Copyright | (c) Armando Santos 2019-2020 |
---|---|
Maintainer | armandoifsantos@gmail.com |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
The LAoP discipline generalises relations and functions treating them as Boolean matrices and in turn consider these as arrows.
LAoP is a library for algebraic (inductive) construction and manipulation of matrices in Haskell. See my Msc Thesis for the motivation behind the library, the underlying theory, and implementation details.
This module offers a newtype wrapper around Matrix
that
uses type level naturals instead of standard data types for the matrices
dimensions.
Synopsis
- newtype Matrix e (cols :: Nat) (rows :: Nat) = M (Matrix e (FromNat cols) (FromNat rows))
- type Countable a = KnownNat (Count a)
- type CountableDims a b = (Countable a, Countable b)
- type CountableN a = KnownNat (Count (FromNat a))
- type CountableNz a = KnownNat (Count (Normalize a))
- type CountableDimsN a b = (CountableN a, CountableN b)
- type FLN e a b = FL (FromNat a) (FromNat b)
- type FLNz e a b = FL (Normalize a) (Normalize b)
- type Liftable e a b = (Bounded a, Bounded b, Enum a, Enum b, Eq b, Num e, Ord e)
- type TrivialE a b = FromNat (a + b) ~ Either (FromNat a) (FromNat b)
- type TrivialP a b = FromNat (a * b) ~ FromNat (Count (FromNat a) * Count (FromNat b))
- one :: e -> Matrix e 1 1
- join :: TrivialE a b => Matrix e a rows -> Matrix e b rows -> Matrix e (a + b) rows
- fork :: TrivialE a b => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a + b)
- type family FromNat (n :: Nat) :: Type where ...
- type family Count (d :: Type) :: Nat where ...
- type family Normalize (d :: Type) :: Type where ...
- type FL a b = FromLists a b
- fromLists :: FLN e cols rows => [[e]] -> Matrix e cols rows
- toLists :: Matrix e cols rows -> [[e]]
- toList :: Matrix e cols rows -> [e]
- matrixBuilder' :: (FLN e cols rows, CountableN cols, CountableN rows) => ((Int, Int) -> e) -> Matrix e cols rows
- row :: FL (FromNat cols) () => [e] -> Matrix e cols 1
- col :: FL () (FromNat rows) => [e] -> Matrix e 1 rows
- zeros :: (Num e, FLN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows
- ones :: (Num e, FLN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows
- bang :: forall e cols. (Num e, Enum e, FL (FromNat cols) (), CountableN cols) => Matrix e cols 1
- constant :: (Num e, FLN e cols rows, CountableN cols, CountableN rows) => e -> Matrix e cols rows
- columns :: CountableN cols => Matrix e cols rows -> Int
- rows :: CountableN rows => Matrix e cols rows -> Int
- tr :: Matrix e cols rows -> Matrix e rows cols
- (.|) :: Num e => e -> Matrix e cols rows -> Matrix e cols rows
- (./) :: Fractional e => Matrix e cols rows -> e -> Matrix e cols rows
- select :: (Num e, FLN e rows1 rows1, CountableN rows1, FromNat rows2 ~ FromNat rows1, FromNat cols1 ~ FromNat cols2, FromNat rows3 ~ Either (FromNat cols3) (FromNat rows1)) => Matrix e cols1 rows3 -> Matrix e cols3 rows1 -> Matrix e cols2 rows2
- cond :: (FromNat (Count (FromNat cols)) ~ FromNat cols, CountableN cols, FL () (FromNat cols), FL (FromNat cols) (), FLN e cols cols, Liftable e a Bool) => (a -> Bool) -> Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows
- abideJF :: Matrix e cols rows -> Matrix e cols rows
- abideFJ :: Matrix e cols rows -> Matrix e cols rows
- zipWithM :: (e -> f -> g) -> Matrix e cols rows -> Matrix f cols rows -> Matrix g cols rows
- (===) :: TrivialE a b => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a + b)
- p1 :: (Num e, CountableDimsN n m, FLN e n m, FLN e m m, TrivialE m n) => Matrix e (m + n) m
- p2 :: (Num e, CountableDimsN n m, FLN e m n, FLN e n n, TrivialE m n) => Matrix e (m + n) n
- (|||) :: TrivialE a b => Matrix e a rows -> Matrix e b rows -> Matrix e (a + b) rows
- i1 :: (Num e, CountableDimsN n rows, FLN e n rows, FLN e rows rows, TrivialE rows n) => Matrix e rows (rows + n)
- i2 :: (Num e, CountableDimsN rows m, FLN e m rows, FLN e rows rows, TrivialE m rows) => Matrix e rows (m + rows)
- (-|-) :: (Num e, CountableDimsN j k, FLN e k k, FLN e j k, FLN e k j, FLN e j j, TrivialE n m, TrivialE k j) => Matrix e n k -> Matrix e m j -> Matrix e (n + m) (k + j)
- (><) :: forall e m p n q. (Num e, CountableDimsN m n, CountableDimsN p q, CountableDimsN (m * n) (p * q), FLN e (m * n) m, FLN e (m * n) n, FLN e (p * q) p, FLN e (p * q) q, TrivialP m n, TrivialP p q) => Matrix e m p -> Matrix e n q -> Matrix e (m * n) (p * q)
