{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
module Language.C.Parser.Parser (
parseC,
translUnitP, extDeclP, statementP, expressionP
) where
import Prelude
import qualified Data.List as List
import Control.Monad (mplus)
import Language.C.Parser.Builtin (builtinTypeNames)
import Language.C.Parser.Lexer (lexC, parseError)
import Language.C.Parser.Tokens (CToken(..), GnuCTok(..), ClangCTok (..), posLenOfTok)
import Language.C.Parser.ParserMonad (P, failP, execParser, getNewName, addTypedef, shadowTypedef, getCurrentPosition,
enterScope, leaveScope, getLastToken, getSavedToken, ParseError(..))
import Language.C.Data.RList (Reversed(..))
import qualified Language.C.Data.RList as RList
import Language.C.Data.InputStream
import Language.C.Data.Ident
import Language.C.Data.Name
import Language.C.Data.Node
import Language.C.Data.Position
import Language.C.Syntax
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)
newtype HappyAbsSyn = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
newtype HappyWrap7 = HappyWrap7 (CTranslUnit)
happyIn7 :: (CTranslUnit) -> (HappyAbsSyn )
happyIn7 :: CTranslUnit -> HappyAbsSyn
happyIn7 CTranslUnit
x = HappyWrap7 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CTranslUnit -> HappyWrap7
HappyWrap7 CTranslUnit
x)
{-# INLINE happyIn7 #-}
happyOut7 :: (HappyAbsSyn ) -> HappyWrap7
happyOut7 :: HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap7
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut7 #-}
newtype HappyWrap8 = HappyWrap8 (Reversed [CExtDecl])
happyIn8 :: (Reversed [CExtDecl]) -> (HappyAbsSyn )
happyIn8 :: Reversed [CExtDecl] -> HappyAbsSyn
happyIn8 Reversed [CExtDecl]
x = HappyWrap8 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExtDecl] -> HappyWrap8
HappyWrap8 Reversed [CExtDecl]
x)
{-# INLINE happyIn8 #-}
happyOut8 :: (HappyAbsSyn ) -> HappyWrap8
happyOut8 :: HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap8
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut8 #-}
newtype HappyWrap9 = HappyWrap9 (CExtDecl)
happyIn9 :: (CExtDecl) -> (HappyAbsSyn )
happyIn9 :: CExtDecl -> HappyAbsSyn
happyIn9 CExtDecl
x = HappyWrap9 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExtDecl -> HappyWrap9
HappyWrap9 CExtDecl
x)
{-# INLINE happyIn9 #-}
happyOut9 :: (HappyAbsSyn ) -> HappyWrap9
happyOut9 :: HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap9
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut9 #-}
newtype HappyWrap10 = HappyWrap10 (CFunDef)
happyIn10 :: (CFunDef) -> (HappyAbsSyn )
happyIn10 :: CFunDef -> HappyAbsSyn
happyIn10 CFunDef
x = HappyWrap10 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CFunDef -> HappyWrap10
HappyWrap10 CFunDef
x)
{-# INLINE happyIn10 #-}
happyOut10 :: (HappyAbsSyn ) -> HappyWrap10
happyOut10 :: HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap10
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut10 #-}
newtype HappyWrap11 = HappyWrap11 (CDeclr)
happyIn11 :: (CDeclr) -> (HappyAbsSyn )
happyIn11 :: CDeclr -> HappyAbsSyn
happyIn11 CDeclr
x = HappyWrap11 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap11
HappyWrap11 CDeclr
x)
{-# INLINE happyIn11 #-}
happyOut11 :: (HappyAbsSyn ) -> HappyWrap11
happyOut11 :: HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap11
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut11 #-}
newtype HappyWrap12 = HappyWrap12 (CStat)
happyIn12 :: (CStat) -> (HappyAbsSyn )
happyIn12 :: CStat -> HappyAbsSyn
happyIn12 CStat
x = HappyWrap12 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap12
HappyWrap12 CStat
x)
{-# INLINE happyIn12 #-}
happyOut12 :: (HappyAbsSyn ) -> HappyWrap12
happyOut12 :: HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap12
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut12 #-}
newtype HappyWrap13 = HappyWrap13 (CStat)
happyIn13 :: (CStat) -> (HappyAbsSyn )
happyIn13 :: CStat -> HappyAbsSyn
happyIn13 CStat
x = HappyWrap13 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap13
HappyWrap13 CStat
x)
{-# INLINE happyIn13 #-}
happyOut13 :: (HappyAbsSyn ) -> HappyWrap13
happyOut13 :: HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap13
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut13 #-}
newtype HappyWrap14 = HappyWrap14 (CStat)
happyIn14 :: (CStat) -> (HappyAbsSyn )
happyIn14 :: CStat -> HappyAbsSyn
happyIn14 CStat
x = HappyWrap14 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap14
HappyWrap14 CStat
x)
{-# INLINE happyIn14 #-}
happyOut14 :: (HappyAbsSyn ) -> HappyWrap14
happyOut14 :: HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap14
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut14 #-}
newtype HappyWrap15 = HappyWrap15 (())
happyIn15 :: (()) -> (HappyAbsSyn )
happyIn15 :: () -> HappyAbsSyn
happyIn15 ()
x = HappyWrap15 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap15
HappyWrap15 ()
x)
{-# INLINE happyIn15 #-}
happyOut15 :: (HappyAbsSyn ) -> HappyWrap15
happyOut15 :: HappyAbsSyn -> HappyWrap15
happyOut15 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap15
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut15 #-}
newtype HappyWrap16 = HappyWrap16 (())
happyIn16 :: (()) -> (HappyAbsSyn )
happyIn16 :: () -> HappyAbsSyn
happyIn16 ()
x = HappyWrap16 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (() -> HappyWrap16
HappyWrap16 ()
x)
{-# INLINE happyIn16 #-}
happyOut16 :: (HappyAbsSyn ) -> HappyWrap16
happyOut16 :: HappyAbsSyn -> HappyWrap16
happyOut16 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap16
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut16 #-}
newtype HappyWrap17 = HappyWrap17 (Reversed [CBlockItem])
happyIn17 :: (Reversed [CBlockItem]) -> (HappyAbsSyn )
happyIn17 :: Reversed [CBlockItem] -> HappyAbsSyn
happyIn17 Reversed [CBlockItem]
x = HappyWrap17 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CBlockItem] -> HappyWrap17
HappyWrap17 Reversed [CBlockItem]
x)
{-# INLINE happyIn17 #-}
happyOut17 :: (HappyAbsSyn ) -> HappyWrap17
happyOut17 :: HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap17
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut17 #-}
newtype HappyWrap18 = HappyWrap18 (CBlockItem)
happyIn18 :: (CBlockItem) -> (HappyAbsSyn )
happyIn18 :: CBlockItem -> HappyAbsSyn
happyIn18 CBlockItem
x = HappyWrap18 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CBlockItem -> HappyWrap18
HappyWrap18 CBlockItem
x)
{-# INLINE happyIn18 #-}
happyOut18 :: (HappyAbsSyn ) -> HappyWrap18
happyOut18 :: HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap18
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut18 #-}
newtype HappyWrap19 = HappyWrap19 (CBlockItem)
happyIn19 :: (CBlockItem) -> (HappyAbsSyn )
happyIn19 :: CBlockItem -> HappyAbsSyn
happyIn19 CBlockItem
x = HappyWrap19 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CBlockItem -> HappyWrap19
HappyWrap19 CBlockItem
x)
{-# INLINE happyIn19 #-}
happyOut19 :: (HappyAbsSyn ) -> HappyWrap19
happyOut19 :: HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap19
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut19 #-}
newtype HappyWrap20 = HappyWrap20 (CFunDef)
happyIn20 :: (CFunDef) -> (HappyAbsSyn )
happyIn20 :: CFunDef -> HappyAbsSyn
happyIn20 CFunDef
x = HappyWrap20 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CFunDef -> HappyWrap20
HappyWrap20 CFunDef
x)
{-# INLINE happyIn20 #-}
happyOut20 :: (HappyAbsSyn ) -> HappyWrap20
happyOut20 :: HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap20
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut20 #-}
newtype HappyWrap21 = HappyWrap21 (Reversed [Ident])
happyIn21 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn21 :: Reversed [Ident] -> HappyAbsSyn
happyIn21 Reversed [Ident]
x = HappyWrap21 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [Ident] -> HappyWrap21
HappyWrap21 Reversed [Ident]
x)
{-# INLINE happyIn21 #-}
happyOut21 :: (HappyAbsSyn ) -> HappyWrap21
happyOut21 :: HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap21
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut21 #-}
newtype HappyWrap22 = HappyWrap22 (CStat)
happyIn22 :: (CStat) -> (HappyAbsSyn )
happyIn22 :: CStat -> HappyAbsSyn
happyIn22 CStat
x = HappyWrap22 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap22
HappyWrap22 CStat
x)
{-# INLINE happyIn22 #-}
happyOut22 :: (HappyAbsSyn ) -> HappyWrap22
happyOut22 :: HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap22
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut22 #-}
newtype HappyWrap23 = HappyWrap23 (CStat)
happyIn23 :: (CStat) -> (HappyAbsSyn )
happyIn23 :: CStat -> HappyAbsSyn
happyIn23 CStat
x = HappyWrap23 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap23
HappyWrap23 CStat
x)
{-# INLINE happyIn23 #-}
happyOut23 :: (HappyAbsSyn ) -> HappyWrap23
happyOut23 :: HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap23
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut23 #-}
newtype HappyWrap24 = HappyWrap24 (CStat)
happyIn24 :: (CStat) -> (HappyAbsSyn )
happyIn24 :: CStat -> HappyAbsSyn
happyIn24 CStat
x = HappyWrap24 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap24
HappyWrap24 CStat
x)
{-# INLINE happyIn24 #-}
happyOut24 :: (HappyAbsSyn ) -> HappyWrap24
happyOut24 :: HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap24
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut24 #-}
newtype HappyWrap25 = HappyWrap25 (CStat)
happyIn25 :: (CStat) -> (HappyAbsSyn )
happyIn25 :: CStat -> HappyAbsSyn
happyIn25 CStat
x = HappyWrap25 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStat -> HappyWrap25
HappyWrap25 CStat
x)
{-# INLINE happyIn25 #-}
happyOut25 :: (HappyAbsSyn ) -> HappyWrap25
happyOut25 :: HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap25
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut25 #-}
newtype HappyWrap26 = HappyWrap26 (CAsmStmt)
happyIn26 :: (CAsmStmt) -> (HappyAbsSyn )
happyIn26 :: CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
x = HappyWrap26 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CAsmStmt -> HappyWrap26
HappyWrap26 CAsmStmt
x)
{-# INLINE happyIn26 #-}
happyOut26 :: (HappyAbsSyn ) -> HappyWrap26
happyOut26 :: HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap26
