{-# OPTIONS_GHC -Wall #-} {-# LANGUAGE Trustworthy #-} {- | Module : Physics.Learn.Schrodinger1D Copyright : (c) Scott N. Walck 2015-2018 License : BSD3 (see LICENSE) Maintainer : Scott N. Walck <walck@lvc.edu> Stability : experimental This module contains functions to solve the (time dependent) Schrodinger equation in one spatial dimension for a given potential function. -} module Physics.Learn.Schrodinger1D ( -- * Potentials freeV , harmonicV , squareWell , doubleWell , stepV , wall -- * Initial wavefunctions -- , harm , coherent , gaussian , movingGaussian -- * Utilities , stateVectorFromWavefunction , hamiltonianMatrix , expectX , picture , xRange , listForm ) where import Data.Complex ( Complex(..) , magnitude ) import Graphics.Gloss ( Picture(..) , yellow , black , Display(..) , display ) -- import Math.Polynomial.Hermite -- ( evalPhysHermite -- ) import Numeric.LinearAlgebra ( R , C , Vector , Matrix , (|>) , (<.>) , fromLists , toList , size ) import Physics.Learn.QuantumMat ( probVector , timeEv ) --i :: Complex Double --i = 0 :+ 1 ---------------- -- Potentials -- ---------------- -- | Free potential. -- The potential energy is zero everywhere. freeV :: Double -- ^ position -> Double -- ^ potential energy freeV _x = 0 -- | Harmonic potential. -- This is the potential energy of a linear spring. harmonicV :: Double -- ^ spring constant -> Double -- ^ position -> Double -- ^ potential energy harmonicV k x = k * x**2 / 2 -- | A double well potential. -- Potential energy is a quartic function of position -- that gives two wells, each approximately harmonic -- at the bottom of the well. doubleWell :: Double -- ^ width (for both wells and well separation) -> Double -- ^ energy height of barrier between wells -> Double -- ^ position -> Double -- ^ potential energy doubleWell a v0 x = v0 * ((x**2 - a**2)/a**2)**2 -- | Finite square well potential. -- Potential is zero inside the well, -- and constant outside the well. -- Well is centered at the origin. squareWell :: Double -- ^ well width -> Double -- ^ energy height of well -> Double -- ^ position -> Double -- ^ potential energy squareWell l v0 x | abs x < l/2 = 0 | otherwise = v0 -- | A step barrier potential. -- Potential is zero to left of origin. stepV :: Double -- ^ energy height of barrier (to the right of origin) -> Double -- ^ position -> Double -- ^ potential energy stepV v0 x | x < 0 = 0 | otherwise = v0 -- | A potential barrier with thickness and height. wall :: Double -- ^ thickness of wall -> Double -- ^ energy height of barrier -> Double -- ^ position of center of barrier -> Double -- ^ position -> Double -- ^ potential energy wall w v0 x0 x | abs (x-x0) < w/2 = v0 | otherwise = 0 --------------------------- -- Initial wavefunctions -- --------------------------- -- -- | Harmonic oscillator stationary state -- harm :: Int -- ^ nonnegative integer n identifying stationary state -- -> Double -- ^ x / sqrt(hbar/(m * omega)), i.e. position -- -- in units of sqrt(hbar/(m * omega)) -- -> C -- ^ complex amplitude -- harm n u -- = exp (-u**2/2) * evalPhysHermite n u / sqrt (2^n * fact n * sqrt pi) :+ 0 coherent :: R -- ^ length scale = sqrt(hbar / m omega) -> C -- ^ parameter z -> R -> C -- ^ wavefunction coherent l z x = ((1/(pi*l**2))**0.25 * exp(-x**2/(2*l**2)) :+ 0) * exp(-z**2/2 + (sqrt(2/l**2) * x :+ 0) * z) gaussian :: R -- ^ width parameter -> R -- ^ center of wave packet -> R -> C -- ^ wavefunction gaussian a x0 x = exp(-(x-x0)**2/(2*a**2)) / sqrt(a * sqrt pi) :+ 0 movingGaussian :: R -- ^ width parameter -> R -- ^ center of wave packet -> R -- ^ l0 = hbar / p0 -> R -> C -- ^ wavefunction movingGaussian a x0 l0 x = exp((0 :+ x/l0) - ((x-x0)**2/(2*a**2) :+ 0)) / (sqrt(a * sqrt pi) :+ 0) --------------- -- Utilities -- --------------- fact :: Int -> Double fact 0 = 1 fact n = fromIntegral n * fact (n-1) linspace :: Double -> Double -> Int -> [Double] linspace left right num = let dx = (right - left) / fromIntegral (num - 1) in [ left + dx * fromIntegral n | n <- [0..num-1]] -- | Transform a wavefunction into a state vector. stateVectorFromWavefunction :: R -- ^ lowest x -> R -- ^ highest x -> Int -- ^ dimension of state vector -> (R -> C) -- ^ wavefunction -> Vector C -- ^ state vector stateVectorFromWavefunction left right num psi = (num |>) [psi x | x <- linspace left right num] hamiltonianMatrix :: R -- ^ lowest x -> R -- ^ highest x -> Int -- ^ dimension of state vector -> R -- ^ hbar -> R -- ^ mass -> (R -> R) -- ^ potential energy function -> Matrix C -- ^ Hamiltonian Matrix hamiltonianMatrix xmin xmax num hbar m pe = let coeff = -hbar**2/(2*m) dx = (xmax - xmin) / fromIntegral (num - 1) diagKEterm = -2 * coeff / dx**2 offdiagKEterm = coeff / dx**2 xs = linspace xmin xmax num in fromLists [[case abs(i-j) of 0 -> (diagKEterm + pe x) :+ 0 1 -> offdiagKEterm :+ 0 _ -> 0 | j <- [1..num] ] | (i,x) <- zip [1..num] xs] expectX :: Vector C -- ^ state vector -> Vector R -- ^ vector of x values -> R -- ^ <X>, expectation value of X expectX psi xs = probVector psi <.> xs glossScaleX :: Int -> (Double,Double) -> Double -> Float glossScaleX screenWidth (xmin,xmax) x = let w = fromIntegral screenWidth :: Double in realToFrac $ (x - xmin) / (xmax - xmin) * w - w / 2 glossScaleY :: Int -> (Double,Double) -> Double -> Float glossScaleY screenHeight (ymin,ymax) y = let h = fromIntegral screenHeight :: Double in realToFrac $ (y - ymin) / (ymax - ymin) * h - h / 2 glossScalePoint :: (Int,Int) -- ^ (screenWidth,screenHeight) -> (Double,Double) -- ^ (xmin,xmax) -> (Double,Double) -- ^ (ymin,ymax) -> (Double,Double) -- ^ (x,y) -> (Float,Float) glossScalePoint (screenWidth,screenHeight) xMinMax yMinMax (x,y) = (glossScaleX screenWidth xMinMax x ,glossScaleY screenHeight yMinMax y) -- | Produce a gloss 'Picture' of state vector -- for 1D wavefunction. picture :: (Double, Double) -- ^ y range -> [Double] -- ^ xs -> Vector C -- ^ state vector -> Picture picture (ymin,ymax) xs psi = Color yellow (Line [glossScalePoint (screenWidth,screenHeight) (head xs, last xs) (ymin,ymax) p | p <- zip xs (map magSq $ toList psi)]) where magSq = \z -> magnitude z ** 2 screenWidth = 1000 screenHeight = 750 -- options for representing wave functions -- 1. A function R -> C -- 2. ([R],Vector C), where lengths match -- 3. [(R,C)] -- 4. (R,R,Vector C) -- xmin, xmax, state vector (assumes even spacing) -- 2,4 are best for evolution listForm :: (R,R,Vector C) -> ([R],Vector C) listForm (xmin,xmax,v) = let dt = (xmax - xmin) / fromIntegral (size v - 1) in ([xmin, xmin + dt .. xmax],v) {- -- | Given an initial state vector and -- state propagation function, produce a simulation. -- The 'Float' in the state propagation function is the time -- interval for one timestep. simulate1D :: [Double] -> Vector C -> (Float -> (Float,[Double],Vector C) -> (Float,[Double],Vector C)) -> IO () simulate1D xs initial statePropFunc = simulate display black 10 (0,initial) displayFunc (const