Copyright | (c) 2015-2024 Rudy Matela |
---|---|
License | 3-Clause BSD (see the file LICENSE) |
Maintainer | Rudy Matela <rudy@matela.com.br> |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
This module is part of LeanCheck, a simple enumerative property-based testing library.
This module re-exports Test.LeanCheck but some test functions have been specialized to catch errors (see the explicit export list below).
This module is unsafe as it uses unsafePerformIO
to catch errors.
Synopsis
- holds :: Testable a => Int -> a -> Bool
- fails :: Testable a => Int -> a -> Bool
- exists :: Testable a => Int -> a -> Bool
- counterExample :: Testable a => Int -> a -> Maybe [String]
- counterExamples :: Testable a => Int -> a -> [[String]]
- witness :: Testable a => Int -> a -> Maybe [String]
- witnesses :: Testable a => Int -> a -> [[String]]
- results :: Testable a => a -> [([String], Bool)]
- fromError :: a -> a -> a
- errorToNothing :: a -> Maybe a
- errorToFalse :: Bool -> Bool
- errorToTrue :: Bool -> Bool
- errorToLeft :: a -> Either String a
- anyErrorToNothing :: a -> Maybe a
- anyErrorToLeft :: a -> Either String a
- (?==?) :: Eq a => a -> a -> Bool
- (!==!) :: Eq a => a -> a -> Bool
- class Listable a where
- class Testable a
- (==>) :: Bool -> Bool -> Bool
- reset :: [[a]] -> [[a]]
- check :: Testable a => a -> IO ()
- checkFor :: Testable a => Int -> a -> IO ()
- checkResult :: Testable a => a -> IO Bool
- checkResultFor :: Testable a => Int -> a -> IO Bool
- cons0 :: a -> [[a]]
- cons1 :: Listable a => (a -> b) -> [[b]]
- cons2 :: (Listable a, Listable b) => (a -> b -> c) -> [[c]]
- cons3 :: (Listable a, Listable b, Listable c) => (a -> b -> c -> d) -> [[d]]
- cons4 :: (Listable a, Listable b, Listable c, Listable d) => (a -> b -> c -> d -> e) -> [[e]]
- cons5 :: (Listable a, Listable b, Listable c, Listable d, Listable e) => (a -> b -> c -> d -> e -> f) -> [[f]]
- cons6 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f) => (a -> b -> c -> d -> e -> f -> g) -> [[g]]
- cons7 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g) => (a -> b -> c -> d -> e -> f -> g -> h) -> [[h]]
- cons8 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h) => (a -> b -> c -> d -> e -> f -> g -> h -> i) -> [[i]]
- cons9 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j) -> [[j]]
- cons10 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k) -> [[k]]
- cons11 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l) -> [[l]]
- cons12 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k, Listable l) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m) -> [[m]]
- delay :: [[a]] -> [[a]]
- ofWeight :: [[a]] -> Int -> [[a]]
- addWeight :: [[a]] -> Int -> [[a]]
- suchThat :: [[a]] -> (a -> Bool) -> [[a]]
- (\/) :: [[a]] -> [[a]] -> [[a]]
- (\\//) :: [[a]] -> [[a]] -> [[a]]
- (><) :: [[a]] -> [[b]] -> [[(a, b)]]
- productWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]]
- mapT :: (a -> b) -> [[a]] -> [[b]]
- filterT :: (a -> Bool) -> [[a]] -> [[a]]
- concatT :: [[[[a]]]] -> [[a]]
- concatMapT :: (a -> [[b]]) -> [[a]] -> [[b]]
- deleteT :: Eq a => a -> [[a]] -> [[a]]
- normalizeT :: [[a]] -> [[a]]
- toTiers :: [a] -> [[a]]
- deriveListable :: Name -> DecsQ
- deriveListableCascading :: Name -> DecsQ
- setCons :: Listable a => ([a] -> b) -> [[b]]
- bagCons :: Listable a => ([a] -> b) -> [[b]]
- noDupListCons :: Listable a => ([a] -> b) -> [[b]]
- mapCons :: (Listable a, Listable b) => ([(a, b)] -> c) -> [[c]]
- product3With :: (a -> b -> c -> d) -> [[a]] -> [[b]] -> [[c]] -> [[d]]
- productMaybeWith :: (a -> b -> Maybe c) -> [[a]] -> [[b]] -> [[c]]
- listsOf :: [[a]] -> [[[a]]]
- setsOf :: [[a]] -> [[[a]]]
- bagsOf :: [[a]] -> [[[a]]]
- noDupListsOf :: [[a]] -> [[[a]]]
- products :: [[[a]]] -> [[[a]]]
- listsOfLength :: Int -> [[a]] -> [[[a]]]
- tiersFloating :: (Ord a, Fractional a) => [[a]]
- tiersFractional :: (Ord a, Fractional a) => [[a]]
- listFloating :: (Ord a, Fractional a) => [a]
- listFractional :: (Ord a, Fractional a) => [a]
- listIntegral :: (Ord a, Num a) => [a]
- (+|) :: [a] -> [a] -> [a]
Documentation
holds :: Testable a => Int -> a -> Bool Source #
An error-catching version of holds
that returns False
in case of errors.
