{-# LANGUAGE CPP #-}
{-# LANGUAGE Rank2Types #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE EmptyDataDecls #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE DefaultSignatures #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE FunctionalDependencies #-}
#ifndef MIN_VERSION_base
#define MIN_VERSION_base(x,y,z) 1
#endif
module Control.Lens.Tuple
(
Field1(..)
, Field2(..)
, Field3(..)
, Field4(..)
, Field5(..)
, Field6(..)
, Field7(..)
, Field8(..)
, Field9(..)
, _1', _2', _3', _4', _5', _6', _7', _8', _9'
) where
import Control.Lens.Lens
import Data.Functor.Identity
import Data.Functor.Product
import Data.Profunctor (dimap)
import Data.Proxy (Proxy (Proxy))
import GHC.Generics (Generic (..), (:*:) (..), K1 (..), M1 (..), U1 (..))
#if !MIN_VERSION_base(4,8,0)
import Control.Applicative
#endif
class Field1 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_1 :: Lens s t a b
default _1 :: (Generic s, Generic t, GIxed N0 (Rep s) (Rep t) a b)
=> Lens s t a b
_1 = ix proxyN0
{-# INLINE _1 #-}
instance Field1 (Identity a) (Identity b) a b where
_1 f (Identity a) = Identity <$> f a
instance Field1 (Product f g a) (Product f' g a) (f a) (f' a) where
_1 f (Pair a b) = flip Pair b <$> f a
instance Field1 ((f :*: g) p) ((f' :*: g) p) (f p) (f' p) where
_1 f (l :*: r) = (:*: r) <$> f l
instance Field1 (a,b) (a',b) a a' where
_1 k ~(a,b) = k a <&> \a' -> (a',b)
{-# INLINE _1 #-}
instance Field1 (a,b,c) (a',b,c) a a' where
_1 k ~(a,b,c) = k a <&> \a' -> (a',b,c)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d) (a',b,c,d) a a' where
_1 k ~(a,b,c,d) = k a <&> \a' -> (a',b,c,d)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e) (a',b,c,d,e) a a' where
_1 k ~(a,b,c,d,e) = k a <&> \a' -> (a',b,c,d,e)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f) (a',b,c,d,e,f) a a' where
_1 k ~(a,b,c,d,e,f) = k a <&> \a' -> (a',b,c,d,e,f)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g) (a',b,c,d,e,f,g) a a' where
_1 k ~(a,b,c,d,e,f,g) = k a <&> \a' -> (a',b,c,d,e,f,g)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h) (a',b,c,d,e,f,g,h) a a' where
_1 k ~(a,b,c,d,e,f,g,h) = k a <&> \a' -> (a',b,c,d,e,f,g,h)
{-# INLINE _1 #-}
instance Field1 (a,b,c,d,e,f,g,h,i) (a',b,c,d,e,f,g,h,i) a a' where
_1 k ~(a,b,c,d,e,f,g,h,i) = k a <&> \a' -> (a',b,c,d,e,f,g,h,i)
{-# INLINE _1 #-}
class Field2 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_2 :: Lens s t a b
default _2 :: (Generic s, Generic t, GIxed N1 (Rep s) (Rep t) a b)
=> Lens s t a b
_2 = ix proxyN1
{-# INLINE _2 #-}
instance Field2 (Product f g a) (Product f g' a) (g a) (g' a) where
_2 f (Pair a b) = Pair a <$> f b
instance Field2 ((f :*: g) p) ((f :*: g') p) (g p) (g' p) where
_2 f (l :*: r) = (l :*:) <$> f r
instance Field2 (a,b) (a,b') b b' where
_2 k ~(a,b) = k b <&> \b' -> (a,b')
{-# INLINE _2 #-}
instance Field2 (a,b,c) (a,b',c) b b' where
_2 k ~(a,b,c) = k b <&> \b' -> (a,b',c)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d) (a,b',c,d) b b' where
_2 k ~(a,b,c,d) = k b <&> \b' -> (a,b',c,d)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e) (a,b',c,d,e) b b' where