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut26 #-}
newtype HappyWrap27 = HappyWrap27 (Maybe CTypeQual)
happyIn27 :: (Maybe CTypeQual) -> (HappyAbsSyn )
happyIn27 :: Maybe CTypeQual -> HappyAbsSyn
happyIn27 Maybe CTypeQual
x = HappyWrap27 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe CTypeQual -> HappyWrap27
HappyWrap27 Maybe CTypeQual
x)
{-# INLINE happyIn27 #-}
happyOut27 :: (HappyAbsSyn ) -> HappyWrap27
happyOut27 :: HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap27
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut27 #-}
newtype HappyWrap28 = HappyWrap28 ([CAsmOperand])
happyIn28 :: ([CAsmOperand]) -> (HappyAbsSyn )
happyIn28 :: [CAsmOperand] -> HappyAbsSyn
happyIn28 [CAsmOperand]
x = HappyWrap28 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CAsmOperand] -> HappyWrap28
HappyWrap28 [CAsmOperand]
x)
{-# INLINE happyIn28 #-}
happyOut28 :: (HappyAbsSyn ) -> HappyWrap28
happyOut28 :: HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap28
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut28 #-}
newtype HappyWrap29 = HappyWrap29 (Reversed [CAsmOperand])
happyIn29 :: (Reversed [CAsmOperand]) -> (HappyAbsSyn )
happyIn29 :: Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29 Reversed [CAsmOperand]
x = HappyWrap29 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CAsmOperand] -> HappyWrap29
HappyWrap29 Reversed [CAsmOperand]
x)
{-# INLINE happyIn29 #-}
happyOut29 :: (HappyAbsSyn ) -> HappyWrap29
happyOut29 :: HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap29
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut29 #-}
newtype HappyWrap30 = HappyWrap30 (CAsmOperand)
happyIn30 :: (CAsmOperand) -> (HappyAbsSyn )
happyIn30 :: CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
x = HappyWrap30 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CAsmOperand -> HappyWrap30
HappyWrap30 CAsmOperand
x)
{-# INLINE happyIn30 #-}
happyOut30 :: (HappyAbsSyn ) -> HappyWrap30
happyOut30 :: HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap30
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut30 #-}
newtype HappyWrap31 = HappyWrap31 ([CStrLit])
happyIn31 :: ([CStrLit]) -> (HappyAbsSyn )
happyIn31 :: [CStrLit] -> HappyAbsSyn
happyIn31 [CStrLit]
x = HappyWrap31 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CStrLit] -> HappyWrap31
HappyWrap31 [CStrLit]
x)
{-# INLINE happyIn31 #-}
happyOut31 :: (HappyAbsSyn ) -> HappyWrap31
happyOut31 :: HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap31
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut31 #-}
newtype HappyWrap32 = HappyWrap32 (Reversed [CStrLit])
happyIn32 :: (Reversed [CStrLit]) -> (HappyAbsSyn )
happyIn32 :: Reversed [CStrLit] -> HappyAbsSyn
happyIn32 Reversed [CStrLit]
x = HappyWrap32 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CStrLit] -> HappyWrap32
HappyWrap32 Reversed [CStrLit]
x)
{-# INLINE happyIn32 #-}
happyOut32 :: (HappyAbsSyn ) -> HappyWrap32
happyOut32 :: HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap32
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut32 #-}
newtype HappyWrap33 = HappyWrap33 (CDecl)
happyIn33 :: (CDecl) -> (HappyAbsSyn )
happyIn33 :: CDecl -> HappyAbsSyn
happyIn33 CDecl
x = HappyWrap33 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap33
HappyWrap33 CDecl
x)
{-# INLINE happyIn33 #-}
happyOut33 :: (HappyAbsSyn ) -> HappyWrap33
happyOut33 :: HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap33
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut33 #-}
newtype HappyWrap34 = HappyWrap34 (Reversed [CDecl])
happyIn34 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn34 :: Reversed [CDecl] -> HappyAbsSyn
happyIn34 Reversed [CDecl]
x = HappyWrap34 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap34
HappyWrap34 Reversed [CDecl]
x)
{-# INLINE happyIn34 #-}
happyOut34 :: (HappyAbsSyn ) -> HappyWrap34
happyOut34 :: HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap34
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut34 #-}
newtype HappyWrap35 = HappyWrap35 (CDecl)
happyIn35 :: (CDecl) -> (HappyAbsSyn )
happyIn35 :: CDecl -> HappyAbsSyn
happyIn35 CDecl
x = HappyWrap35 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap35
HappyWrap35 CDecl
x)
{-# INLINE happyIn35 #-}
happyOut35 :: (HappyAbsSyn ) -> HappyWrap35
happyOut35 :: HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap35
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut35 #-}
newtype HappyWrap36 = HappyWrap36 ((Maybe CStrLit, [CAttr]))
happyIn36 :: ((Maybe CStrLit, [CAttr])) -> (HappyAbsSyn )
happyIn36 :: (Maybe CStrLit, [CAttr]) -> HappyAbsSyn
happyIn36 (Maybe CStrLit, [CAttr])
x = HappyWrap36 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Maybe CStrLit, [CAttr]) -> HappyWrap36
HappyWrap36 (Maybe CStrLit, [CAttr])
x)
{-# INLINE happyIn36 #-}
happyOut36 :: (HappyAbsSyn ) -> HappyWrap36
happyOut36 :: HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap36
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut36 #-}
newtype HappyWrap37 = HappyWrap37 (CDecl)
happyIn37 :: (CDecl) -> (HappyAbsSyn )
happyIn37 :: CDecl -> HappyAbsSyn
happyIn37 CDecl
x = HappyWrap37 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap37
HappyWrap37 CDecl
x)
{-# INLINE happyIn37 #-}
happyOut37 :: (HappyAbsSyn ) -> HappyWrap37
happyOut37 :: HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap37
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut37 #-}
newtype HappyWrap38 = HappyWrap38 ([CDeclSpec])
happyIn38 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn38 :: [CDeclSpec] -> HappyAbsSyn
happyIn38 [CDeclSpec]
x = HappyWrap38 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CDeclSpec] -> HappyWrap38
HappyWrap38 [CDeclSpec]
x)
{-# INLINE happyIn38 #-}
happyOut38 :: (HappyAbsSyn ) -> HappyWrap38
happyOut38 :: HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap38
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut38 #-}
newtype HappyWrap39 = HappyWrap39 (Reversed [CDeclSpec])
happyIn39 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn39 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39 Reversed [CDeclSpec]
x = HappyWrap39 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap39
HappyWrap39 Reversed [CDeclSpec]
x)
{-# INLINE happyIn39 #-}
happyOut39 :: (HappyAbsSyn ) -> HappyWrap39
happyOut39 :: HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap39
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut39 #-}
newtype HappyWrap40 = HappyWrap40 (CDeclSpec)
happyIn40 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn40 :: CDeclSpec -> HappyAbsSyn
happyIn40 CDeclSpec
x = HappyWrap40 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclSpec -> HappyWrap40
HappyWrap40 CDeclSpec
x)
{-# INLINE happyIn40 #-}
happyOut40 :: (HappyAbsSyn ) -> HappyWrap40
happyOut40 :: HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap40
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut40 #-}
newtype HappyWrap41 = HappyWrap41 (CDeclSpec)
happyIn41 :: (CDeclSpec) -> (HappyAbsSyn )
happyIn41 :: CDeclSpec -> HappyAbsSyn
happyIn41 CDeclSpec
x = HappyWrap41 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclSpec -> HappyWrap41
HappyWrap41 CDeclSpec
x)
{-# INLINE happyIn41 #-}
happyOut41 :: (HappyAbsSyn ) -> HappyWrap41
happyOut41 :: HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap41
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut41 #-}
newtype HappyWrap42 = HappyWrap42 (CStorageSpec)
happyIn42 :: (CStorageSpec) -> (HappyAbsSyn )
happyIn42 :: CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
x = HappyWrap42 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStorageSpec -> HappyWrap42
HappyWrap42 CStorageSpec
x)
{-# INLINE happyIn42 #-}
happyOut42 :: (HappyAbsSyn ) -> HappyWrap42
happyOut42 :: HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap42
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut42 #-}
newtype HappyWrap43 = HappyWrap43 (CFunSpec)
happyIn43 :: (CFunSpec) -> (HappyAbsSyn )
happyIn43 :: CFunSpec -> HappyAbsSyn
happyIn43 CFunSpec
x = HappyWrap43 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CFunSpec -> HappyWrap43
HappyWrap43 CFunSpec
x)
{-# INLINE happyIn43 #-}
happyOut43 :: (HappyAbsSyn ) -> HappyWrap43
happyOut43 :: HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap43
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut43 #-}
newtype HappyWrap44 = HappyWrap44 (CAlignSpec)
happyIn44 :: (CAlignSpec) -> (HappyAbsSyn )
happyIn44 :: CAlignSpec -> HappyAbsSyn
happyIn44 CAlignSpec
x = HappyWrap44 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CAlignSpec -> HappyWrap44
HappyWrap44 CAlignSpec
x)
{-# INLINE happyIn44 #-}
happyOut44 :: (HappyAbsSyn ) -> HappyWrap44
happyOut44 :: HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap44
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut44 #-}
newtype HappyWrap45 = HappyWrap45 ([CDeclSpec])
happyIn45 :: ([CDeclSpec]) -> (HappyAbsSyn )
happyIn45 :: [CDeclSpec] -> HappyAbsSyn
happyIn45 [CDeclSpec]
x = HappyWrap45 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CDeclSpec] -> HappyWrap45
HappyWrap45 [CDeclSpec]
x)
{-# INLINE happyIn45 #-}
happyOut45 :: (HappyAbsSyn ) -> HappyWrap45
happyOut45 :: HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap45
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut45 #-}
newtype HappyWrap46 = HappyWrap46 (CTypeSpec)
happyIn46 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn46 :: CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
x = HappyWrap46 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CTypeSpec -> HappyWrap46
HappyWrap46 CTypeSpec
x)
{-# INLINE happyIn46 #-}
happyOut46 :: (HappyAbsSyn ) -> HappyWrap46
happyOut46 :: HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap46
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut46 #-}
newtype HappyWrap47 = HappyWrap47 (Reversed [CDeclSpec])
happyIn47 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn47 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47 Reversed [CDeclSpec]
x = HappyWrap47 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap47
HappyWrap47 Reversed [CDeclSpec]
x)
{-# INLINE happyIn47 #-}