statePropFunc) where display = InWindow "Animation" (screenWidth,screenHeight) (10,10) displayFunc (_t,v) = Color yellow (Line [( white (\tFloat -> Pictures [Color blue (Line (points (realToFrac tFloat))) ,axes (screenWidth,screenHeight) (xmin,xmax) (ymin,ymax)]) -- | Produce a state propagation function from a time-dependent Hamiltonian. -- The float is dt. statePropGloss :: (Double -> Matrix C) -> Float -> (Float,Vector C) -> (Float,Vector C) statePropGloss ham dt (tOld,v) = (tNew, timeEv (realToFrac dt) (ham tMid) v) where tNew = tOld + dt tMid = realToFrac $ (tNew + tOld) / 2 -- | Given an initial state vector and a time-dependent Hamiltonian, -- produce a visualization of a 1D wavefunction. evolutionBlochSphere :: Vector C -> (Double -> Matrix C) -> IO () evolutionBlochSphere psi0 ham = simulateBlochSphere 0.01 psi0 (stateProp ham) -} {- def triDiagMatrixMult(square_arr,arr): num = len(arr) result = array([0 for n in range(num)],dtype=complex128) result[0] = square_arr[0][0] * arr[0] + square_arr[0][1] * arr[1] for n in range(1,num-1): result[n] = square_arr[n][n-1] * arr[n-1] + square_arr[n][n] * arr[n] \ + square_arr[n][n+1] * arr[n+1] result[num-1] = square_arr[num-1][num-2] * arr[num-2] \ + square_arr[num-1][num-1] * arr[num-1] return result -} ------------------ -- Main program -- ------------------ -- n is number of points -- n-1 is number of intervals xRange :: R -> R -> Int -> [R] xRange xmin xmax n = let dt = (xmax - xmin) / fromIntegral (n - 1) in [xmin, xmin + dt .. xmax] {- if __name__ == '__main__': m = 1 omega = 10 xmin = -2.0 xmax = 2.0 num = 256 num = 128 dt = 0.0002 dt = 0.01 xs = linspace(xmin,xmax,num) dx = xs[1] - xs[0] super = lambda x: (harm0(m,omega)(x) + harm1(m,omega)(x))/sqrt(2) shiftedHarm = lambda x: harm0(m,omega)(x-1) coh = coherent(m,omega,1) print sum(conj(psi)*psi)*dx harmV = harmonicV(m * omega**2) V = doubleWell(1,0.1*hbar*omega) V = squareWell(1.0,hbar*omega) V = harmonicV(m*omega**2) V = stepV(10*hbar*omega) V = wall(0.1,14.0*hbar*omega,0) V = freeV H = matrixH(m,xmin,xmax,num,V) I = matrixI(num) (vals,vecs) = eigh(H) E0 = vals[0] E1 = vals[1] psi0 = normalize(transpose(vecs)[0],dx) psi1 = normalize(transpose(vecs)[1],dx) psi = func2psi(gaussian(0.3,1),xmin,xmax,num) psi = func2psi(coh,xmin,xmax,num) psi = func2psi(movingGaussian(0.3,10,-1),xmin,xmax,num) psi = psi0 psi = psi1 psi = (psi0 + psi1)/sqrt(2) E = sum(conj(psi)*triDiagMatrixMult(H,psi)).real*dx Escale = hbar*omega print E print Escale leftM = I + 0.5 * i * H / hbar * dt rightM = I - 0.5 * i * H / hbar * dt box = display(title='Schrodinger Equation',width=1000,height=1000) c = curve(pos = psi2rho(psi,xs)) c.color = color.blue c.radius = 0.02 ball = sphere(radius=0.05,color=color.red,pos=(expectX(psi,xs),0,0)) pot_curve = [(x,V(x)/Escale,0) for x in xs if V(x)/Escale < xmax] pot = curve(color=color.green,pos=pot_curve,radius=0.01) Eline = curve(color=(1,1,0),pos=[(x,E/Escale) for x in xs]) axis = curve(color=color.white,pos=[(x,0) for x in xs]) while 1: psi = solve(leftM,triDiagMatrixMult(rightM,psi)) c.pos = psi2rho(psi,xs) ball.x = expectX(psi,xs) To Do: add combinators for potentials to shift horizontally and vertically, and to add potentials -} -- Are we committed to SI units for hbar? No. -- harmonic oscillator functions depend only on sqrt(hbar/m omega) -- which is a length parameter -- for moving gaussian, could give hbar/p0 instead of p0 -- (is that debrogie wavelength? I think it's h/p0)