_2 k ~(a,b,c,d,e) = k b <&> \b' -> (a,b',c,d,e)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f) (a,b',c,d,e,f) b b' where
_2 k ~(a,b,c,d,e,f) = k b <&> \b' -> (a,b',c,d,e,f)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g) (a,b',c,d,e,f,g) b b' where
_2 k ~(a,b,c,d,e,f,g) = k b <&> \b' -> (a,b',c,d,e,f,g)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h) (a,b',c,d,e,f,g,h) b b' where
_2 k ~(a,b,c,d,e,f,g,h) = k b <&> \b' -> (a,b',c,d,e,f,g,h)
{-# INLINE _2 #-}
instance Field2 (a,b,c,d,e,f,g,h,i) (a,b',c,d,e,f,g,h,i) b b' where
_2 k ~(a,b,c,d,e,f,g,h,i) = k b <&> \b' -> (a,b',c,d,e,f,g,h,i)
{-# INLINE _2 #-}
class Field3 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_3 :: Lens s t a b
default _3 :: (Generic s, Generic t, GIxed N2 (Rep s) (Rep t) a b)
=> Lens s t a b
_3 = ix proxyN2
{-# INLINE _3 #-}
instance Field3 (a,b,c) (a,b,c') c c' where
_3 k ~(a,b,c) = k c <&> \c' -> (a,b,c')
{-# INLINE _3 #-}
instance Field3 (a,b,c,d) (a,b,c',d) c c' where
_3 k ~(a,b,c,d) = k c <&> \c' -> (a,b,c',d)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e) (a,b,c',d,e) c c' where
_3 k ~(a,b,c,d,e) = k c <&> \c' -> (a,b,c',d,e)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f) (a,b,c',d,e,f) c c' where
_3 k ~(a,b,c,d,e,f) = k c <&> \c' -> (a,b,c',d,e,f)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g) (a,b,c',d,e,f,g) c c' where
_3 k ~(a,b,c,d,e,f,g) = k c <&> \c' -> (a,b,c',d,e,f,g)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h) (a,b,c',d,e,f,g,h) c c' where
_3 k ~(a,b,c,d,e,f,g,h) = k c <&> \c' -> (a,b,c',d,e,f,g,h)
{-# INLINE _3 #-}
instance Field3 (a,b,c,d,e,f,g,h,i) (a,b,c',d,e,f,g,h,i) c c' where
_3 k ~(a,b,c,d,e,f,g,h,i) = k c <&> \c' -> (a,b,c',d,e,f,g,h,i)
{-# INLINE _3 #-}
class Field4 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_4 :: Lens s t a b
default _4 :: (Generic s, Generic t, GIxed N3 (Rep s) (Rep t) a b)
=> Lens s t a b
_4 = ix proxyN3
{-# INLINE _4 #-}
instance Field4 (a,b,c,d) (a,b,c,d') d d' where
_4 k ~(a,b,c,d) = k d <&> \d' -> (a,b,c,d')
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e) (a,b,c,d',e) d d' where
_4 k ~(a,b,c,d,e) = k d <&> \d' -> (a,b,c,d',e)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f) (a,b,c,d',e,f) d d' where
_4 k ~(a,b,c,d,e,f) = k d <&> \d' -> (a,b,c,d',e,f)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g) (a,b,c,d',e,f,g) d d' where
_4 k ~(a,b,c,d,e,f,g) = k d <&> \d' -> (a,b,c,d',e,f,g)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h) (a,b,c,d',e,f,g,h) d d' where
_4 k ~(a,b,c,d,e,f,g,h) = k d <&> \d' -> (a,b,c,d',e,f,g,h)
{-# INLINE _4 #-}
instance Field4 (a,b,c,d,e,f,g,h,i) (a,b,c,d',e,f,g,h,i) d d' where
_4 k ~(a,b,c,d,e,f,g,h,i) = k d <&> \d' -> (a,b,c,d',e,f,g,h,i)
{-# INLINE _4 #-}
class Field5 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_5 :: Lens s t a b
default _5 :: (Generic s, Generic t, GIxed N4 (Rep s) (Rep t) a b)
=> Lens s t a b
_5 = ix proxyN4
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e) (a,b,c,d,e') e e' where