happyOut47 :: (HappyAbsSyn ) -> HappyWrap47
happyOut47 :: HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap47
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut47 #-}
newtype HappyWrap48 = HappyWrap48 (Reversed [CDeclSpec])
happyIn48 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn48 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48 Reversed [CDeclSpec]
x = HappyWrap48 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap48
HappyWrap48 Reversed [CDeclSpec]
x)
{-# INLINE happyIn48 #-}
happyOut48 :: (HappyAbsSyn ) -> HappyWrap48
happyOut48 :: HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap48
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut48 #-}
newtype HappyWrap49 = HappyWrap49 (Reversed [CDeclSpec])
happyIn49 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn49 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49 Reversed [CDeclSpec]
x = HappyWrap49 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap49
HappyWrap49 Reversed [CDeclSpec]
x)
{-# INLINE happyIn49 #-}
happyOut49 :: (HappyAbsSyn ) -> HappyWrap49
happyOut49 :: HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap49
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut49 #-}
newtype HappyWrap50 = HappyWrap50 (Reversed [CDeclSpec])
happyIn50 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn50 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50 Reversed [CDeclSpec]
x = HappyWrap50 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap50
HappyWrap50 Reversed [CDeclSpec]
x)
{-# INLINE happyIn50 #-}
happyOut50 :: (HappyAbsSyn ) -> HappyWrap50
happyOut50 :: HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap50
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut50 #-}
newtype HappyWrap51 = HappyWrap51 (Reversed [CDeclSpec])
happyIn51 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn51 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
x = HappyWrap51 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap51
HappyWrap51 Reversed [CDeclSpec]
x)
{-# INLINE happyIn51 #-}
happyOut51 :: (HappyAbsSyn ) -> HappyWrap51
happyOut51 :: HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap51
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut51 #-}
newtype HappyWrap52 = HappyWrap52 (Reversed [CDeclSpec])
happyIn52 :: (Reversed [CDeclSpec]) -> (HappyAbsSyn )
happyIn52 :: Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
x = HappyWrap52 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDeclSpec] -> HappyWrap52
HappyWrap52 Reversed [CDeclSpec]
x)
{-# INLINE happyIn52 #-}
happyOut52 :: (HappyAbsSyn ) -> HappyWrap52
happyOut52 :: HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap52
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut52 #-}
newtype HappyWrap53 = HappyWrap53 (CTypeSpec)
happyIn53 :: (CTypeSpec) -> (HappyAbsSyn )
happyIn53 :: CTypeSpec -> HappyAbsSyn
happyIn53 CTypeSpec
x = HappyWrap53 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CTypeSpec -> HappyWrap53
HappyWrap53 CTypeSpec
x)
{-# INLINE happyIn53 #-}
happyOut53 :: (HappyAbsSyn ) -> HappyWrap53
happyOut53 :: HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap53
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut53 #-}
newtype HappyWrap54 = HappyWrap54 (CStructUnion)
happyIn54 :: (CStructUnion) -> (HappyAbsSyn )
happyIn54 :: CStructUnion -> HappyAbsSyn
happyIn54 CStructUnion
x = HappyWrap54 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStructUnion -> HappyWrap54
HappyWrap54 CStructUnion
x)
{-# INLINE happyIn54 #-}
happyOut54 :: (HappyAbsSyn ) -> HappyWrap54
happyOut54 :: HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap54
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut54 #-}
newtype HappyWrap55 = HappyWrap55 (Located CStructTag)
happyIn55 :: (Located CStructTag) -> (HappyAbsSyn )
happyIn55 :: Located CStructTag -> HappyAbsSyn
happyIn55 Located CStructTag
x = HappyWrap55 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Located CStructTag -> HappyWrap55
HappyWrap55 Located CStructTag
x)
{-# INLINE happyIn55 #-}
happyOut55 :: (HappyAbsSyn ) -> HappyWrap55
happyOut55 :: HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap55
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut55 #-}
newtype HappyWrap56 = HappyWrap56 (Reversed [CDecl])
happyIn56 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn56 :: Reversed [CDecl] -> HappyAbsSyn
happyIn56 Reversed [CDecl]
x = HappyWrap56 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap56
HappyWrap56 Reversed [CDecl]
x)
{-# INLINE happyIn56 #-}
happyOut56 :: (HappyAbsSyn ) -> HappyWrap56
happyOut56 :: HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap56
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut56 #-}
newtype HappyWrap57 = HappyWrap57 (CDecl)
happyIn57 :: (CDecl) -> (HappyAbsSyn )
happyIn57 :: CDecl -> HappyAbsSyn
happyIn57 CDecl
x = HappyWrap57 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap57
HappyWrap57 CDecl
x)
{-# INLINE happyIn57 #-}
happyOut57 :: (HappyAbsSyn ) -> HappyWrap57
happyOut57 :: HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap57
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut57 #-}
newtype HappyWrap58 = HappyWrap58 (CDecl)
happyIn58 :: (CDecl) -> (HappyAbsSyn )
happyIn58 :: CDecl -> HappyAbsSyn
happyIn58 CDecl
x = HappyWrap58 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap58
HappyWrap58 CDecl
x)
{-# INLINE happyIn58 #-}
happyOut58 :: (HappyAbsSyn ) -> HappyWrap58
happyOut58 :: HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap58
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut58 #-}
newtype HappyWrap59 = HappyWrap59 (CDecl)
happyIn59 :: (CDecl) -> (HappyAbsSyn )
happyIn59 :: CDecl -> HappyAbsSyn
happyIn59 CDecl
x = HappyWrap59 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap59
HappyWrap59 CDecl
x)
{-# INLINE happyIn59 #-}
happyOut59 :: (HappyAbsSyn ) -> HappyWrap59
happyOut59 :: HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap59
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut59 #-}
newtype HappyWrap60 = HappyWrap60 ((Maybe CDeclr, Maybe CExpr))
happyIn60 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn60 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60 (Maybe CDeclr, Maybe CExpr)
x = HappyWrap60 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDeclr, Maybe CExpr) -> HappyWrap60
HappyWrap60 (Maybe CDeclr, Maybe CExpr)
x)
{-# INLINE happyIn60 #-}
happyOut60 :: (HappyAbsSyn ) -> HappyWrap60
happyOut60 :: HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap60
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut60 #-}
newtype HappyWrap61 = HappyWrap61 ((Maybe CDeclr, Maybe CExpr))
happyIn61 :: ((Maybe CDeclr, Maybe CExpr)) -> (HappyAbsSyn )
happyIn61 :: (Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn61 (Maybe CDeclr, Maybe CExpr)
x = HappyWrap61 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDeclr, Maybe CExpr) -> HappyWrap61
HappyWrap61 (Maybe CDeclr, Maybe CExpr)
x)
{-# INLINE happyIn61 #-}
happyOut61 :: (HappyAbsSyn ) -> HappyWrap61
happyOut61 :: HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap61
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut61 #-}
newtype HappyWrap62 = HappyWrap62 (CEnum)
happyIn62 :: (CEnum) -> (HappyAbsSyn )
happyIn62 :: CEnum -> HappyAbsSyn
happyIn62 CEnum
x = HappyWrap62 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CEnum -> HappyWrap62
HappyWrap62 CEnum
x)
{-# INLINE happyIn62 #-}
happyOut62 :: (HappyAbsSyn ) -> HappyWrap62
happyOut62 :: HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap62
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut62 #-}
newtype HappyWrap63 = HappyWrap63 (Reversed [(Ident, Maybe CExpr)])
happyIn63 :: (Reversed [(Ident, Maybe CExpr)]) -> (HappyAbsSyn )
happyIn63 :: Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn63 Reversed [(Ident, Maybe CExpr)]
x = HappyWrap63 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [(Ident, Maybe CExpr)] -> HappyWrap63
HappyWrap63 Reversed [(Ident, Maybe CExpr)]
x)
{-# INLINE happyIn63 #-}
happyOut63 :: (HappyAbsSyn ) -> HappyWrap63
happyOut63 :: HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap63
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut63 #-}
newtype HappyWrap64 = HappyWrap64 ((Ident, Maybe CExpr))
happyIn64 :: ((Ident, Maybe CExpr)) -> (HappyAbsSyn )
happyIn64 :: (Ident, Maybe CExpr) -> HappyAbsSyn
happyIn64 (Ident, Maybe CExpr)
x = HappyWrap64 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Ident, Maybe CExpr) -> HappyWrap64
HappyWrap64 (Ident, Maybe CExpr)
x)
{-# INLINE happyIn64 #-}
happyOut64 :: (HappyAbsSyn ) -> HappyWrap64
happyOut64 :: HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap64
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut64 #-}
newtype HappyWrap65 = HappyWrap65 (CTypeQual)
happyIn65 :: (CTypeQual) -> (HappyAbsSyn )
happyIn65 :: CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
x = HappyWrap65 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CTypeQual -> HappyWrap65
HappyWrap65 CTypeQual
x)
{-# INLINE happyIn65 #-}
happyOut65 :: (HappyAbsSyn ) -> HappyWrap65
happyOut65 :: HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap65
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut65 #-}
newtype HappyWrap66 = HappyWrap66 (Reversed [CTypeQual])
happyIn66 :: (Reversed [CTypeQual]) -> (HappyAbsSyn )
happyIn66 :: Reversed [CTypeQual] -> HappyAbsSyn
happyIn66 Reversed [CTypeQual]
x = HappyWrap66 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CTypeQual] -> HappyWrap66
HappyWrap66 Reversed [CTypeQual]
x)
{-# INLINE happyIn66 #-}
happyOut66 :: (HappyAbsSyn ) -> HappyWrap66
happyOut66 :: HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap66
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut66 #-}
newtype HappyWrap67 = HappyWrap67 (CDeclrR)
happyIn67 :: (CDeclrR) -> (HappyAbsSyn )
happyIn67 :: CDeclrR -> HappyAbsSyn
happyIn67 CDeclrR
x = HappyWrap67 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap67
HappyWrap67 CDeclrR
x)
{-# INLINE happyIn67 #-}
happyOut67 :: (HappyAbsSyn ) -> HappyWrap67
happyOut67 :: HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap67
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut67 #-}
