lattices-2: Fine-grained library for constructing and manipulating lattices

Safe HaskellSafe
LanguageHaskell2010

Algebra.Heyting.Free

Synopsis

Documentation

data Free a Source #

Free Heyting algebra.

Note: Eq and PartialOrd instances aren't structural.

>>> Top == (Var 'x' ==> Var 'x')
True
>>> Var 'x' == Var 'y'
False

You can test for taulogogies:

>>> leq Top $ (Var 'A' /\ Var 'B' ==> Var 'C') <=>  (Var 'A' ==> Var 'B' ==> Var 'C')
True
>>> leq Top $ (Var 'A' /\ neg (Var 'A')) <=> Bottom
True
>>> leq Top $ (Var 'A' \/ neg (Var 'A')) <=> Top
False

Constructors

Var a 
Bottom 
Top 
(Free a) :/\: (Free a) infixr 6 
(Free a) :\/: (Free a) infixr 5 
(Free a) :=>: (Free a) infixr 4 
Instances
Monad Free Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

(>>=) :: Free a -> (a -> Free b) -> Free b #

(>>) :: Free a -> Free b -> Free b #

return :: a -> Free a #

fail :: String -> Free a #

Functor Free Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

fmap :: (a -> b) -> Free a -> Free b #

(<$) :: a -> Free b -> Free a #

Applicative Free Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

pure :: a -> Free a #

(<*>) :: Free (a -> b) -> Free a -> Free b #

liftA2 :: (a -> b -> c) -> Free a -> Free b -> Free c #

(*>) :: Free a -> Free b -> Free b #

(<*) :: Free a -> Free b -> Free a #

Foldable Free Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

fold :: Monoid m => Free m -> m #

foldMap :: Monoid m => (a -> m) -> Free a -> m #

foldr :: (a -> b -> b) -> b -> Free a -> b #

foldr' :: (a -> b -> b) -> b -> Free a -> b #

foldl :: (b -> a -> b) -> b -> Free a -> b #

foldl' :: (b -> a -> b) -> b -> Free a -> b #

foldr1 :: (a -> a -> a) -> Free a -> a #

foldl1 :: (a -> a -> a) -> Free a -> a #

toList :: Free a -> [a] #

null :: Free a -> Bool #

length :: Free a -> Int #

elem :: Eq a => a -> Free a -> Bool #

maximum :: Ord a => Free a -> a #

minimum :: Ord a => Free a -> a #

sum :: Num a => Free a -> a #

product :: Num a => Free a -> a #

Traversable Free Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

traverse :: Applicative f => (a -> f b) -> Free a -> f (Free b) #

sequenceA :: Applicative f => Free (f a) -> f (Free a) #

mapM :: Monad m => (a -> m b) -> Free a -> m (Free b) #

sequence :: Monad m => Free (m a) -> m (Free a) #

Ord a => Eq (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

(==) :: Free a -> Free a -> Bool #

(/=) :: Free a -> Free a -> Bool #

Data a => Data (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Free a -> c (Free a) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Free a) #

toConstr :: Free a -> Constr #

dataTypeOf :: Free a -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Free a)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Free a)) #

gmapT :: (forall b. Data b => b -> b) -> Free a -> Free a #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Free a -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Free a -> r #

gmapQ :: (forall d. Data d => d -> u) -> Free a -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Free a -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Free a -> m (Free a) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Free a -> m (Free a) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Free a -> m (Free a) #

Show a => Show (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

showsPrec :: Int -> Free a -> ShowS #

show :: Free a -> String #

showList :: [Free a] -> ShowS #

Generic (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Associated Types

type Rep (Free a) :: Type -> Type #

Methods

from :: Free a -> Rep (Free a) x #

to :: Rep (Free a) x -> Free a #

Arbitrary a => Arbitrary (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

arbitrary :: Gen (Free a) #

shrink :: Free a -> [Free a] #

Ord a => PartialOrd (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

leq :: Free a -> Free a -> Bool Source #

comparable :: Free a -> Free a -> Bool Source #

BoundedMeetSemiLattice (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

top :: Free a Source #

BoundedJoinSemiLattice (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

bottom :: Free a Source #

Lattice (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

(\/) :: Free a -> Free a -> Free a Source #

(/\) :: Free a -> Free a -> Free a Source #

Heyting (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

Methods

(==>) :: Free a -> Free a -> Free a Source #

neg :: Free a -> Free a Source #

(<=>) :: Free a -> Free a -> Free a Source #

Generic1 Free Source # 
Instance details

Defined in Algebra.Heyting.Free

Associated Types

type Rep1 Free :: k -> Type #

Methods

from1 :: Free a -> Rep1 Free a #

to1 :: Rep1 Free a -> Free a #

type Rep (Free a) Source # 
Instance details

Defined in Algebra.Heyting.Free

type Rep1 Free Source # 
Instance details

Defined in Algebra.Heyting.Free

liftFree :: a -> Free a Source #

lowerFree :: Heyting b => (a -> b) -> Free a -> b Source #

substFree :: Free a -> (a -> Free b) -> Free b Source #

toExpr :: Free a -> Expr a Source #