x -> forall s t a b. Field14 s t a b => Lens s t a b
_14 a -> f b
f s
x
{-# INLINE _14' #-}
_15' :: Field15 s t a b => Lens s t a b
_15' :: forall s t a b. Field15 s t a b => Lens s t a b
_15' = \a -> f b
f !s
x -> forall s t a b. Field15 s t a b => Lens s t a b
_15 a -> f b
f s
x
{-# INLINE _15' #-}
_16' :: Field16 s t a b => Lens s t a b
_16' :: forall s t a b. Field16 s t a b => Lens s t a b
_16' = \a -> f b
f !s
x -> forall s t a b. Field16 s t a b => Lens s t a b
_16 a -> f b
f s
x
{-# INLINE _16' #-}
_17' :: Field17 s t a b => Lens s t a b
_17' :: forall s t a b. Field17 s t a b => Lens s t a b
_17' = \a -> f b
f !s
x -> forall s t a b. Field17 s t a b => Lens s t a b
_17 a -> f b
f s
x
{-# INLINE _17' #-}
_18' :: Field18 s t a b => Lens s t a b
_18' :: forall s t a b. Field18 s t a b => Lens s t a b
_18' = \a -> f b
f !s
x -> forall s t a b. Field18 s t a b => Lens s t a b
_18 a -> f b
f s
x
{-# INLINE _18' #-}
_19' :: Field19 s t a b => Lens s t a b
_19' :: forall s t a b. Field19 s t a b => Lens s t a b
_19' = \a -> f b
f !s
x -> forall s t a b. Field19 s t a b => Lens s t a b
_19 a -> f b
f s
x
{-# INLINE _19' #-}
ix :: (Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) => f n -> Lens s t a b
ix :: forall {k} s t (n :: k) a b (f :: k -> *).
(Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) =>
f n -> Lens s t a b
ix f n
n a -> f b
f = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a x. Generic a => Rep a x -> a
to forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
gix f n
n a -> f b
f forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a x. Generic a => a -> Rep a x
from
{-# INLINE ix #-}
type family GSize (f :: Type -> Type)
type instance GSize U1 = Z
type instance GSize (K1 i c) = S Z
type instance GSize (M1 i c f) = GSize f
type instance GSize (a :*: b) = Add (GSize a) (GSize b)
class GIxed n s t a b | n s -> a, n t -> b, n s b -> t, n t a -> s where
gix :: f n -> Lens (s x) (t x) a b
instance GIxed N0 (K1 i a) (K1 i b) a b where
gix :: forall (f :: * -> *) (x :: k).
f N0 -> Lens (K1 i a x) (K1 i b x) a b
gix f N0
_ = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall k i c (p :: k). K1 i c p -> c
unK1 (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall k i c (p :: k). c -> K1 i c p
K1)
{-# INLINE gix #-}
instance GIxed n s t a b => GIxed n (M1 i c s) (M1 i c t) a b where
gix :: forall (f :: k -> *) (x :: k).
f n -> Lens (M1 i c s x) (M1 i c t x) a b
gix f n
n = forall (p :: * -> * -> *) a b c d.
Profunctor p =>
(a -> b) -> (c -> d) -> p b c -> p a d
dimap forall k i (c :: Meta) (f :: k -> *) (p :: k). M1 i c f p -> f p
unM1 (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall k i (c :: Meta) (f :: k -> *) (p :: k). f p -> M1 i c f p
M1) forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
gix f n
n
{-# INLINE gix #-}
instance (p ~ GT (GSize s) n,
p ~ GT (GSize t) n,
GIxed' p n s s' t t' a b)
=> GIxed n (s :*: s') (t :*: t') a b where
gix :: forall (f :: * -> *) x.
f n -> Lens ((:*:) s s' x) ((:*:) t t' x) a b
gix = forall p n (s :: * -> *) (s' :: * -> *) (t :: * -> *)
(t' :: * -> *) a b (f :: * -> *) (g :: * -> *) x.