prop_cannot_be_seven :: Int -> Bool prop_cannot_be_seven 7 = error "Argument cannot be seven" prop_cannot_be_seven _ = True
> import Test.LeanCheck > holds 100 prop_cannot_be_seven *** Exception: Argument cannot be seven
> import Test.LeanCheck.Error > holds 100 prop_cannot_be_seven False
counterExample :: Testable a => Int -> a -> Maybe [String] Source #
An error-catching version of counterExample
.
counterExamples :: Testable a => Int -> a -> [[String]] Source #
An error-catching version of counterExamples
.
fromError :: a -> a -> a Source #
Transforms errors into a default value.
> fromError 0 (15 :: Int) 15
> fromError 0 (undefined :: Int) 0
errorToNothing :: a -> Maybe a Source #
Transforms a value into Just
that value or Nothing
on some errors:
- ArithException
- ArrayException
- ErrorCall
- PatternMatchFail
> errorToNothing False Just False
> errorToNothing (0 :: Int) Just 0
> errorToNothing (undefined :: ()) Nothing
This function uses unsafePerformIO
.
errorToFalse :: Bool -> Bool Source #
Transforms errors into False
values.
> errorToFalse False False
> errorToFalse True True
> errorToFalse undefined False
This functions uses unsafePerformIO
.
errorToTrue :: Bool -> Bool Source #
Transforms errors into True
values.
> errorToTrue False False
> errorToTrue True True
> errorToTrue undefined True
This functions uses unsafePerformIO
.
errorToLeft :: a -> Either String a Source #
Transforms a value into Right
that value or 'Left String' on some errors:
- ArithException
- ArrayException
- ErrorCall
- PatternMatchFail
> errorToLeft False Just False
> errorToLeft (0 :: Int) Just 0
> errorToLeft (undefined :: ()) Left "Prelude.undefined"
> errorToLeft (error "error message") Left "error message"
> errorToLeft (1 `div` 0 :: Int) Left "divide by zero"
Only the first line of the error's string representation is included.
This function uses unsafePerformIO
.
anyErrorToNothing :: a -> Maybe a Source #
anyErrorToLeft :: a -> Either String a Source #
Transforms a value into Right
that value or 'Left String' on error.
Only the first line of the error's string representation is included.
This function uses unsafePerformIO
. See: errorToLeft
.
(?==?) :: Eq a => a -> a -> Bool infix 4 Source #
Equality ==
lifted over errorToNothing
> 1 `div` 1 ?==? 2 `div` 2 True
> 1 `div` 1 ?==? 1 `div` 2 False
> 1 `div` 1 ?==? 1 `div` 0 False
> 6 `mod` 0 ?==? 2 `div` 0 True
> head [] ?==? tail [] True
> error "a" ?==? error "a" True
> error "a" ?==? error "b" True
This function consider error values equal.
(!==!) :: Eq a => a -> a -> Bool infix 4 Source #
Equality ==
lifted over errorToLeft
> 1 `div` 1 !==! 2 `div` 2 True
> 1 `div` 1 !==! 1 `div` 2 False
> 1 `div` 1 !==! 1 `div` 0 False
> 6 `mod` 0 !==! 2 `div` 0 True
> head [] !==! tail [] False
> error "a" !==! error "a" True
> error "a" !==! error "b" False
On error, this function returns the result of comparing the first line of error values.
class Listable a where Source #
A type is Listable
when there exists a function that
is able to list (ideally all of) its values.
Ideally, instances should be defined by a tiers
function that
returns a (potentially infinite) list of finite sub-lists (tiers):
the first sub-list contains elements of size 0,
the second sub-list contains elements of size 1
and so on.
Size here is defined by the implementor of the type-class instance.
For algebraic data types, the general form for tiers
is
tiers = cons<N> ConstructorA \/ cons<N> ConstructorB \/ ... \/ cons<N> ConstructorZ
where N
is the number of arguments of each constructor A...Z
.