newtype HappyWrap68 = HappyWrap68 (Maybe CStrLit)
happyIn68 :: (Maybe CStrLit) -> (HappyAbsSyn )
happyIn68 :: Maybe CStrLit -> HappyAbsSyn
happyIn68 Maybe CStrLit
x = HappyWrap68 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe CStrLit -> HappyWrap68
HappyWrap68 Maybe CStrLit
x)
{-# INLINE happyIn68 #-}
happyOut68 :: (HappyAbsSyn ) -> HappyWrap68
happyOut68 :: HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap68
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut68 #-}
newtype HappyWrap69 = HappyWrap69 (CDeclrR)
happyIn69 :: (CDeclrR) -> (HappyAbsSyn )
happyIn69 :: CDeclrR -> HappyAbsSyn
happyIn69 CDeclrR
x = HappyWrap69 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap69
HappyWrap69 CDeclrR
x)
{-# INLINE happyIn69 #-}
happyOut69 :: (HappyAbsSyn ) -> HappyWrap69
happyOut69 :: HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap69
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut69 #-}
newtype HappyWrap70 = HappyWrap70 (CDeclrR)
happyIn70 :: (CDeclrR) -> (HappyAbsSyn )
happyIn70 :: CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
x = HappyWrap70 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap70
HappyWrap70 CDeclrR
x)
{-# INLINE happyIn70 #-}
happyOut70 :: (HappyAbsSyn ) -> HappyWrap70
happyOut70 :: HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap70
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut70 #-}
newtype HappyWrap71 = HappyWrap71 (CDeclrR)
happyIn71 :: (CDeclrR) -> (HappyAbsSyn )
happyIn71 :: CDeclrR -> HappyAbsSyn
happyIn71 CDeclrR
x = HappyWrap71 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap71
HappyWrap71 CDeclrR
x)
{-# INLINE happyIn71 #-}
happyOut71 :: (HappyAbsSyn ) -> HappyWrap71
happyOut71 :: HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap71
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut71 #-}
newtype HappyWrap72 = HappyWrap72 (CDeclrR)
happyIn72 :: (CDeclrR) -> (HappyAbsSyn )
happyIn72 :: CDeclrR -> HappyAbsSyn
happyIn72 CDeclrR
x = HappyWrap72 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap72
HappyWrap72 CDeclrR
x)
{-# INLINE happyIn72 #-}
happyOut72 :: (HappyAbsSyn ) -> HappyWrap72
happyOut72 :: HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap72
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut72 #-}
newtype HappyWrap73 = HappyWrap73 (CDeclrR)
happyIn73 :: (CDeclrR) -> (HappyAbsSyn )
happyIn73 :: CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
x = HappyWrap73 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap73
HappyWrap73 CDeclrR
x)
{-# INLINE happyIn73 #-}
happyOut73 :: (HappyAbsSyn ) -> HappyWrap73
happyOut73 :: HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap73
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut73 #-}
newtype HappyWrap74 = HappyWrap74 (CDeclrR)
happyIn74 :: (CDeclrR) -> (HappyAbsSyn )
happyIn74 :: CDeclrR -> HappyAbsSyn
happyIn74 CDeclrR
x = HappyWrap74 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap74
HappyWrap74 CDeclrR
x)
{-# INLINE happyIn74 #-}
happyOut74 :: (HappyAbsSyn ) -> HappyWrap74
happyOut74 :: HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap74
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut74 #-}
newtype HappyWrap75 = HappyWrap75 (CDeclrR)
happyIn75 :: (CDeclrR) -> (HappyAbsSyn )
happyIn75 :: CDeclrR -> HappyAbsSyn
happyIn75 CDeclrR
x = HappyWrap75 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap75
HappyWrap75 CDeclrR
x)
{-# INLINE happyIn75 #-}
happyOut75 :: (HappyAbsSyn ) -> HappyWrap75
happyOut75 :: HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap75
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut75 #-}
newtype HappyWrap76 = HappyWrap76 (CDeclrR)
happyIn76 :: (CDeclrR) -> (HappyAbsSyn )
happyIn76 :: CDeclrR -> HappyAbsSyn
happyIn76 CDeclrR
x = HappyWrap76 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap76
HappyWrap76 CDeclrR
x)
{-# INLINE happyIn76 #-}
happyOut76 :: (HappyAbsSyn ) -> HappyWrap76
happyOut76 :: HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap76
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut76 #-}
newtype HappyWrap77 = HappyWrap77 (CDeclrR)
happyIn77 :: (CDeclrR) -> (HappyAbsSyn )
happyIn77 :: CDeclrR -> HappyAbsSyn
happyIn77 CDeclrR
x = HappyWrap77 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap77
HappyWrap77 CDeclrR
x)
{-# INLINE happyIn77 #-}
happyOut77 :: (HappyAbsSyn ) -> HappyWrap77
happyOut77 :: HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap77
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut77 #-}
newtype HappyWrap78 = HappyWrap78 (CDeclrR)
happyIn78 :: (CDeclrR) -> (HappyAbsSyn )
happyIn78 :: CDeclrR -> HappyAbsSyn
happyIn78 CDeclrR
x = HappyWrap78 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap78
HappyWrap78 CDeclrR
x)
{-# INLINE happyIn78 #-}
happyOut78 :: (HappyAbsSyn ) -> HappyWrap78
happyOut78 :: HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap78
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut78 #-}
newtype HappyWrap79 = HappyWrap79 (CDeclrR)
happyIn79 :: (CDeclrR) -> (HappyAbsSyn )
happyIn79 :: CDeclrR -> HappyAbsSyn
happyIn79 CDeclrR
x = HappyWrap79 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap79
HappyWrap79 CDeclrR
x)
{-# INLINE happyIn79 #-}
happyOut79 :: (HappyAbsSyn ) -> HappyWrap79
happyOut79 :: HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap79
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut79 #-}
newtype HappyWrap80 = HappyWrap80 (CDeclr)
happyIn80 :: (CDeclr) -> (HappyAbsSyn )
happyIn80 :: CDeclr -> HappyAbsSyn
happyIn80 CDeclr
x = HappyWrap80 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclr -> HappyWrap80
HappyWrap80 CDeclr
x)
{-# INLINE happyIn80 #-}
happyOut80 :: (HappyAbsSyn ) -> HappyWrap80
happyOut80 :: HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap80
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut80 #-}
newtype HappyWrap81 = HappyWrap81 (CDeclrR)
happyIn81 :: (CDeclrR) -> (HappyAbsSyn )
happyIn81 :: CDeclrR -> HappyAbsSyn
happyIn81 CDeclrR
x = HappyWrap81 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap81
HappyWrap81 CDeclrR
x)
{-# INLINE happyIn81 #-}
happyOut81 :: (HappyAbsSyn ) -> HappyWrap81
happyOut81 :: HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap81
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut81 #-}
newtype HappyWrap82 = HappyWrap82 (CDeclrR)
happyIn82 :: (CDeclrR) -> (HappyAbsSyn )
happyIn82 :: CDeclrR -> HappyAbsSyn
happyIn82 CDeclrR
x = HappyWrap82 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap82
HappyWrap82 CDeclrR
x)
{-# INLINE happyIn82 #-}
happyOut82 :: (HappyAbsSyn ) -> HappyWrap82
happyOut82 :: HappyAbsSyn -> HappyWrap82
happyOut82 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap82
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut82 #-}
newtype HappyWrap83 = HappyWrap83 (([CDecl], Bool))
happyIn83 :: (([CDecl], Bool)) -> (HappyAbsSyn )
happyIn83 :: ([CDecl], Bool) -> HappyAbsSyn
happyIn83 ([CDecl], Bool)
x = HappyWrap83 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (([CDecl], Bool) -> HappyWrap83
HappyWrap83 ([CDecl], Bool)
x)
{-# INLINE happyIn83 #-}
happyOut83 :: (HappyAbsSyn ) -> HappyWrap83
happyOut83 :: HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap83
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut83 #-}
newtype HappyWrap84 = HappyWrap84 (Reversed [CDecl])
happyIn84 :: (Reversed [CDecl]) -> (HappyAbsSyn )
happyIn84 :: Reversed [CDecl] -> HappyAbsSyn
happyIn84 Reversed [CDecl]
x = HappyWrap84 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDecl] -> HappyWrap84
HappyWrap84 Reversed [CDecl]
x)
{-# INLINE happyIn84 #-}
happyOut84 :: (HappyAbsSyn ) -> HappyWrap84
happyOut84 :: HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap84
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut84 #-}
newtype HappyWrap85 = HappyWrap85 (CDecl)
happyIn85 :: (CDecl) -> (HappyAbsSyn )
happyIn85 :: CDecl -> HappyAbsSyn
happyIn85 CDecl
x = HappyWrap85 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap85
HappyWrap85 CDecl
x)
{-# INLINE happyIn85 #-}
happyOut85 :: (HappyAbsSyn ) -> HappyWrap85
happyOut85 :: HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap85
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut85 #-}
newtype HappyWrap86 = HappyWrap86 (Reversed [Ident])
happyIn86 :: (Reversed [Ident]) -> (HappyAbsSyn )
happyIn86 :: Reversed [Ident] -> HappyAbsSyn
happyIn86 Reversed [Ident]
x = HappyWrap86 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [Ident] -> HappyWrap86
HappyWrap86 Reversed [Ident]
x)
{-# INLINE happyIn86 #-}
happyOut86 :: (HappyAbsSyn ) -> HappyWrap86
happyOut86 :: HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap86
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut86 #-}
newtype HappyWrap87 = HappyWrap87 (CDecl)
happyIn87 :: (CDecl) -> (HappyAbsSyn )
happyIn87 :: CDecl -> HappyAbsSyn
happyIn87 CDecl
x = HappyWrap87 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDecl -> HappyWrap87
HappyWrap87 CDecl
x)
{-# INLINE happyIn87 #-}
happyOut87 :: (HappyAbsSyn ) -> HappyWrap87
happyOut87 :: HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap87
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut87 #-}
newtype HappyWrap88 = HappyWrap88 (CDeclrR)
happyIn88 :: (CDeclrR) -> (HappyAbsSyn )
happyIn88 :: CDeclrR -> HappyAbsSyn
happyIn88 CDeclrR
x = HappyWrap88 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap88
HappyWrap88 CDeclrR
x)
{-# INLINE happyIn88 #-}
happyOut88 :: (HappyAbsSyn ) -> HappyWrap88
happyOut88 :: HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap88
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut88 #-}
newtype HappyWrap89 = HappyWrap89 (CDeclrR -> CDeclrR)
happyIn89 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn89 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89 CDeclrR -> CDeclrR
x = HappyWrap89 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((CDeclrR -> CDeclrR) -> HappyWrap89
HappyWrap89 CDeclrR -> CDeclrR
x)
{-# INLINE happyIn89 #-}
happyOut89 :: (HappyAbsSyn ) -> HappyWrap89
happyOut89 :: HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap89
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut89 #-}
