lattices-2: Fine-grained library for constructing and manipulating lattices

Copyright(C) 2019 Oleg Grenrus
LicenseBSD-3-Clause (see the file LICENSE)
MaintainerOleg Grenrus <oleg.grenrus@iki.fi>
Safe HaskellSafe
LanguageHaskell2010

Algebra.Lattice.N5

Description

 
Synopsis

Documentation

data N5 Source #

\(N_5\), is smallest non-modular (and non-distributive) lattice.

Constructors

N5o 
N5a 
N5b 
N5c 
N5i 
Instances
Bounded N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

minBound :: N5 #

maxBound :: N5 #

Enum N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

succ :: N5 -> N5 #

pred :: N5 -> N5 #

toEnum :: Int -> N5 #

fromEnum :: N5 -> Int #

enumFrom :: N5 -> [N5] #

enumFromThen :: N5 -> N5 -> [N5] #

enumFromTo :: N5 -> N5 -> [N5] #

enumFromThenTo :: N5 -> N5 -> N5 -> [N5] #

Eq N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

(==) :: N5 -> N5 -> Bool #

(/=) :: N5 -> N5 -> Bool #

Data N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> N5 -> c N5 #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c N5 #

toConstr :: N5 -> Constr #

dataTypeOf :: N5 -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c N5) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c N5) #

gmapT :: (forall b. Data b => b -> b) -> N5 -> N5 #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> N5 -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> N5 -> r #

gmapQ :: (forall d. Data d => d -> u) -> N5 -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> N5 -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> N5 -> m N5 #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> N5 -> m N5 #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> N5 -> m N5 #

Ord N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

compare :: N5 -> N5 -> Ordering #

(<) :: N5 -> N5 -> Bool #

(<=) :: N5 -> N5 -> Bool #

(>) :: N5 -> N5 -> Bool #

(>=) :: N5 -> N5 -> Bool #

max :: N5 -> N5 -> N5 #

min :: N5 -> N5 -> N5 #

Read N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Show N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

showsPrec :: Int -> N5 -> ShowS #

show :: N5 -> String #

showList :: [N5] -> ShowS #

Generic N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Associated Types

type Rep N5 :: Type -> Type #

Methods

from :: N5 -> Rep N5 x #

to :: Rep N5 x -> N5 #

Function N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

function :: (N5 -> b) -> N5 :-> b #

Arbitrary N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

arbitrary :: Gen N5 #

shrink :: N5 -> [N5] #

CoArbitrary N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

coarbitrary :: N5 -> Gen b -> Gen b #

NFData N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

rnf :: N5 -> () #

Hashable N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

hashWithSalt :: Int -> N5 -> Int #

hash :: N5 -> Int #

Universe N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

universe :: [N5] #

Finite N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

PartialOrd N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

leq :: N5 -> N5 -> Bool Source #

comparable :: N5 -> N5 -> Bool Source #

BoundedMeetSemiLattice N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

top :: N5 Source #

BoundedJoinSemiLattice N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

bottom :: N5 Source #

Lattice N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

Methods

(\/) :: N5 -> N5 -> N5 Source #

(/\) :: N5 -> N5 -> N5 Source #

type Rep N5 Source # 
Instance details

Defined in Algebra.Lattice.N5

type Rep N5 = D1 (MetaData "N5" "Algebra.Lattice.N5" "lattices-2-GNwPiglY2qIELYMTNuLIEL" False) ((C1 (MetaCons "N5o" PrefixI False) (U1 :: Type -> Type) :+: C1 (MetaCons "N5a" PrefixI False) (U1 :: Type -> Type)) :+: (C1 (MetaCons "N5b" PrefixI False) (U1 :: Type -> Type) :+: (C1 (MetaCons "N5c" PrefixI False) (U1 :: Type -> Type) :+: C1 (MetaCons "N5i" PrefixI False) (U1 :: Type -> Type))))