Here is a datatype with 4 constructors and its listable instance:
data MyType = MyConsA | MyConsB Int | MyConsC Int Char | MyConsD String instance Listable MyType where tiers = cons0 MyConsA \/ cons1 MyConsB \/ cons2 MyConsC \/ cons1 MyConsD
The instance for Hutton's Razor is given by:
data Expr = Val Int | Add Expr Expr instance Listable Expr where tiers = cons1 Val \/ cons2 Add
Instances can be alternatively defined by list
.
In this case, each sub-list in tiers
is a singleton list
(each succeeding element of list
has +1 size).
The function deriveListable
from Test.LeanCheck.Derive can automatically derive
instances of this typeclass.
A Listable
instance for functions is also available but is not exported by
default. Import Test.LeanCheck.Function if you need to test higher-order
properties.
Instances
Listable CBool Source # | |
Listable CChar Source # | |
Listable CClock Source # | |
Listable CDouble Source # | |
Listable CFloat Source # | |
Listable CInt Source # | |
Listable CIntMax Source # | |
Listable CIntPtr Source # | |
Listable CLLong Source # | |
Listable CLong Source # | |
Listable CPtrdiff Source # | |
Listable CSChar Source # | |
Listable CSUSeconds Source # | |
Defined in Test.LeanCheck.Basic tiers :: [[CSUSeconds]] Source # list :: [CSUSeconds] Source # | |
Listable CShort Source # | |
Listable CSigAtomic Source # | |
Defined in Test.LeanCheck.Basic tiers :: [[CSigAtomic]] Source # list :: [CSigAtomic] Source # | |
Listable CSize Source # | |
Listable CTime Source # | |
Listable CUChar Source # | |
Listable CUInt Source # | |
Listable CUIntMax Source # | |
Listable CUIntPtr Source # | |
Listable CULLong Source # | |
Listable CULong Source # | |
Listable CUSeconds Source # | |
Listable CUShort Source # | |
Listable CWchar Source # | |
Listable SeekMode Source # | |
Listable ExitCode Source # | Only includes valid POSIX exit codes > list :: [ExitCode] [ExitSuccess, ExitFailure 1, ExitFailure 2, ..., ExitFailure 255] |
Listable BufferMode Source # | |
Defined in Test.LeanCheck.Basic tiers :: [[BufferMode]] Source # list :: [BufferMode] Source # | |
Listable IOMode Source # | |
Listable Int16 Source # | list :: [Int16] = [0, 1, -1, 2, -2, ..., 32767, -32767, -32768] |
Listable Int32 Source # | list :: [Int32] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |
Listable Int64 Source # | list :: [Int64] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |
Listable Int8 Source # | list :: [Int8] = [0, 1, -1, 2, -2, 3, -3, ..., 127, -127, -128] |
Listable GeneralCategory Source # | |
Defined in Test.LeanCheck.Basic tiers :: [[GeneralCategory]] Source # list :: [GeneralCategory] Source # | |
Listable Word16 Source # | list :: [Word16] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ..., 65535] |
Listable Word32 Source # | list :: [Word32] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] |
Listable Word64 Source # | list :: [Word64] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] |
Listable Word8 Source # | list :: [Word8] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ..., 255] |
Listable Ordering Source # | list :: [Ordering] = [LT, EQ, GT] |
Listable A Source # | |
Listable Alpha Source # | |
Listable AlphaNum Source # | |
Listable AlphaNums Source # | |
Listable Alphas Source # | |
Listable B Source # | |
Listable C Source # | |
Listable D Source # | |
Listable Digit Source # | |
Listable Digits Source # | |
Listable E Source # | |
Listable F Source # | |
Listable Int1 Source # | |
Listable Int2 Source # | |
Listable Int3 Source # | |
Listable Int4 Source # | |
Listable Letter Source # | |
Listable Letters Source # | |
Listable Lower Source # | |
Listable Lowers Source # | |
Listable Nat Source # | |
Listable Nat1 Source # | |
Listable Nat2 Source # | |
Listable Nat3 Source # | |
Listable Nat4 Source # | |
Listable Nat5 Source # | |
Listable Nat6 Source # | |
Listable Nat7 Source # | |
Listable Natural Source # | |
Listable Space Source # | |