_5 k ~(a,b,c,d,e) = k e <&> \e' -> (a,b,c,d,e')
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f) (a,b,c,d,e',f) e e' where
_5 k ~(a,b,c,d,e,f) = k e <&> \e' -> (a,b,c,d,e',f)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g) (a,b,c,d,e',f,g) e e' where
_5 k ~(a,b,c,d,e,f,g) = k e <&> \e' -> (a,b,c,d,e',f,g)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h) (a,b,c,d,e',f,g,h) e e' where
_5 k ~(a,b,c,d,e,f,g,h) = k e <&> \e' -> (a,b,c,d,e',f,g,h)
{-# INLINE _5 #-}
instance Field5 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e',f,g,h,i) e e' where
_5 k ~(a,b,c,d,e,f,g,h,i) = k e <&> \e' -> (a,b,c,d,e',f,g,h,i)
{-# INLINE _5 #-}
class Field6 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_6 :: Lens s t a b
default _6 :: (Generic s, Generic t, GIxed N5 (Rep s) (Rep t) a b)
=> Lens s t a b
_6 = ix proxyN5
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f) (a,b,c,d,e,f') f f' where
_6 k ~(a,b,c,d,e,f) = k f <&> \f' -> (a,b,c,d,e,f')
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g) (a,b,c,d,e,f',g) f f' where
_6 k ~(a,b,c,d,e,f,g) = k f <&> \f' -> (a,b,c,d,e,f',g)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f',g,h) f f' where
_6 k ~(a,b,c,d,e,f,g,h) = k f <&> \f' -> (a,b,c,d,e,f',g,h)
{-# INLINE _6 #-}
instance Field6 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f',g,h,i) f f' where
_6 k ~(a,b,c,d,e,f,g,h,i) = k f <&> \f' -> (a,b,c,d,e,f',g,h,i)
{-# INLINE _6 #-}
class Field7 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_7 :: Lens s t a b
default _7 :: (Generic s, Generic t, GIxed N6 (Rep s) (Rep t) a b)
=> Lens s t a b
_7 = ix proxyN6
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g) (a,b,c,d,e,f,g') g g' where
_7 k ~(a,b,c,d,e,f,g) = k g <&> \g' -> (a,b,c,d,e,f,g')
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g',h) g g' where
_7 k ~(a,b,c,d,e,f,g,h) = k g <&> \g' -> (a,b,c,d,e,f,g',h)
{-# INLINE _7 #-}
instance Field7 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g',h,i) g g' where
_7 k ~(a,b,c,d,e,f,g,h,i) = k g <&> \g' -> (a,b,c,d,e,f,g',h,i)
{-# INLINE _7 #-}
class Field8 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_8 :: Lens s t a b
default _8 :: (Generic s, Generic t, GIxed N7 (Rep s) (Rep t) a b)
=> Lens s t a b
_8 = ix proxyN7
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h) (a,b,c,d,e,f,g,h') h h' where
_8 k ~(a,b,c,d,e,f,g,h) = k h <&> \h' -> (a,b,c,d,e,f,g,h')
{-# INLINE _8 #-}
instance Field8 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h',i) h h' where
_8 k ~(a,b,c,d,e,f,g,h,i) = k h <&> \h' -> (a,b,c,d,e,f,g,h',i)
{-# INLINE _8 #-}
class Field9 s t a b | s -> a, t -> b, s b -> t, t a -> s where
_9 :: Lens s t a b
default _9 :: (Generic s, Generic t, GIxed N8 (Rep s) (Rep t) a b)
=> Lens s t a b
_9 = ix proxyN8
{-# INLINE _9 #-}
instance Field9 (a,b,c,d,e,f,g,h,i) (a,b,c,d,e,f,g,h,i') i i' where
_9 k ~(a,b,c,d,e,f,g,h,i) = k i <&> \i' -> (a,b,c,d,e,f,g,h,i')
{-# INLINE _9 #-}
_1' :: Field1 s t a b => Lens s t a b
_1' = \f !x -> _1 f x
{-# INLINE _1' #-}
_2' :: Field2 s t a b => Lens s t a b