GIxed' p n s s' t t' a b =>
f p -> g n -> Lens ((:*:) s s' x) ((:*:) t t' x) a b
gix' (forall {k} (t :: k). Proxy t
Proxy :: Proxy p)
{-# INLINE gix #-}
class (p ~ GT (GSize s) n,
p ~ GT (GSize t) n)
=> GIxed' p n s s' t t' a b | p n s s' -> a
, p n t t' -> b
, p n s s' b -> t t'
, p n t t' a -> s s' where
gix' :: f p -> g n -> Lens ((s :*: s') x) ((t :*: t') x) a b
instance (GT (GSize s) n ~ T,
GT (GSize t) n ~ T,
GIxed n s t a b)
=> GIxed' T n s s' t s' a b where
gix' :: forall (f :: * -> *) (g :: * -> *) x.
f T -> g n -> Lens ((:*:) s s' x) ((:*:) t s' x) a b
gix' f T
_ g n
n a -> f b
f (s x
s :*: s' x
s') = (forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*: s' x
s') forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
gix g n
n a -> f b
f s x
s
{-# INLINE gix' #-}
instance (GT (GSize s) n ~ F,
n' ~ Subtract (GSize s) n,
GIxed n' s' t' a b)
=> GIxed' F n s s' s t' a b where
gix' :: forall (f :: * -> *) (g :: * -> *) x.
f F -> g n -> Lens ((:*:) s s' x) ((:*:) s t' x) a b
gix' f F
_ g n
_ a -> f b
f (s x
s :*: s' x
s') = (s x
s forall k (f :: k -> *) (g :: k -> *) (p :: k).
f p -> g p -> (:*:) f g p
:*:) forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall {k} {k} (n :: k) (s :: k -> *) (t :: k -> *) a b
(f :: k -> *) (x :: k).
GIxed n s t a b =>
f n -> Lens (s x) (t x) a b
gix (forall {k} (t :: k). Proxy t
Proxy :: Proxy n') a -> f b
f s' x
s'
{-# INLINE gix' #-}
data Z
data S a
data T
data F
type family Add x y
type instance Add Z y = y
type instance Add (S x) y = S (Add x y)
type family Subtract x y
type instance Subtract Z x = x
type instance Subtract (S x) (S y) = Subtract x y
type family GT x y
type instance GT Z x = F
type instance GT (S x) Z = T
type instance GT (S x) (S y) = GT x y
type N0 = Z
type N1 = S N0
type N2 = S N1
type N3 = S N2
type N4 = S N3
type N5 = S N4
type N6 = S N5
type N7 = S N6
type N8 = S N7
type N9 = S N8
type N10 = S N9
type N11 = S N10
type N12 = S N11
type N13 = S N12
type N14 = S N13
type N15 = S N14
type N16 = S N15
type N17 = S N16
type N18 = S N17
proxyN0 :: Proxy N0
proxyN0 :: Proxy N0
proxyN0 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN0 #-}
proxyN1 :: Proxy N1
proxyN1 :: Proxy N1
proxyN1 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN1 #-}
proxyN2 :: Proxy N2
proxyN2 :: Proxy N2
proxyN2 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN2 #-}
proxyN3 :: Proxy N3
proxyN3 :: Proxy N3
proxyN3 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN3 #-}
proxyN4 :: Proxy N4
proxyN4 :: Proxy N4
proxyN4 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN4 #-}
proxyN5 :: Proxy N5
proxyN5 :: Proxy N5
proxyN5 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN5 #-}
proxyN6 :: Proxy N6
proxyN6 :: Proxy N6
proxyN6 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN6 #-}
proxyN7 :: Proxy N7
proxyN7 :: Proxy N7
proxyN7 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN7 #-}
proxyN8 :: Proxy N8
proxyN8 :: Proxy N8
proxyN8 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN8 #-}
proxyN9 :: Proxy N9
proxyN9 :: Proxy N9
proxyN9 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN9 #-}
proxyN10 :: Proxy N10
proxyN10 :: Proxy N10
proxyN10 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN10 #-}
proxyN11 :: Proxy N11
proxyN11 :: Proxy N11
proxyN11 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN11 #-}
proxyN12 :: Proxy N12
proxyN12 :: Proxy N12
proxyN12 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN12 #-}
proxyN13 :: Proxy N13
proxyN13 :: Proxy N13
proxyN13 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN13 #-}
proxyN14 :: Proxy N14
proxyN14 :: Proxy N14
proxyN14 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN14 #-}
proxyN15 :: Proxy N15
proxyN15 :: Proxy N15
proxyN15 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN15 #-}
proxyN16 :: Proxy N16
proxyN16 :: Proxy N16
proxyN16 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN16 #-}
proxyN17 :: Proxy N17
proxyN17 :: Proxy N17
proxyN17 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN17 #-}
proxyN18 :: Proxy N18
proxyN18 :: Proxy N18
proxyN18 = forall {k} (t :: k). Proxy t
Proxy
{-# INLINE proxyN18 #-}