Listable Spaces Source # | |
Listable Upper Source # | |
Listable Uppers Source # | |
Listable Word1 Source # | |
Listable Word2 Source # | |
Listable Word3 Source # | |
Listable Word4 Source # | |
Listable Integer Source # | list :: [Int] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |
Listable () Source # | list :: [()] = [()] tiers :: [[()]] = [[()]] |
Listable Bool Source # | tiers :: [[Bool]] = [[False,True]] list :: [[Bool]] = [False,True] |
Listable Char Source # | list :: [Char] = ['a', ' ', 'b', 'A', 'c', '\', 'n', 'd', ...] |
Listable Double Source # |
list :: [Double] = [0.0, 1.0, -1.0, Infinity, 0.5, 2.0, ...] |
Listable Float Source # |
list :: [Float] = [ 0.0 , 1.0, -1.0, Infinity , 0.5, 2.0, -Infinity, -0.5, -2.0 , 0.33333334, 3.0, -0.33333334, -3.0 , 0.25, 0.6666667, 1.5, 4.0, -0.25, -0.6666667, -1.5, -4.0 , ... ] |
Listable Int Source # | tiers :: [[Int]] = [[0], [1], [-1], [2], [-2], [3], [-3], ...] list :: [Int] = [0, 1, -1, 2, -2, 3, -3, 4, -4, 5, -5, 6, ...] |
Listable Word Source # | list :: [Word] = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...] |
(RealFloat a, Listable a) => Listable (Complex a) Source # | |
(Integral a, Listable a) => Listable (Ratio a) Source # | list :: [Rational] = [ 0 % 1 , 1 % 1 , (-1) % 1 , 1 % 2, 2 % 1 , (-1) % 2, (-2) % 1 , 1 % 3, 3 % 1 , (-1) % 3, (-3) % 1 , 1 % 4, 2 % 3, 3 % 2, 4 % 1 , (-1) % 4, (-2) % 3, (-3) % 2, (-4) % 1 , 1 % 5, 5 % 1 , (-1) % 5, (-5) % 1 , ... ] |
Listable a => Listable (Bag a) Source # | |
Listable a => Listable (NoDup a) Source # | |
Listable a => Listable (Set a) Source # | |
(Integral a, Bounded a) => Listable (X a) Source # | Extremily large integers are intercalated with small integers. list :: [X Int] = map X [ 0, 1, -1, maxBound, minBound , 2, -2, maxBound-1, minBound+1 , 3, -3, maxBound-2, minBound+2 , ... ] |
(Integral a, Bounded a) => Listable (Xs a) Source # | Lists with elements of the |
Listable a => Listable (Maybe a) Source # | tiers :: [[Maybe Int]] = [[Nothing], [Just 0], [Just 1], ...] tiers :: [[Maybe Bool]] = [[Nothing], [Just False, Just True]] |
Listable a => Listable [a] Source # | tiers :: [[ [Int] ]] = [ [ [] ] , [ [0] ] , [ [0,0], [1] ] , [ [0,0,0], [0,1], [1,0], [-1] ] , ... ] list :: [ [Int] ] = [ [], [0], [0,0], [1], [0,0,0], ... ] |
(Listable a, Listable b) => Listable (Either a b) Source # | tiers :: [[Either Bool Bool]] = [[Left False, Right False, Left True, Right True]] tiers :: [[Either Int Int]] = [ [Left 0, Right 0] , [Left 1, Right 1] , [Left (-1), Right (-1)] , [Left 2, Right 2] , ... ] |
(Listable a, Listable b) => Listable (Map a b) Source # | |
(Listable a, Listable b) => Listable (a, b) Source # | tiers :: [[(Int,Int)]] = [ [(0,0)] , [(0,1),(1,0)] , [(0,-1),(1,1),(-1,0)] , ...] list :: [(Int,Int)] = [ (0,0), (0,1), (1,0), (0,-1), (1,1), ...] |
(Eq a, Listable a, Listable b) => Listable (a -> b) Source # | |
(Listable a, Listable b, Listable c) => Listable (a, b, c) Source # | list :: [(Int,Int,Int)] = [ (0,0,0), (0,0,1), (0,1,0), ...] |
(Listable a, Listable b, Listable c, Listable d) => Listable (a, b, c, d) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e) => Listable (a, b, c, d, e) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f) => Listable (a, b, c, d, e, f) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g) => Listable (a, b, c, d, e, f, g) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h) => Listable (a, b, c, d, e, f, g, h) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i) => Listable (a, b, c, d, e, f, g, h, i) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j) => Listable (a, b, c, d, e, f, g, h, i, j) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k) => Listable (a, b, c, d, e, f, g, h, i, j, k) Source # | |
(Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k, Listable l) => Listable (a, b, c, d, e, f, g, h, i, j, k, l) Source # | |
Testable
values are functions
of Listable
arguments that return boolean values.