newtype HappyWrap90 = HappyWrap90 (CDeclrR -> CDeclrR)
happyIn90 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn90 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90 CDeclrR -> CDeclrR
x = HappyWrap90 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((CDeclrR -> CDeclrR) -> HappyWrap90
HappyWrap90 CDeclrR -> CDeclrR
x)
{-# INLINE happyIn90 #-}
happyOut90 :: (HappyAbsSyn ) -> HappyWrap90
happyOut90 :: HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap90
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut90 #-}
newtype HappyWrap91 = HappyWrap91 (CDeclrR -> CDeclrR)
happyIn91 :: (CDeclrR -> CDeclrR) -> (HappyAbsSyn )
happyIn91 :: (CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
x = HappyWrap91 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((CDeclrR -> CDeclrR) -> HappyWrap91
HappyWrap91 CDeclrR -> CDeclrR
x)
{-# INLINE happyIn91 #-}
happyOut91 :: (HappyAbsSyn ) -> HappyWrap91
happyOut91 :: HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap91
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut91 #-}
newtype HappyWrap92 = HappyWrap92 (CDeclrR)
happyIn92 :: (CDeclrR) -> (HappyAbsSyn )
happyIn92 :: CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
x = HappyWrap92 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap92
HappyWrap92 CDeclrR
x)
{-# INLINE happyIn92 #-}
happyOut92 :: (HappyAbsSyn ) -> HappyWrap92
happyOut92 :: HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap92
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut92 #-}
newtype HappyWrap93 = HappyWrap93 (CDeclrR)
happyIn93 :: (CDeclrR) -> (HappyAbsSyn )
happyIn93 :: CDeclrR -> HappyAbsSyn
happyIn93 CDeclrR
x = HappyWrap93 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDeclrR -> HappyWrap93
HappyWrap93 CDeclrR
x)
{-# INLINE happyIn93 #-}
happyOut93 :: (HappyAbsSyn ) -> HappyWrap93
happyOut93 :: HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap93
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut93 #-}
newtype HappyWrap94 = HappyWrap94 (CInit)
happyIn94 :: (CInit) -> (HappyAbsSyn )
happyIn94 :: CInit -> HappyAbsSyn
happyIn94 CInit
x = HappyWrap94 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CInit -> HappyWrap94
HappyWrap94 CInit
x)
{-# INLINE happyIn94 #-}
happyOut94 :: (HappyAbsSyn ) -> HappyWrap94
happyOut94 :: HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap94
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut94 #-}
newtype HappyWrap95 = HappyWrap95 (Maybe CInit)
happyIn95 :: (Maybe CInit) -> (HappyAbsSyn )
happyIn95 :: Maybe CInit -> HappyAbsSyn
happyIn95 Maybe CInit
x = HappyWrap95 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe CInit -> HappyWrap95
HappyWrap95 Maybe CInit
x)
{-# INLINE happyIn95 #-}
happyOut95 :: (HappyAbsSyn ) -> HappyWrap95
happyOut95 :: HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap95
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut95 #-}
newtype HappyWrap96 = HappyWrap96 (Reversed CInitList)
happyIn96 :: (Reversed CInitList) -> (HappyAbsSyn )
happyIn96 :: Reversed CInitList -> HappyAbsSyn
happyIn96 Reversed CInitList
x = HappyWrap96 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed CInitList -> HappyWrap96
HappyWrap96 Reversed CInitList
x)
{-# INLINE happyIn96 #-}
happyOut96 :: (HappyAbsSyn ) -> HappyWrap96
happyOut96 :: HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap96
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut96 #-}
newtype HappyWrap97 = HappyWrap97 ([CDesignator])
happyIn97 :: ([CDesignator]) -> (HappyAbsSyn )
happyIn97 :: [CDesignator] -> HappyAbsSyn
happyIn97 [CDesignator]
x = HappyWrap97 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CDesignator] -> HappyWrap97
HappyWrap97 [CDesignator]
x)
{-# INLINE happyIn97 #-}
happyOut97 :: (HappyAbsSyn ) -> HappyWrap97
happyOut97 :: HappyAbsSyn -> HappyWrap97
happyOut97 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap97
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut97 #-}
newtype HappyWrap98 = HappyWrap98 (Reversed [CDesignator])
happyIn98 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn98 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn98 Reversed [CDesignator]
x = HappyWrap98 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDesignator] -> HappyWrap98
HappyWrap98 Reversed [CDesignator]
x)
{-# INLINE happyIn98 #-}
happyOut98 :: (HappyAbsSyn ) -> HappyWrap98
happyOut98 :: HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap98
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut98 #-}
newtype HappyWrap99 = HappyWrap99 (CDesignator)
happyIn99 :: (CDesignator) -> (HappyAbsSyn )
happyIn99 :: CDesignator -> HappyAbsSyn
happyIn99 CDesignator
x = HappyWrap99 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDesignator -> HappyWrap99
HappyWrap99 CDesignator
x)
{-# INLINE happyIn99 #-}
happyOut99 :: (HappyAbsSyn ) -> HappyWrap99
happyOut99 :: HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap99
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut99 #-}
newtype HappyWrap100 = HappyWrap100 (CDesignator)
happyIn100 :: (CDesignator) -> (HappyAbsSyn )
happyIn100 :: CDesignator -> HappyAbsSyn
happyIn100 CDesignator
x = HappyWrap100 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CDesignator -> HappyWrap100
HappyWrap100 CDesignator
x)
{-# INLINE happyIn100 #-}
happyOut100 :: (HappyAbsSyn ) -> HappyWrap100
happyOut100 :: HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap100
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut100 #-}
newtype HappyWrap101 = HappyWrap101 (CExpr)
happyIn101 :: (CExpr) -> (HappyAbsSyn )
happyIn101 :: CExpr -> HappyAbsSyn
happyIn101 CExpr
x = HappyWrap101 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap101
HappyWrap101 CExpr
x)
{-# INLINE happyIn101 #-}
happyOut101 :: (HappyAbsSyn ) -> HappyWrap101
happyOut101 :: HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap101
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut101 #-}
newtype HappyWrap102 = HappyWrap102 (Reversed [(Maybe CDecl, CExpr)])
happyIn102 :: (Reversed [(Maybe CDecl, CExpr)]) -> (HappyAbsSyn )
happyIn102 :: Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn102 Reversed [(Maybe CDecl, CExpr)]
x = HappyWrap102 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [(Maybe CDecl, CExpr)] -> HappyWrap102
HappyWrap102 Reversed [(Maybe CDecl, CExpr)]
x)
{-# INLINE happyIn102 #-}
happyOut102 :: (HappyAbsSyn ) -> HappyWrap102
happyOut102 :: HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap102
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut102 #-}
newtype HappyWrap103 = HappyWrap103 ((Maybe CDecl, CExpr))
happyIn103 :: ((Maybe CDecl, CExpr)) -> (HappyAbsSyn )
happyIn103 :: (Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn103 (Maybe CDecl, CExpr)
x = HappyWrap103 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ((Maybe CDecl, CExpr) -> HappyWrap103
HappyWrap103 (Maybe CDecl, CExpr)
x)
{-# INLINE happyIn103 #-}
happyOut103 :: (HappyAbsSyn ) -> HappyWrap103
happyOut103 :: HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap103
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut103 #-}
newtype HappyWrap104 = HappyWrap104 (Reversed [CDesignator])
happyIn104 :: (Reversed [CDesignator]) -> (HappyAbsSyn )
happyIn104 :: Reversed [CDesignator] -> HappyAbsSyn
happyIn104 Reversed [CDesignator]
x = HappyWrap104 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CDesignator] -> HappyWrap104
HappyWrap104 Reversed [CDesignator]
x)
{-# INLINE happyIn104 #-}
happyOut104 :: (HappyAbsSyn ) -> HappyWrap104
happyOut104 :: HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap104
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut104 #-}
newtype HappyWrap105 = HappyWrap105 (CExpr)
happyIn105 :: (CExpr) -> (HappyAbsSyn )
happyIn105 :: CExpr -> HappyAbsSyn
happyIn105 CExpr
x = HappyWrap105 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap105
HappyWrap105 CExpr
x)
{-# INLINE happyIn105 #-}
happyOut105 :: (HappyAbsSyn ) -> HappyWrap105
happyOut105 :: HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap105
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut105 #-}
newtype HappyWrap106 = HappyWrap106 (Reversed [CExpr])
happyIn106 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn106 :: Reversed [CExpr] -> HappyAbsSyn
happyIn106 Reversed [CExpr]
x = HappyWrap106 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap106
HappyWrap106 Reversed [CExpr]
x)
{-# INLINE happyIn106 #-}
happyOut106 :: (HappyAbsSyn ) -> HappyWrap106
happyOut106 :: HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap106
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut106 #-}
newtype HappyWrap107 = HappyWrap107 (CExpr)
happyIn107 :: (CExpr) -> (HappyAbsSyn )
happyIn107 :: CExpr -> HappyAbsSyn
happyIn107 CExpr
x = HappyWrap107 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap107
HappyWrap107 CExpr
x)
{-# INLINE happyIn107 #-}
happyOut107 :: (HappyAbsSyn ) -> HappyWrap107
happyOut107 :: HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap107
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut107 #-}
newtype HappyWrap108 = HappyWrap108 (Located CUnaryOp)
happyIn108 :: (Located CUnaryOp) -> (HappyAbsSyn )
happyIn108 :: Located CUnaryOp -> HappyAbsSyn
happyIn108 Located CUnaryOp
x = HappyWrap108 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Located CUnaryOp -> HappyWrap108
HappyWrap108 Located CUnaryOp
x)
{-# INLINE happyIn108 #-}
happyOut108 :: (HappyAbsSyn ) -> HappyWrap108
happyOut108 :: HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap108
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut108 #-}
newtype HappyWrap109 = HappyWrap109 (CExpr)
happyIn109 :: (CExpr) -> (HappyAbsSyn )
happyIn109 :: CExpr -> HappyAbsSyn
happyIn109 CExpr
x = HappyWrap109 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap109
HappyWrap109 CExpr
x)
{-# INLINE happyIn109 #-}
happyOut109 :: (HappyAbsSyn ) -> HappyWrap109
happyOut109 :: HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap109
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut109 #-}
newtype HappyWrap110 = HappyWrap110 (CExpr)
happyIn110 :: (CExpr) -> (HappyAbsSyn )
happyIn110 :: CExpr -> HappyAbsSyn
happyIn110 CExpr