- fstM :: forall e m k. (Num e, CountableDimsN m k, CountableN (m * k), FLN e (m * k) m, TrivialP m k) => Matrix e (m * k) m
- sndM :: forall e m k. (Num e, CountableDimsN k m, FLN e (m * k) k, CountableN (m * k), TrivialP m k) => Matrix e (m * k) k
- kr :: forall e cols a b. (Num e, CountableDimsN a b, CountableN (a * b), FLN e (a * b) a, FLN e (a * b) b, TrivialP a b) => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a * b)
- iden :: (Num e, FLN e cols cols, CountableN cols) => Matrix e cols cols
- comp :: Num e => Matrix e cr rows -> Matrix e cols cr -> Matrix e cols rows
- fromF' :: (Liftable e a b, CountableN cols, CountableN rows, FLN e rows cols) => (a -> b) -> Matrix e cols rows
- fromF :: (Liftable e a b, CountableNz a, CountableNz b, FLNz e b a) => (a -> b) -> Matrix e (Count a) (Count b)
- pretty :: (CountableDimsN cols rows, Show e) => Matrix e cols rows -> String
- prettyPrint :: (CountableDimsN cols rows, Show e) => Matrix e cols rows -> IO ()
Documentation
LAoP (Linear Algebra of Programming) Inductive Matrix definition.
LAoP generalises relations and functions treating them as Boolean matrices and in turn consider these as arrows. This library offers many of the combinators mentioned in the work of Macedo (2012) and Oliveira (2012).
This definition is a wrapper around Type
but
dimensions are type level Naturals. Type inference might not
be as desired.
There exists two type families that make it easier to write
matrix dimensions: FromNat
and Count
. This approach
leads to a very straightforward implementation
of LAoP combinators.
Type safe matrix representation
newtype Matrix e (cols :: Nat) (rows :: Nat) Source #
Instances
Eq e => Eq (Matrix e cols rows) Source # | |
Num e => Num (Matrix e cols rows) Source # | |
Defined in LAoP.Matrix.Nat (+) :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # (-) :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # (*) :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # negate :: Matrix e cols rows -> Matrix e cols rows # abs :: Matrix e cols rows -> Matrix e cols rows # signum :: Matrix e cols rows -> Matrix e cols rows # fromInteger :: Integer -> Matrix e cols rows # | |
Ord e => Ord (Matrix e cols rows) Source # | |
Defined in LAoP.Matrix.Nat compare :: Matrix e cols rows -> Matrix e cols rows -> Ordering # (<) :: Matrix e cols rows -> Matrix e cols rows -> Bool # (<=) :: Matrix e cols rows -> Matrix e cols rows -> Bool # (>) :: Matrix e cols rows -> Matrix e cols rows -> Bool # (>=) :: Matrix e cols rows -> Matrix e cols rows -> Bool # max :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # min :: Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows # | |
Show e => Show (Matrix e cols rows) Source # | |
NFData e => NFData (Matrix e cols rows) Source # | |
Defined in LAoP.Matrix.Nat |
Constraint type synonyms
type Countable a = KnownNat (Count a) Source #
Constraint type synonyms to keep the type signatures less convoluted
type CountableDims a b = (Countable a, Countable b) Source #
type CountableDimsN a b = (CountableN a, CountableN b) Source #
Primitives
Auxiliary type families
type family FromNat (n :: Nat) :: Type where ... Source #
Type family that computes of a given type dimension from a given natural
Thanks to Li-Yao Xia this type family is super fast.
type family Count (d :: Type) :: Nat where ... Source #
Type family that computes the cardinality of a given type dimension.
It can also count the cardinality of custom types that implement the
Generic
instance.
Count (Natural n m) = (m - n) + 1 | |
Count (List a) = (^) 2 (Count a) | |
Count (Either a b) = (+) (Count a) (Count b) | |
Count (a, b) = * (Count a) (Count b) | |
Count (a -> b) = (^) (Count b) (Count a) | |
Count (M1 _ _ f p) = Count (f p) | |
Count (K1 _ _ _) = 1 | |
Count (V1 _) = 0 | |
Count (U1 _) = 1 | |
Count ((:*:) a b p) = Count (a p) * Count (b p) | |
Count ((:+:) a b p) = Count (a p) + Count (b p) | |
Count d = Count (Rep d R) |
type family Normalize (d :: Type) :: Type where ... Source #
Type family that normalizes the representation of a given data structure
Matrix construction and conversion
matrixBuilder' :: (FLN e cols rows, CountableN cols, CountableN rows) => ((Int, Int) -> e) -> Matrix e cols rows Source #
Matrix builder function. Constructs a matrix provided with a construction function that operates with indices.