Bool
Listable a => a -> Bool
(Listable a, Listable b) => a -> b -> Bool
(Listable a, Listable b, Listable c) => a -> b -> c -> Bool
(Listable a, Listable b, Listable c, ...) => a -> b -> c -> ... -> Bool
For example:
Int -> Bool
String -> [Int] -> Bool
(cf. results
)
(==>) :: Bool -> Bool -> Bool infixr 0 Source #
Boolean implication operator. Useful for defining conditional properties:
prop_something x y = condition x y ==> something x y
Examples:
> prop_addMonotonic x y = y > 0 ==> x + y > x > check prop_addMonotonic +++ OK, passed 200 tests.
reset :: [[a]] -> [[a]] Source #
Resets any delays in a list-of tiers
.
Conceptually this function makes a constructor "weightless",
assuring the first tier is non-empty.
reset [[], [], ..., xs, ys, zs, ...] = [xs, ys, zs, ...]
reset [[], xs, ys, zs, ...] = [xs, ys, zs, ...]
reset [[], [], ..., [x], [y], [z], ...] = [[x], [y], [z], ...]
Typically used when defining Listable
instances:
instance Listable <Type> where tiers = ... \/ reset (cons<N> <Constructor>) \/ ...
Be careful: do not apply reset
to recursive data structure
constructors. In general this will make the list of size 0 infinite,
breaking the tiers
invariant (each tier must be finite).
check :: Testable a => a -> IO () Source #
Checks a property printing results on stdout
> check $ \xs -> sort (sort xs) == sort (xs::[Int]) +++ OK, passed 200 tests.
> check $ \xs ys -> xs `union` ys == ys `union` (xs::[Int]) *** Failed! Falsifiable (after 4 tests): [] [0,0]
checkFor :: Testable a => Int -> a -> IO () Source #
Check a property for a given number of tests
printing results on stdout
> checkFor 1000 $ \xs -> sort (sort xs) == sort (xs::[Int]) +++ OK, passed 1000 tests.
Test exhaustion is reported when the configured number of tests is larger than the number of available test values:
> checkFor 3 $ \p -> p == not (not p) +++ OK, passed 2 tests (exhausted).
checkResult :: Testable a => a -> IO Bool Source #
Check a property
printing results on stdout
and
returning True
on success.
> p <- checkResult $ \xs -> sort (sort xs) == sort (xs::[Int]) +++ OK, passed 200 tests. > q <- checkResult $ \xs ys -> xs `union` ys == ys `union` (xs::[Int]) *** Failed! Falsifiable (after 4 tests): [] [0,0] > p && q False
There is no option to silence this function:
for silence, you should use holds
.
Given a constructor with no arguments,
returns tiers
of all possible applications of this constructor.
Since in this case there is only one possible application (to no arguments), only a single value, of size/weight 0, will be present in the resulting list of tiers.
To be used in the declaration of tiers
in Listable
instances.
instance Listable <Type> where tiers = ... \/ cons0 <Constructor> \/ ...
cons4 :: (Listable a, Listable b, Listable c, Listable d) => (a -> b -> c -> d -> e) -> [[e]] Source #
cons5 :: (Listable a, Listable b, Listable c, Listable d, Listable e) => (a -> b -> c -> d -> e -> f) -> [[f]] Source #
cons6 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f) => (a -> b -> c -> d -> e -> f -> g) -> [[g]] Source #
Returns tiers of applications of a 6-argument constructor.
cons7 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g) => (a -> b -> c -> d -> e -> f -> g -> h) -> [[h]] Source #
Returns tiers of applications of a 7-argument constructor.
cons8 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h) => (a -> b -> c -> d -> e -> f -> g -> h -> i) -> [[i]] Source #
Returns tiers of applications of a 8-argument constructor.
cons9 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j) -> [[j]] Source #
Returns tiers of applications of a 9-argument constructor.
cons10 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k) -> [[k]] Source #
Returns tiers of applications of a 10-argument constructor.
cons11 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l) -> [[l]] Source #
Returns tiers of applications of a 11-argument constructor.
cons12 :: (Listable a, Listable b, Listable c, Listable d, Listable e, Listable f, Listable g, Listable h, Listable i, Listable j, Listable k, Listable l) => (a -> b -> c -> d -> e -> f -> g -> h -> i -> j -> k -> l -> m) -> [[m]] Source #
Returns tiers of applications of a 12-argument constructor.
delay :: [[a]] -> [[a]] Source #
Delays the enumeration of tiers
.
Conceptually this function adds to the weight of a constructor.
delay [xs, ys, zs, ... ] = [[], xs, ys, zs, ...]
delay [[x,...], [y,...], ...] = [[], [x,...], [y,...], ...]
