lapack-0.3: Numerical Linear Algebra using LAPACK

Safe HaskellNone

Numeric.LAPACK.Matrix.BandedHermitian

Synopsis

Documentation

type BandedHermitian offDiag sh = Hermitian offDiag shSource

size :: BandedHermitian offDiag sh a -> shSource

fromList :: (Natural offDiag, C size, Storable a) => UnaryProxy offDiag -> Order -> size -> [a] -> BandedHermitian offDiag size aSource

identity :: (C sh, Floating a) => sh -> Diagonal sh aSource

diagonal :: (C sh, Floating a) => Vector sh (RealOf a) -> Diagonal sh aSource

takeDiagonal :: (Natural offDiag, C size, Floating a) => BandedHermitian offDiag size a -> Vector size (RealOf a)Source

toHermitian :: (Natural offDiag, C size, Floating a) => BandedHermitian offDiag size a -> Hermitian size aSource

toBanded :: (Natural offDiag, C size, Floating a) => BandedHermitian offDiag size a -> Square offDiag offDiag size aSource

multiplyVector :: (Natural offDiag, C size, Eq size, Floating a) => Transposition -> BandedHermitian offDiag size a -> Vector size a -> Vector size aSource

multiplyFull :: (Natural offDiag, C vert, C horiz, C height, Eq height, C width, Floating a) => Transposition -> BandedHermitian offDiag height a -> Full vert horiz height width a -> Full vert horiz height width aSource

gramian :: (C size, Eq size, Floating a, Natural sub, Natural super) => Square sub super size a -> BandedHermitian (sub :+: super) size aSource

sumRank1 :: (Natural k, Indexed sh, Floating a) => Order -> sh -> [(RealOf a, (Index sh, StaticVector (Succ k) a))] -> BandedHermitian k sh aSource

The list represents ragged rows of a sparse matrix.

eigenvalues :: (Natural offDiag, C sh, Floating a) => BandedHermitian offDiag sh a -> Vector sh (RealOf a)Source

eigensystem :: (Natural offDiag, C sh, Floating a) => BandedHermitian offDiag sh a -> (Square sh a, Vector sh (RealOf a))Source

For symmetric eigenvalue problems, eigensystem and schur coincide.