{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE EmptyDataDecls #-}
module Numeric.LAPACK.Matrix.Type where
import qualified Numeric.LAPACK.Matrix.Array.Format as ArrFormat
import qualified Numeric.LAPACK.Output as Output
import qualified Numeric.LAPACK.Permutation.Private as Perm
import qualified Numeric.LAPACK.Scalar as Scalar
import qualified Numeric.LAPACK.Matrix.Shape.Private as MatrixShape
import Numeric.LAPACK.Output (Output)
import Numeric.LAPACK.Scalar (RealOf, ComplexOf)
import qualified Numeric.Netlib.Class as Class
import qualified Hyper
import qualified Control.DeepSeq as DeepSeq
import qualified Data.Array.Comfort.Shape as Shape
import Data.Semigroup (Semigroup, (<>))
data family Matrix typ a
data Scale shape
data instance Matrix (Scale shape) a = Scale shape a
data Inverse typ
newtype instance Matrix (Inverse typ) a = Inverse (Matrix typ a)
newtype instance Matrix (Perm.Permutation sh) a =
Permutation (Perm.Permutation sh)
deriving (Show)
instance (NFData typ, DeepSeq.NFData a) => DeepSeq.NFData (Matrix typ a) where
rnf = rnf
class NFData typ where
rnf :: (DeepSeq.NFData a) => Matrix typ a -> ()
instance
(FormatMatrix typ, Class.Floating a) =>
Hyper.Display (Matrix typ a) where
display = Output.hyper . formatMatrix ArrFormat.deflt
class FormatMatrix typ where
formatMatrix ::
(Class.Floating a, Output out) => String -> Matrix typ a -> out
instance (Shape.C sh) => FormatMatrix (Scale sh) where
formatMatrix fmt (Scale shape a) =
ArrFormat.formatDiagonal fmt MatrixShape.RowMajor shape $
replicate (Shape.size shape) a
instance (Shape.C sh) => FormatMatrix (Perm.Permutation sh) where
formatMatrix _fmt (Permutation perm) = Perm.format perm
instance (MultiplySame typ, Class.Floating a) => Semigroup (Matrix typ a) where
(<>) = multiplySame
class MultiplySame typ where
multiplySame ::
(Class.Floating a) => Matrix typ a -> Matrix typ a -> Matrix typ a
instance (Eq shape) => MultiplySame (Scale shape) where
multiplySame =
scaleWithCheck "Scale.multiplySame" height
(\a (Scale shape b) -> Scale shape $ a*b)
instance (MultiplySame typ) => MultiplySame (Inverse typ) where
multiplySame (Inverse a) (Inverse b) = Inverse $ multiplySame b a
instance (Shape.C sh, Eq sh) => MultiplySame (Perm.Permutation sh) where
multiplySame (Permutation a) (Permutation b) =
Permutation $ Perm.multiply b a
scaleWithCheck :: (Eq shape) =>
String -> (b -> shape) ->
(a -> b -> c) -> Matrix (Scale shape) a -> b -> c
scaleWithCheck name getSize f (Scale shape a) b =
if shape == getSize b
then f a b
else error $ name ++ ": dimensions mismatch"
class Box typ where
type HeightOf typ
type WidthOf typ
height :: Matrix typ a -> HeightOf typ
width :: Matrix typ a -> WidthOf typ
instance Box (Scale sh) where
type HeightOf (Scale sh) = sh
type WidthOf (Scale sh) = sh
height (Scale shape _) = shape
width (Scale shape _) = shape
instance (Box typ) => Box (Inverse typ) where
type HeightOf (Inverse typ) = HeightOf typ
type WidthOf (Inverse typ) = WidthOf typ
height (Inverse m) = height m
width (Inverse m) = width m
instance Box (Perm.Permutation sh) where
type HeightOf (Perm.Permutation sh) = sh
type WidthOf (Perm.Permutation sh) = sh
height (Permutation perm) = Perm.size perm
width (Permutation perm) = Perm.size perm
indices ::
(Box typ,
HeightOf typ ~ height, Shape.Indexed height,
WidthOf typ ~ width, Shape.Indexed width) =>
Matrix typ a -> [(Shape.Index height, Shape.Index width)]
indices sh = Shape.indices (height sh, width sh)
class Complex typ where
conjugate :: (Class.Floating a) => Matrix typ a -> Matrix typ a
fromReal :: (Class.Floating a) => Matrix typ (RealOf a) -> Matrix typ a
toComplex :: (Class.Floating a) => Matrix typ a -> Matrix typ (ComplexOf a)
instance (Complex typ) => Complex (Inverse typ) where
conjugate (Inverse m) = Inverse $ conjugate m
fromReal (Inverse m) = Inverse $ fromReal m
toComplex (Inverse m) = Inverse $ toComplex m
instance (Shape.C shape) => Complex (Scale shape) where
conjugate (Scale sh m) = Scale sh $ Scalar.conjugate m
fromReal (Scale sh m) = Scale sh $ Scalar.fromReal m
toComplex (Scale sh m) = Scale sh $ Scalar.toComplex m
instance (Shape.C shape) => Complex (Perm.Permutation shape) where
conjugate = id
fromReal (Permutation p) = Permutation p
toComplex (Permutation p) = Permutation p