x = HappyWrap110 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap110
HappyWrap110 CExpr
x)
{-# INLINE happyIn110 #-}
happyOut110 :: (HappyAbsSyn ) -> HappyWrap110
happyOut110 :: HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap110
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut110 #-}
newtype HappyWrap111 = HappyWrap111 (CExpr)
happyIn111 :: (CExpr) -> (HappyAbsSyn )
happyIn111 :: CExpr -> HappyAbsSyn
happyIn111 CExpr
x = HappyWrap111 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap111
HappyWrap111 CExpr
x)
{-# INLINE happyIn111 #-}
happyOut111 :: (HappyAbsSyn ) -> HappyWrap111
happyOut111 :: HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap111
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut111 #-}
newtype HappyWrap112 = HappyWrap112 (CExpr)
happyIn112 :: (CExpr) -> (HappyAbsSyn )
happyIn112 :: CExpr -> HappyAbsSyn
happyIn112 CExpr
x = HappyWrap112 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap112
HappyWrap112 CExpr
x)
{-# INLINE happyIn112 #-}
happyOut112 :: (HappyAbsSyn ) -> HappyWrap112
happyOut112 :: HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap112
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut112 #-}
newtype HappyWrap113 = HappyWrap113 (CExpr)
happyIn113 :: (CExpr) -> (HappyAbsSyn )
happyIn113 :: CExpr -> HappyAbsSyn
happyIn113 CExpr
x = HappyWrap113 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap113
HappyWrap113 CExpr
x)
{-# INLINE happyIn113 #-}
happyOut113 :: (HappyAbsSyn ) -> HappyWrap113
happyOut113 :: HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap113
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut113 #-}
newtype HappyWrap114 = HappyWrap114 (CExpr)
happyIn114 :: (CExpr) -> (HappyAbsSyn )
happyIn114 :: CExpr -> HappyAbsSyn
happyIn114 CExpr
x = HappyWrap114 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap114
HappyWrap114 CExpr
x)
{-# INLINE happyIn114 #-}
happyOut114 :: (HappyAbsSyn ) -> HappyWrap114
happyOut114 :: HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap114
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut114 #-}
newtype HappyWrap115 = HappyWrap115 (CExpr)
happyIn115 :: (CExpr) -> (HappyAbsSyn )
happyIn115 :: CExpr -> HappyAbsSyn
happyIn115 CExpr
x = HappyWrap115 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap115
HappyWrap115 CExpr
x)
{-# INLINE happyIn115 #-}
happyOut115 :: (HappyAbsSyn ) -> HappyWrap115
happyOut115 :: HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap115
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut115 #-}
newtype HappyWrap116 = HappyWrap116 (CExpr)
happyIn116 :: (CExpr) -> (HappyAbsSyn )
happyIn116 :: CExpr -> HappyAbsSyn
happyIn116 CExpr
x = HappyWrap116 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap116
HappyWrap116 CExpr
x)
{-# INLINE happyIn116 #-}
happyOut116 :: (HappyAbsSyn ) -> HappyWrap116
happyOut116 :: HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap116
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut116 #-}
newtype HappyWrap117 = HappyWrap117 (CExpr)
happyIn117 :: (CExpr) -> (HappyAbsSyn )
happyIn117 :: CExpr -> HappyAbsSyn
happyIn117 CExpr
x = HappyWrap117 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap117
HappyWrap117 CExpr
x)
{-# INLINE happyIn117 #-}
happyOut117 :: (HappyAbsSyn ) -> HappyWrap117
happyOut117 :: HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap117
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut117 #-}
newtype HappyWrap118 = HappyWrap118 (CExpr)
happyIn118 :: (CExpr) -> (HappyAbsSyn )
happyIn118 :: CExpr -> HappyAbsSyn
happyIn118 CExpr
x = HappyWrap118 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap118
HappyWrap118 CExpr
x)
{-# INLINE happyIn118 #-}
happyOut118 :: (HappyAbsSyn ) -> HappyWrap118
happyOut118 :: HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap118
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut118 #-}
newtype HappyWrap119 = HappyWrap119 (CExpr)
happyIn119 :: (CExpr) -> (HappyAbsSyn )
happyIn119 :: CExpr -> HappyAbsSyn
happyIn119 CExpr
x = HappyWrap119 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap119
HappyWrap119 CExpr
x)
{-# INLINE happyIn119 #-}
happyOut119 :: (HappyAbsSyn ) -> HappyWrap119
happyOut119 :: HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap119
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut119 #-}
newtype HappyWrap120 = HappyWrap120 (CExpr)
happyIn120 :: (CExpr) -> (HappyAbsSyn )
happyIn120 :: CExpr -> HappyAbsSyn
happyIn120 CExpr
x = HappyWrap120 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap120
HappyWrap120 CExpr
x)
{-# INLINE happyIn120 #-}
happyOut120 :: (HappyAbsSyn ) -> HappyWrap120
happyOut120 :: HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap120
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut120 #-}
newtype HappyWrap121 = HappyWrap121 (CExpr)
happyIn121 :: (CExpr) -> (HappyAbsSyn )
happyIn121 :: CExpr -> HappyAbsSyn
happyIn121 CExpr
x = HappyWrap121 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap121
HappyWrap121 CExpr
x)
{-# INLINE happyIn121 #-}
happyOut121 :: (HappyAbsSyn ) -> HappyWrap121
happyOut121 :: HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap121
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut121 #-}
newtype HappyWrap122 = HappyWrap122 (Located CAssignOp)
happyIn122 :: (Located CAssignOp) -> (HappyAbsSyn )
happyIn122 :: Located CAssignOp -> HappyAbsSyn
happyIn122 Located CAssignOp
x = HappyWrap122 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Located CAssignOp -> HappyWrap122
HappyWrap122 Located CAssignOp
x)
{-# INLINE happyIn122 #-}
happyOut122 :: (HappyAbsSyn ) -> HappyWrap122
happyOut122 :: HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap122
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut122 #-}
newtype HappyWrap123 = HappyWrap123 (CExpr)
happyIn123 :: (CExpr) -> (HappyAbsSyn )
happyIn123 :: CExpr -> HappyAbsSyn
happyIn123 CExpr
x = HappyWrap123 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap123
HappyWrap123 CExpr
x)
{-# INLINE happyIn123 #-}
happyOut123 :: (HappyAbsSyn ) -> HappyWrap123
happyOut123 :: HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap123
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut123 #-}
newtype HappyWrap124 = HappyWrap124 (Reversed [CExpr])
happyIn124 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn124 :: Reversed [CExpr] -> HappyAbsSyn
happyIn124 Reversed [CExpr]
x = HappyWrap124 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap124
HappyWrap124 Reversed [CExpr]
x)
{-# INLINE happyIn124 #-}
happyOut124 :: (HappyAbsSyn ) -> HappyWrap124
happyOut124 :: HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap124
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut124 #-}
newtype HappyWrap125 = HappyWrap125 (Maybe CExpr)
happyIn125 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn125 :: Maybe CExpr -> HappyAbsSyn
happyIn125 Maybe CExpr
x = HappyWrap125 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe CExpr -> HappyWrap125
HappyWrap125 Maybe CExpr
x)
{-# INLINE happyIn125 #-}
happyOut125 :: (HappyAbsSyn ) -> HappyWrap125
happyOut125 :: HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap125
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut125 #-}
newtype HappyWrap126 = HappyWrap126 (Maybe CExpr)
happyIn126 :: (Maybe CExpr) -> (HappyAbsSyn )
happyIn126 :: Maybe CExpr -> HappyAbsSyn
happyIn126 Maybe CExpr
x = HappyWrap126 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe CExpr -> HappyWrap126
HappyWrap126 Maybe CExpr
x)
{-# INLINE happyIn126 #-}
happyOut126 :: (HappyAbsSyn ) -> HappyWrap126
happyOut126 :: HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap126
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut126 #-}
newtype HappyWrap127 = HappyWrap127 (CExpr)
happyIn127 :: (CExpr) -> (HappyAbsSyn )
happyIn127 :: CExpr -> HappyAbsSyn
happyIn127 CExpr
x = HappyWrap127 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CExpr -> HappyWrap127
HappyWrap127 CExpr
x)
{-# INLINE happyIn127 #-}
happyOut127 :: (HappyAbsSyn ) -> HappyWrap127
happyOut127 :: HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap127
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut127 #-}
newtype HappyWrap128 = HappyWrap128 (CConst)
happyIn128 :: (CConst) -> (HappyAbsSyn )
happyIn128 :: CConst -> HappyAbsSyn
happyIn128 CConst
x = HappyWrap128 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CConst -> HappyWrap128
HappyWrap128 CConst
x)
{-# INLINE happyIn128 #-}
happyOut128 :: (HappyAbsSyn ) -> HappyWrap128
happyOut128 :: HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap128
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut128 #-}
newtype HappyWrap129 = HappyWrap129 (CStrLit)
happyIn129 :: (CStrLit) -> (HappyAbsSyn )
happyIn129 :: CStrLit -> HappyAbsSyn
happyIn129 CStrLit
x = HappyWrap129 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (CStrLit -> HappyWrap129
HappyWrap129 CStrLit
x)
{-# INLINE happyIn129 #-}
happyOut129 :: (HappyAbsSyn ) -> HappyWrap129
happyOut129 :: HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap129
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut129 #-}
newtype HappyWrap130 = HappyWrap130 (Reversed [CString])
happyIn130 :: (Reversed [CString]) -> (HappyAbsSyn )
happyIn130 :: Reversed [CString] -> HappyAbsSyn
happyIn130 Reversed [CString]
x = HappyWrap130 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CString] -> HappyWrap130
HappyWrap130 Reversed [CString]
x)
{-# INLINE happyIn130 #-}
happyOut130 :: (HappyAbsSyn ) -> HappyWrap130
happyOut130 :: HappyAbsSyn -> HappyWrap130
happyOut130 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap130
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut130 #-}
newtype HappyWrap131 = HappyWrap131 (ClangCVersion)
happyIn131 :: (ClangCVersion) -> (HappyAbsSyn )
happyIn131 :: ClangCVersion -> HappyAbsSyn
happyIn131 ClangCVersion
x = HappyWrap131 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (ClangCVersion -> HappyWrap131
HappyWrap131 ClangCVersion
x)
{-# INLINE happyIn131 #-}
happyOut131 :: (HappyAbsSyn ) -> HappyWrap131
happyOut131 :: HappyAbsSyn -> HappyWrap131
happyOut131 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap131