zeros :: (Num e, FLN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows Source #
ones :: (Num e, FLN e cols rows, CountableN cols, CountableN rows) => Matrix e cols rows Source #
bang :: forall e cols. (Num e, Enum e, FL (FromNat cols) (), CountableN cols) => Matrix e cols 1 Source #
constant :: (Num e, FLN e cols rows, CountableN cols, CountableN rows) => e -> Matrix e cols rows Source #
Misc
Get dimensions
Matrix Transposition
Scalar multiplication/division of matrices
(.|) :: Num e => e -> Matrix e cols rows -> Matrix e cols rows infixl 7 Source #
Scalar multiplication of matrices.
(./) :: Fractional e => Matrix e cols rows -> e -> Matrix e cols rows infixl 7 Source #
Scalar multiplication of matrices.
Selective operator
select :: (Num e, FLN e rows1 rows1, CountableN rows1, FromNat rows2 ~ FromNat rows1, FromNat cols1 ~ FromNat cols2, FromNat rows3 ~ Either (FromNat cols3) (FromNat rows1)) => Matrix e cols1 rows3 -> Matrix e cols3 rows1 -> Matrix e cols2 rows2 Source #
McCarthy's Conditional
cond :: (FromNat (Count (FromNat cols)) ~ FromNat cols, CountableN cols, FL () (FromNat cols), FL (FromNat cols) (), FLN e cols cols, Liftable e a Bool) => (a -> Bool) -> Matrix e cols rows -> Matrix e cols rows -> Matrix e cols rows Source #
Matrix "abiding"
Zip Matrices
zipWithM :: (e -> f -> g) -> Matrix e cols rows -> Matrix f cols rows -> Matrix g cols rows Source #
Zip two matrices with a given binary function
Biproduct approach
Fork
(===) :: TrivialE a b => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a + b) infixl 2 Source #
Projections
p1 :: (Num e, CountableDimsN n m, FLN e n m, FLN e m m, TrivialE m n) => Matrix e (m + n) m Source #
p2 :: (Num e, CountableDimsN n m, FLN e m n, FLN e n n, TrivialE m n) => Matrix e (m + n) n Source #
Join
(|||) :: TrivialE a b => Matrix e a rows -> Matrix e b rows -> Matrix e (a + b) rows infixl 3 Source #
Injections
i1 :: (Num e, CountableDimsN n rows, FLN e n rows, FLN e rows rows, TrivialE rows n) => Matrix e rows (rows + n) Source #
i2 :: (Num e, CountableDimsN rows m, FLN e m rows, FLN e rows rows, TrivialE m rows) => Matrix e rows (m + rows) Source #
Bifunctors
(-|-) :: (Num e, CountableDimsN j k, FLN e k k, FLN e j k, FLN e k j, FLN e j j, TrivialE n m, TrivialE k j) => Matrix e n k -> Matrix e m j -> Matrix e (n + m) (k + j) infixl 5 Source #
Coproduct Bifunctor (Direct sum)
(><) :: forall e m p n q. (Num e, CountableDimsN m n, CountableDimsN p q, CountableDimsN (m * n) (p * q), FLN e (m * n) m, FLN e (m * n) n, FLN e (p * q) p, FLN e (p * q) q, TrivialP m n, TrivialP p q) => Matrix e m p -> Matrix e n q -> Matrix e (m * n) (p * q) infixl 4 Source #
Product Bifunctor (Kronecker)
Applicative matrix combinators
Note that given the restrictions imposed it is not possible to implement the standard type classes present in standard Haskell. *** Matrix pairing projections
fstM :: forall e m k. (Num e, CountableDimsN m k, CountableN (m * k), FLN e (m * k) m, TrivialP m k) => Matrix e (m * k) m Source #
Khatri Rao Product first projection
sndM :: forall e m k. (Num e, CountableDimsN k m, FLN e (m * k) k, CountableN (m * k), TrivialP m k) => Matrix e (m * k) k Source #
Khatri Rao Product second projection
Matrix pairing
kr :: forall e cols a b. (Num e, CountableDimsN a b, CountableN (a * b), FLN e (a * b) a, FLN e (a * b) b, TrivialP a b) => Matrix e cols a -> Matrix e cols b -> Matrix e cols (a * b) Source #
Khatri Rao Product
Matrix composition and lifting
Arrow matrix combinators
Note that given the restrictions imposed it is not possible to implement the standard type classes present in standard Haskell.
fromF' :: (Liftable e a b, CountableN cols, CountableN rows, FLN e rows cols) => (a -> b) -> Matrix e cols rows Source #
fromF :: (Liftable e a b, CountableNz a, CountableNz b, FLNz e b a) => (a -> b) -> Matrix e (Count a) (Count b) Source #
Matrix printing
prettyPrint :: (CountableDimsN cols rows, Show e) => Matrix e cols rows -> IO () Source #