Typically used when defining Listable
instances:
instance Listable <Type> where tiers = ... \/ delay (cons<N> <Constructor>) \/ ...
ofWeight :: [[a]] -> Int -> [[a]] Source #
Resets the weight of a constructor or tiers.
> [ [], [], ..., xs, ys, zs, ... ] `ofWeight` 1 [ [], xs, ys, zs, ... ]
> [ xs, ys, zs, ... ] `ofWeight` 2 [ [], [], xs, ys, zs, ... ]
> [ [], xs, ys, zs, ... ] `ofWeight` 3 [ [], [], [], xs, ys, zs, ... ]
Typically used as an infix operator when defining Listable
instances:
instance Listable <Type> where tiers = ... \/ cons<N> <Cons> `ofWeight` <W> \/ ...
Warning: do not apply `ofWeight` 0
to recursive data structure
constructors. In general this will make the list of size 0 infinite,
breaking the tier invariant (each tier must be finite).
`ofWeight` n
is equivalent to reset
followed
by n
applications of delay
.
addWeight :: [[a]] -> Int -> [[a]] Source #
Adds to the weight of a constructor or tiers.
instance Listable <Type> where tiers = ... \/ cons<N> <Cons> `addWeight` <W> \/ ...
Typically used as an infix operator when defining Listable
instances:
> [ xs, ys, zs, ... ] `addWeight` 1 [ [], xs, ys, zs, ... ]
> [ xs, ys, zs, ... ] `addWeight` 2 [ [], [], xs, ys, zs, ... ]
> [ [], xs, ys, zs, ... ] `addWeight` 3 [ [], [], [], [], xs, ys, zs, ... ]
`addWeight` n
is equivalent to n
applications of delay
.
suchThat :: [[a]] -> (a -> Bool) -> [[a]] Source #
Tiers of values that follow a property.
Typically used in the definition of Listable
tiers:
instance Listable <Type> where tiers = ... \/ cons<N> `suchThat` <condition> \/ ...
Examples:
> tiers `suchThat` odd [[], [1], [-1], [], [], [3], [-3], [], [], [5], ...]
> tiers `suchThat` even [[0], [], [], [2], [-2], [], [], [4], [-4], [], ...]
(\/) :: [[a]] -> [[a]] -> [[a]] infixr 7 Source #
Append tiers --- sum of two tiers enumerations.
[xs,ys,zs,...] \/ [as,bs,cs,...] = [xs++as, ys++bs, zs++cs, ...]
(\\//) :: [[a]] -> [[a]] -> [[a]] infixr 7 Source #
Interleave tiers --- sum of two tiers enumerations.
When in doubt, use \/
instead.
[xs,ys,zs,...] \/ [as,bs,cs,...] = [xs+|as, ys+|bs, zs+|cs, ...]
(><) :: [[a]] -> [[b]] -> [[(a, b)]] infixr 8 Source #
Take a tiered product of lists of tiers.
[t0,t1,t2,...] >< [u0,u1,u2,...] = [ t0**u0 , t0**u1 ++ t1**u0 , t0**u2 ++ t1**u1 ++ t2**u0 , ... ... ... ... ] where xs ** ys = [(x,y) | x <- xs, y <- ys]
Example:
[[0],[1],[2],...] >< [[0],[1],[2],...] = [ [(0,0)] , [(1,0),(0,1)] , [(2,0),(1,1),(0,2)] , [(3,0),(2,1),(1,2),(0,3)] , ... ]
(cf. productWith
)
productWith :: (a -> b -> c) -> [[a]] -> [[b]] -> [[c]] Source #
Take a tiered product of lists of tiers.
productWith
can be defined by ><
, as:
productWith f xss yss = map (uncurry f) $ xss >< yss
(cf. ><
)
mapT :: (a -> b) -> [[a]] -> [[b]] Source #
map
over tiers
mapT f [[x], [y,z], [w,...], ...] = [[f x], [f y, f z], [f w, ...], ...]
mapT f [xs, ys, zs, ...] = [map f xs, map f ys, map f zs]
filterT :: (a -> Bool) -> [[a]] -> [[a]] Source #
filter
tiers
filterT p [xs, yz, zs, ...] = [filter p xs, filter p ys, filter p zs]
filterT odd tiers = [[], [1], [-1], [], [], [3], [-3], [], [], [5], ...]
concatT :: [[[[a]]]] -> [[a]] Source #
concat
tiers of tiers
concatT [ [xss0, yss0, zss0, ...] , [xss1, yss1, zss1, ...] , [xss2, yss2, zss2, ...] , ... ] = xss0 \/ yss0 \/ zss0 \/ ... \/ delay (xss1 \/ yss1 \/ zss1 \/ ... \/ delay (xss2 \/ yss2 \/ zss2 \/ ... \/ (delay ...)))