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut131 #-}
newtype HappyWrap132 = HappyWrap132 (Ident)
happyIn132 :: (Ident) -> (HappyAbsSyn )
happyIn132 :: Ident -> HappyAbsSyn
happyIn132 Ident
x = HappyWrap132 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Ident -> HappyWrap132
HappyWrap132 Ident
x)
{-# INLINE happyIn132 #-}
happyOut132 :: (HappyAbsSyn ) -> HappyWrap132
happyOut132 :: HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap132
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut132 #-}
newtype HappyWrap133 = HappyWrap133 ([CAttr])
happyIn133 :: ([CAttr]) -> (HappyAbsSyn )
happyIn133 :: [CAttr] -> HappyAbsSyn
happyIn133 [CAttr]
x = HappyWrap133 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CAttr] -> HappyWrap133
HappyWrap133 [CAttr]
x)
{-# INLINE happyIn133 #-}
happyOut133 :: (HappyAbsSyn ) -> HappyWrap133
happyOut133 :: HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap133
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut133 #-}
newtype HappyWrap134 = HappyWrap134 ([CAttr])
happyIn134 :: ([CAttr]) -> (HappyAbsSyn )
happyIn134 :: [CAttr] -> HappyAbsSyn
happyIn134 [CAttr]
x = HappyWrap134 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CAttr] -> HappyWrap134
HappyWrap134 [CAttr]
x)
{-# INLINE happyIn134 #-}
happyOut134 :: (HappyAbsSyn ) -> HappyWrap134
happyOut134 :: HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap134
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut134 #-}
newtype HappyWrap135 = HappyWrap135 ([CAttr])
happyIn135 :: ([CAttr]) -> (HappyAbsSyn )
happyIn135 :: [CAttr] -> HappyAbsSyn
happyIn135 [CAttr]
x = HappyWrap135 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# ([CAttr] -> HappyWrap135
HappyWrap135 [CAttr]
x)
{-# INLINE happyIn135 #-}
happyOut135 :: (HappyAbsSyn ) -> HappyWrap135
happyOut135 :: HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap135
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut135 #-}
newtype HappyWrap136 = HappyWrap136 (Reversed [CAttr])
happyIn136 :: (Reversed [CAttr]) -> (HappyAbsSyn )
happyIn136 :: Reversed [CAttr] -> HappyAbsSyn
happyIn136 Reversed [CAttr]
x = HappyWrap136 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CAttr] -> HappyWrap136
HappyWrap136 Reversed [CAttr]
x)
{-# INLINE happyIn136 #-}
happyOut136 :: (HappyAbsSyn ) -> HappyWrap136
happyOut136 :: HappyAbsSyn -> HappyWrap136
happyOut136 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap136
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut136 #-}
newtype HappyWrap137 = HappyWrap137 (Maybe CAttr)
happyIn137 :: (Maybe CAttr) -> (HappyAbsSyn )
happyIn137 :: Maybe CAttr -> HappyAbsSyn
happyIn137 Maybe CAttr
x = HappyWrap137 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Maybe CAttr -> HappyWrap137
HappyWrap137 Maybe CAttr
x)
{-# INLINE happyIn137 #-}
happyOut137 :: (HappyAbsSyn ) -> HappyWrap137
happyOut137 :: HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap137
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut137 #-}
newtype HappyWrap138 = HappyWrap138 (Reversed [CExpr])
happyIn138 :: (Reversed [CExpr]) -> (HappyAbsSyn )
happyIn138 :: Reversed [CExpr] -> HappyAbsSyn
happyIn138 Reversed [CExpr]
x = HappyWrap138 -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# (Reversed [CExpr] -> HappyWrap138
HappyWrap138 Reversed [CExpr]
x)
{-# INLINE happyIn138 #-}
happyOut138 :: (HappyAbsSyn ) -> HappyWrap138
happyOut138 :: HappyAbsSyn -> HappyWrap138
happyOut138 HappyAbsSyn
x = HappyAbsSyn -> HappyWrap138
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOut138 #-}
happyInTok :: (CToken) -> (HappyAbsSyn )
happyInTok :: CToken -> HappyAbsSyn
happyInTok CToken
x = CToken -> HappyAbsSyn
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# CToken
x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> (CToken)
happyOutTok :: HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
x = HappyAbsSyn -> CToken
forall a b. a -> b
Happy_GHC_Exts.unsafeCoerce# HappyAbsSyn
x
{-# INLINE happyOutTok #-}
happyExpList :: HappyAddr
happyExpList :: HappyAddr
happyExpList = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\xb4\x92\xfe\x87\x2b\xd9\x7d\x03\x0f\x90\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\xc0\xa4\xd2\x00\xf0\x00\x48\x04\xf0\xf7\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x42\x2b\xe9\x7f\xb8\x92\xdd\x37\xf0\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6a\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x80\x04\x25\xf5\x2f\x16\x70\xd2\xe6\xff\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x02\x00\x00\x60\x01\x00\x02\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x26\x95\x06\x80\x07\x40\x22\x80\xbf\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\xc0\x6a\xe9\x7f\xb8\xbe\xd5\x77\x70\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xb5\xe4\x3f\x5c\xdf\xa2\x3a\x20\x80\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x6a\xc9\x7f\xb0\xbc\x45\x75\x40\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x85\x80\x00\x10\x7c\x88\x82\x80\x00\x3e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x0a\x01\x01\x00\xf0\x10\x05\x01\x01\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\x02\x02\x40\xf0\x21\x0a\x02\x02\xf8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x04\x04\x00\xc0\x43\x14\x04\x04\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x80\xd5\xd2\xff\x70\x7d\xab\xef\xe0\x00\x3e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x00\x00\x00\x58\x00\x80\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x4a\x56\xdf\xc0\x01\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\xb4\x92\xfe\x87\x2b\xd9\x7d\x03\x0f\x90\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x41\x49\xfd\x8b\x05\x9c\xb4\xf9\xff\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x28\xa9\x7f\xb1\x80\x93\x36\xff\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x81\x00\x00\x00\x58\x00\x80\xa0\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x52\x49\xff\xc3\x95\xec\xbe\x01\x03\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x95\xf4\x3f\x5c\xc9\xea\x1b\x38\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x06\x00\xdf\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\xc0\x6a\xe9\x7f\xb8\xbe\xd5\x77\x70\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x30\xa9\x34\x00\x3c\x00\x12\x01\xfc\xfd\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\xea\x1f\x2c\x60\xa4\x0d\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\xa9\x7f\xb0\x80\x91\x36\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x52\xff\x60\x01\x23\x6d\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x40\x82\x92\xfa\x17\x0b\x38\x69\xf3\xff\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\xa0\xa4\xfe\xc5\x02\x4e\xda\xfc\xff\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x80\x04\x25\xf5\x2f\x16\x70\xd2\xe6\xff\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x44\x4b\xfc\x83\x65\x0d\xa0\x03\x02\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x04\x00\x00\xc0\x02\x00\x04\x04\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x08\x00\x00\x80\x05\x00\x08\x08\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x20\x5a\xea\x1f\x2c\x6b\xa4\x1d\x18\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x52\xff\x60\x01\x23\x6d\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x01\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x48\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x5a\xea\x1f\x2c\x6b\xa4\x1d\x18\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x08\x00\x00\x00\x40\x2a\xe9\x7f\xb8\x92\xd5\x37\x60\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x90\x08\xe0\xef\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\xb3\xdf\xf7\xff\x5f\xe9\xff\xdb\xff\xdf\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x30\xa9\x34\x00\x3c\x00\x12\x01\xfc\xfd\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x95\xf4\x3f\x5c\xc9\xee\x1b\x30\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x88\x54\xd2\xff\x70\x25\xbb\x6f\xc0\x00\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x4a\xea\x5f\x2c\xe0\xa4\xcd\xff\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x22\x95\xf4\x3f\x5c\xc9\xee\x1b\x30\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x52\x49\xff\xc3\x95\xac\xbe\x01\x03\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x08\x04\x00\x00\xc0\x02\x00\x04\x07\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x22\x95\xf4\x3f\x5c\xc9\xee\x1b\x30\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x82\x92\xfa\x17\x0b\x38\x69\xf3\xff\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\xae\x64\xf7\x0d\x18\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x81\x00\x00\x02\x58\x04\x80\xbe\x7f\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xfd\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x08\x00\x00\x00\xc0\x6a\xe9\x7f\xb8\xbe\xd5\x77\x70\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b\x01\x01\x20\xf8\x10\x05\x01\x01\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x02\x02\x00\xe0\x21\x0a\x02\x02\xf8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x80\x00\x00\x00\x00\xac\x96\xfe\x87\xeb\x5b\x7d\x07\x07\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x54\xd2\xff\x70\x25\xab\x6f\xc0\x00\x32\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x60\xb5\xf4\x3f\x5c\xdf\xea\x3b\x38\x80\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x80\xd5\xd2\xff\x70\x7d\xab\xef\xe0\x00\x3e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x4a\x56\xdf\xc0\x01\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x41\x49\xfd\x8b\x05\x9c\xb4\xf9\xff\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xa4\x92\xfe\x87\x2b\xd9\x7d\x03\x06\x90\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\xb0\x00\x00\x41\x01\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x48\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x10\x08\x00\x00\x80\x05\x00\x08\x0a\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\xc0\x6a\xe9\x7f\xb8\xbe\xd5\x77\x70\x00\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x95\xf4\x3f\x5c\xc9\xea\x1b\x30\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x56\x4b\xff\xc3\xf5\xad\xbe\x03\x03\xf8