_2' = \f !x -> _2 f x
{-# INLINE _2' #-}
_3' :: Field3 s t a b => Lens s t a b
_3' = \f !x -> _3 f x
{-# INLINE _3' #-}
_4' :: Field4 s t a b => Lens s t a b
_4' = \f !x -> _4 f x
{-# INLINE _4' #-}
_5' :: Field5 s t a b => Lens s t a b
_5' = \f !x -> _5 f x
{-# INLINE _5' #-}
_6' :: Field6 s t a b => Lens s t a b
_6' = \f !x -> _6 f x
{-# INLINE _6' #-}
_7' :: Field7 s t a b => Lens s t a b
_7' = \f !x -> _7 f x
{-# INLINE _7' #-}
_8' :: Field8 s t a b => Lens s t a b
_8' = \f !x -> _8 f x
{-# INLINE _8' #-}
_9' :: Field9 s t a b => Lens s t a b
_9' = \f !x -> _9 f x
{-# INLINE _9' #-}
ix :: (Generic s, Generic t, GIxed n (Rep s) (Rep t) a b) => f n -> Lens s t a b
ix n f = fmap to . gix n f . from
{-# INLINE ix #-}
type family GSize (f :: * -> *)
type instance GSize U1 = Z
type instance GSize (K1 i c) = S Z
type instance GSize (M1 i c f) = GSize f
type instance GSize (a :*: b) = Add (GSize a) (GSize b)
class GIxed n s t a b | n s -> a, n t -> b, n s b -> t, n t a -> s where
gix :: f n -> Lens (s x) (t x) a b
instance GIxed N0 (K1 i a) (K1 i b) a b where
gix _ = dimap unK1 (fmap K1)
{-# INLINE gix #-}
instance GIxed n s t a b => GIxed n (M1 i c s) (M1 i c t) a b where
gix n = dimap unM1 (fmap M1) . gix n
{-# INLINE gix #-}
instance (p ~ GT (GSize s) n,
p ~ GT (GSize t) n,
GIxed' p n s s' t t' a b)
=> GIxed n (s :*: s') (t :*: t') a b where
gix = gix' (Proxy :: Proxy p)
{-# INLINE gix #-}
#if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 706
#endif
class (p ~ GT (GSize s) n,
p ~ GT (GSize t) n)
=> GIxed' p n s s' t t' a b | p n s s' -> a
, p n t t' -> b
, p n s s' b -> t t'
, p n t t' a -> s s' where
gix' :: f p -> g n -> Lens ((s :*: s') x) ((t :*: t') x) a b
instance (GT (GSize s) n ~ T,
GT (GSize t) n ~ T,
GIxed n s t a b)
=> GIxed' T n s s' t s' a b where
gix' _ n f (s :*: s') = (:*: s') <$> gix n f s
{-# INLINE gix' #-}
instance (GT (GSize s) n ~ F,
n' ~ Subtract (GSize s) n,
GIxed n' s' t' a b)
=> GIxed' F n s s' s t' a b where
gix' _ _ f (s :*: s') = (s :*:) <$> gix (Proxy :: Proxy n') f s'
{-# INLINE gix' #-}
data Z
data S a
data T
data F
type family Add x y
type instance Add Z y = y
type instance Add (S x) y = S (Add x y)
type family Subtract x y
type instance Subtract Z x = x
type instance Subtract (S x) (S y) = Subtract x y
type family GT x y
type instance GT Z x = F
type instance GT (S x) Z = T
type instance GT (S x) (S y) = GT x y
type N0 = Z
type N1 = S N0
type N2 = S N1
type N3 = S N2
type N4 = S N3
type N5 = S N4
type N6 = S N5
type N7 = S N6
type N8 = S N7
proxyN0 :: Proxy N0
proxyN0 = Proxy
{-# INLINE proxyN0 #-}
proxyN1 :: Proxy N1
proxyN1 = Proxy
{-# INLINE proxyN1 #-}
proxyN2 :: Proxy N2
proxyN2 = Proxy
{-# INLINE proxyN2 #-}
proxyN3 :: Proxy N3
proxyN3 = Proxy
{-# INLINE proxyN3 #-}
proxyN4 :: Proxy N4
proxyN4 = Proxy
{-# INLINE proxyN4 #-}
proxyN5 :: Proxy N5
proxyN5 = Proxy
{-# INLINE proxyN5 #-}
proxyN6 :: Proxy N6
proxyN6 = Proxy
{-# INLINE proxyN6 #-}
proxyN7 :: Proxy N7
proxyN7 = Proxy
{-# INLINE proxyN7 #-}
proxyN8 :: Proxy N8
proxyN8 = Proxy
{-# INLINE proxyN8 #-}