(cf. concatMapT
)
concatMapT :: (a -> [[b]]) -> [[a]] -> [[b]] Source #
deleteT :: Eq a => a -> [[a]] -> [[a]] Source #
Delete the first occurence of an element in a tier.
For normalized lists-of-tiers without repetitions, the following holds:
deleteT x = normalizeT . (`suchThat` (/= x))
normalizeT :: [[a]] -> [[a]] Source #
Normalizes tiers by removing up to 12 empty tiers from the end of a list of tiers.
normalizeT [xs0,xs1,...,xsN,[]] = [xs0,xs1,...,xsN] normalizeT [xs0,xs1,...,xsN,[],[]] = [xs0,xs1,...,xsN]
The arbitrary limit of 12 tiers is necessary as this function would loop if there is an infinite trail of empty tiers.
toTiers :: [a] -> [[a]] Source #
Takes a list of values xs
and transform it into tiers on which each
tier is occupied by a single element from xs
.
toTiers [x, y, z, ...] = [[x], [y], [z], ...]
To convert back to a list, just concat
.
deriveListable :: Name -> DecsQ Source #
Derives a Listable
instance for a given type Name
.
Consider the following Stack
datatype:
data Stack a = Stack a (Stack a) | Empty
Writing
deriveListable ''Stack
will automatically derive the following Listable
instance:
instance Listable a => Listable (Stack a) where tiers = cons2 Stack \/ cons0 Empty
Warning: if the values in your type need to follow a data invariant, the derived instance won't respect it. Use this only on "free" datatypes.
Needs the TemplateHaskell
extension.
deriveListableCascading :: Name -> DecsQ Source #
Derives a Listable
instance for a given type Name
cascading derivation of type arguments as well.
Consider the following series of datatypes:
data Position = CEO | Manager | Programmer data Person = Person { name :: String , age :: Int , position :: Position } data Company = Company { name :: String , employees :: [Person] }
Writing
deriveListableCascading ''Company
will automatically derive the following three Listable
instances:
instance Listable Position where tiers = cons0 CEO \/ cons0 Manager \/ cons0 Programmer instance Listable Person where tiers = cons3 Person instance Listable Company where tiers = cons2 Company
setCons :: Listable a => ([a] -> b) -> [[b]] Source #
Given a constructor that takes a set of elements (as a list), lists tiers of applications of this constructor.
A naive Listable
instance for the Set
(of Data.Set)
would read:
instance Listable a => Listable (Set a) where tiers = cons0 empty \/ cons2 insert
The above instance has a problem: it generates repeated sets. A more efficient implementation that does not repeat sets is given by:
tiers = setCons fromList
Alternatively, you can use setsOf
direclty.
bagCons :: Listable a => ([a] -> b) -> [[b]] Source #
Given a constructor that takes a bag of elements (as a list), lists tiers of applications of this constructor.
For example, a Bag
represented as a list.
bagCons Bag
noDupListCons :: Listable a => ([a] -> b) -> [[b]] Source #
Given a constructor that takes a list with no duplicate elements, return tiers of applications of this constructor.
mapCons :: (Listable a, Listable b) => ([(a, b)] -> c) -> [[c]] Source #
Given a constructor that takes a map of elements (encoded as a list), lists tiers of applications of this constructor
So long as the underlying Listable
enumerations have no repetitions,
this will generate no repetitions.
This allows defining an efficient implementation of tiers
that does not
repeat maps given by:
tiers = mapCons fromList
product3With :: (a -> b -> c -> d) -> [[a]] -> [[b]] -> [[c]] -> [[d]] Source #
Like productWith
, but over 3 lists of tiers.
productMaybeWith :: (a -> b -> Maybe c) -> [[a]] -> [[b]] -> [[c]] Source #
listsOf :: [[a]] -> [[[a]]] Source #
Takes as argument tiers of element values; returns tiers of lists of elements.
listsOf [[]] = [[[]]]
listsOf [[x]] = [ [[]] , [[x]] , [[x,x]] , [[x,x,x]] , ... ]
listsOf [[x],[y]] = [ [[]] , [[x]] , [[x,x],[y]] , [[x,x,x],[x,y],[y,x]] , ... ]
setsOf :: [[a]] -> [[[a]]] Source #
Takes as argument tiers of element values; returns tiers of size-ordered lists of elements without repetition.
setsOf [[0],[1],[2],...] = [ [[]] , [[0]] , [[1]] , [[0,1],[2]] , [[0,2],[3]] , [[0,3],[1,2],[4]] , [[0,1,2],[0,4],[1,3],[5]] , ... ]
Can be used in the constructor of specialized Listable
instances.
For Set
(from Data.Set), we would have:
instance Listable a => Listable (Set a) where tiers = mapT fromList $ setsOf tiers
bagsOf :: [[a]] -> [[[a]]] Source #
Takes as argument tiers of element values; returns tiers of size-ordered lists of elements possibly with repetition.
bagsOf [[0],[1],[2],...] = [ [[]] , [[0]] , [[0,0],[1]] , [[0,0,0],[0,1],[2]] , [[0,0,0,0],[0,0,1],[0,2],[1,1],[3]] , [[0,0,0,0,0],[0,0,0,1],[0,0,2],[0,1,1],[0,3],[1,2],[4]] , ... ]
noDupListsOf :: [[a]] -> [[[a]]] Source #
Takes as argument tiers of element values; returns tiers of lists with no repeated elements.
noDupListsOf [[0],[1],[2],...] == [ [[]] , [[0]] , [[1]] , [[0,1],[1,0],[2]] , [[0,2],[2,0],[3]] , ... ]
products :: [[[a]]] -> [[[a]]] Source #
Takes the product of N lists of tiers, producing lists of length N.
Alternatively, takes as argument a list of lists of tiers of elements; returns lists combining elements of each list of tiers.
products [xss] = mapT (:[]) xss products [xss,yss] = mapT (\(x,y) -> [x,y]) (xss >< yss) products [xss,yss,zss] = product3With (\x y z -> [x,y,z]) xss yss zss
listsOfLength :: Int -> [[a]] -> [[[a]]] Source #
Takes as argument an integer length and tiers of element values; returns tiers of lists of element values of the given length.
listsOfLength 3 [[0],[1],[2],[3],[4]...] = [ [[0,0,0]] , [[0,0,1],[0,1,0],[1,0,0]] , [[0,0,2],[0,1,1],[0,2,0],[1,0,1],[1,1,0],[2,0,0]] , ... ]
tiersFloating :: (Ord a, Fractional a) => [[a]] Source #
Tiers of Floating
values.
This can be used as the implementation of tiers
for Floating
types.
This function is equivalent to tiersFractional
with positive and negative infinities included: 10 and -10.
NaN
and -0
are excluded from this enumeration.
This function is deprecated. Please consider using listFloating
instead
or use toTiers
listFloating
.
tiersFractional :: (Ord a, Fractional a) => [[a]] Source #
Tiers of Fractional
values.
This can be used as the implementation of tiers
for Fractional
types.
This function is deprecated. Please consider using listFractional
instead
or use toTiers
listFractional
.
listFloating :: (Ord a, Fractional a) => [a] Source #
Listing of Floating
values.
This can be used as the implementation of list
for Floating
types.
listFloating :: [Double] = [0.0, 1.0, -1.0, 0.5, -0.5, 2.0, Infinity, -Infinity, -2.0, 0.333, ...]
This follow the same Calkin-Wilf sequence of listFractional
but positive and negative infinities are artificially included after two.
NaN
and -0
are excluded from this enumeration.
listFractional :: (Ord a, Fractional a) => [a] Source #
Listing of Fractional
values.
This can be used as the implementation of list
for Fractional
types.
listFractional :: [[Rational]] = [0 % 1, 1 % 1, (-1) % 1, 1 % 2, (-1) % 2, 2 % 1, (-2) % 1, 1 % 3, ...]
All rationals are included without repetition in their most simple form.
This is the Calkin-Wilf sequence
computed with the help of the fusc
function (EWD 570).
This also works for unsigned types that wrap around zero, yielding:
listFractional :: [Ratio Word] = [0 % 1, 1 % 1, 1 % 2, 2 % 1, 1 % 3, 3 % 2, 2 % 3, 3 % 1, 1 % 4, ...]
listIntegral :: (Ord a, Num a) => [a] Source #
Tiers of Integral
values.
Can be used as a default implementation of list
for Integral
types.
For types with negative values, like Int
,
the list starts with 0 then intercalates between positives and negatives.
listIntegral = [0, 1, -1, 2, -2, 3, -3, 4, -4, ...]
For types without negative values, like Word
,
the list starts with 0 followed by positives of increasing magnitude.
listIntegral = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...]
This function will not work for types that throw errors when the result of
an arithmetic operation is negative such as Natural
. For these, use
[0..]
as the list
implementation.