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x01\x00\x00\x00\x48\x25\xfd\x0f\x57\xb2\xfa\x06\x0e\x20\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x4a\x56\xdf\xc0\x01\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x81\x00\x00\x00\x58\x00\x80\x80\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x02\x01\x00\x04\xb0\x08\x00\x7d\xfe\x1a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x81\x00\x00\x02\x58\x04\x80\xbe\x7f\x0d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x25\xf5\x2f\x16\x70\xd2\xe6\xff\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x91\x4a\xfa\x1f\xae\x64\xf7\x0d\x18\x40\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x40\x49\xfd\x83\x05\x8c\xb4\x01\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\x02\x01\x00\x00\xb0\x00\x00\xc1\x01\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x80\x49\xa5\x01\xe0\x01\x90\x08\xe0\xef\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x93\x4a\x03\xc0\x03\x20\x11\xc0\xdf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x26\x95\x06\x80\x07\x40\x22\x80\xbf\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\xcc\x7e\xdf\xff\x7f\xa5\xff\x6f\xff\x7f\x33\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x20\x00\x00\x00\x00\xab\xa5\xff\xe1\xfa\x56\xdf\xc1\x01\x7c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x00\x00\xac\x96\xfe\x87\xeb\x5b\x7d\x07\x07\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x98\x4a\xfa\x5f\xae\xe4\xf7\xcd\xff\x6f\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x52\xff\x60\x01\x23\x6d\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xa4\xfe\xc1\x02\x46\xda\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x92\xfa\x07\x0b\x18\x69\x03\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\xd5\x3f\x58\xc0\x48\x1b\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x10\x00\x00\x00\x00\x81\x00\x00\x00\x58\x00\x80\x80\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x01\x04\x00\x00\x00\x20\x95\xf4\x3f\x5c\xc9\xea\x1b\x30\x80\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x3f\x01\x08\x00\x90\x00\x00\x00\x04\x00\x08\x00\xfc\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x09\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x09\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xfc\x13\x80\x00\x00\x09\x00\x00\x40\x00\x80\x00\xc0\xef\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x40\x00\x00\x00\x2c\x00\x40\x40\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc0\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x01\x00\x00\x00\x58\x2d\xfd\x0f\xd7\xb7\xfa\x0e\x0e\xe0\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x93\x4a\x03\xc0\x03\x20\x11\xc0\xdf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x40\x00\x00\x00\x00\x04\x02\x00\x00\x60\x01\x00\x82\x03\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x4a\xea\x1f\x2c\x60\xa4\x0d\x38\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x44\x4b\xfd\x83\x65\x8d\xb4\x03\x03\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x80\x00\x00\x01\x00\x80\x92\xfa\x07\x0b\x18\x69\x03\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\xd4\x3f\x58\xc0\x48\x1b\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x10\x00\x00\x80\x00\x00\x01\x80\xcf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x14\x40\x00\x00\x00\x00\x04\x02\x00\x00\x60\x01\x00\x82\x03\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x50\x00\x01\x00\x00\x00\x48\x25\xfd\x0f\x57\xb2\xfa\x06\x0e\x20\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x02\x08\x00\x00\x00\x80\x40\x00\x00\x00\x2c\x00\x40\x50\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x20\x00\x00\x00\x00\xa9\xa4\xff\xe1\x4a\x56\xdf\xc0\x01\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x40\x20\x00\x00\x00\x16\x00\x20\x38\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x60\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x00\x00\x40\x20\x00\x00\x00\x16\x00\x20\x28\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x08\x00\x00\x00\x80\x40\x00\x00\x00\x2c\x00\x40\x70\x00\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xb4\xd4\x3f\x58\xd6\x48\x3b\x30\x00\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x10\x00\x00\x00\x00\x81\x00\x00\x00\x58\x00\x80\xe0\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x93\x4a\x03\xc0\x03\x20\x11\xc0\xdf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc1\x9f\x00\x04\x00\x40\x00\x00\x00\x02\x00\x04\x00\x3e\x7f\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x30\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x20\x00\x00\x00\x01\x00\x02\x00\x9f\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\xac\xfe\xc1\x02\x46\xda\x80\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x09\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xf2\x4f\x00\x02\x00\x2c\x00\x00\x00\x01\x00\x02\x00\xbf\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x20\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\xf8\x13\x80\x00\x00\x08\x00\x00\x40\x00\x80\x00\xc0\xe7\x2f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf9\x27\x00\x01\x00\x16\x00\x00\x80\x00\x00\x01\x80\xdf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x20\x00\x02\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x04\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x82\x3f\x01\x08\x00\x80\x00\x00\x00\x04\x00\x08\x00\x7c\xfe\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x7f\x02\x10\x00\x00\x01\x00\x00\x08\x00\x10\x00\xf8\xfc\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\xf0\x27\x00\x01\x00\x93\x4a\x03\xc0\x03\x20\x11\xc0\xdf\x5f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\xe0\x4f\x00\x02\x00\x26\x95\x06\x80\x07\x40\x22\x80\xbf\xbf\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x20\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\xfe\x04\x20\x00\x00\x02\x00\x00\x10\x00\x20\x00\xf0\xf9\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfc\x09\x40\x00\x00\x04\x00\x00\x20\x00\x40\x00\xe0\xf3\x17\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x08\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
{-# NOINLINE happyExpListPerState #-}
happyExpListPerState :: Int -> [String]
happyExpListPerState Int
st =
[String]
token_strs_expected
where token_strs :: [String]
token_strs = [String
"error",String
"%dummy",String
"%start_translation_unit",String
"%start_external_declaration",String
"%start_statement",String
"%start_expression",String
"translation_unit",String
"ext_decl_list",String
"external_declaration",String
"function_definition",String
"function_declarator",String
"statement",String
"labeled_statement",String
"compound_statement",String
"enter_scope",String
"leave_scope",String
"block_item_list",String
"block_item",String
"nested_declaration",String
"nested_function_definition",String
"label_declarations",String
"expression_statement",String
"selection_statement",String
"iteration_statement",String
"jump_statement",String
"asm_statement",String
"maybe_type_qualifier",String
"asm_operands",String
"nonnull_asm_operands",String
"asm_operand",String
"asm_clobbers",String
"nonnull_asm_clobbers",String
"declaration",String
"declaration_list",String
"default_declaring_list",String
"asm_attrs_opt",String
"declaring_list",String
"declaration_specifier",String
"declaration_qualifier_list",String
"declaration_qualifier",String
"declaration_qualifier_without_types",String
"storage_class",String
"function_specifier",String
"alignment_specifier",String
"type_specifier",String
"basic_type_name",String
"basic_declaration_specifier",String
"basic_type_specifier",String
"sue_declaration_specifier",String
"sue_type_specifier",String
"typedef_declaration_specifier",String
"typedef_type_specifier",String
"elaborated_type_name",String
"struct_or_union_specifier",String
"struct_or_union",String
"struct_declaration_list",String
"struct_declaration",String
"struct_default_declaring_list",String
"struct_declaring_list",String
"struct_declarator",String
"struct_identifier_declarator",String
"enum_specifier",String
"enumerator_list",String
"enumerator",String
"type_qualifier",String
"type_qualifier_list",String
"declarator",String
"asm_opt",String
"typedef_declarator",String
"parameter_typedef_declarator",String
"clean_typedef_declarator",String
"clean_postfix_typedef_declarator",String
"paren_typedef_declarator",String
"paren_postfix_typedef_declarator",String
"simple_paren_typedef_declarator",String
"identifier_declarator",String
"unary_identifier_declarator",String
"postfix_identifier_declarator",String
"paren_identifier_declarator",String
"function_declarator_old",String
"old_function_declarator",String
"postfix_old_function_declarator",String
"parameter_type_list",String
"parameter_list",String
"parameter_declaration",String
"identifier_list",String
"type_name",String
"abstract_declarator",String
"postfixing_abstract_declarator",String
"array_abstract_declarator",String
"postfix_array_abstract_declarator",String
"unary_abstract_declarator",String
"postfix_abstract_declarator",String
"initializer",String
"initializer_opt",String
"initializer_list",String
"designation",String
"designator_list",String
"designator",String
"array_designator",String
"primary_expression",String
"generic_assoc_list",String
"generic_assoc",String
"offsetof_member_designator",String
"postfix_expression",String
"argument_expression_list",String
"unary_expression",String
"unary_operator",String
"cast_expression",String
"multiplicative_expression",String
"additive_expression",String
"shift_expression",String
"relational_expression",String
"equality_expression",String
"and_expression",String
"exclusive_or_expression",String
"inclusive_or_expression",String
"logical_and_expression",String
"logical_or_expression",String
"conditional_expression",String
"assignment_expression",String
"assignment_operator",String
"expression",String
"comma_expression",String
"expression_opt",String
"assignment_expression_opt",String
"constant_expression",String
"constant",String
"string_literal",String
"string_literal_list",String
"clang_version_literal",String
"identifier",String
"attrs_opt",String
"attrs",String
"attr",String
"attribute_list",String
"attribute",String
"attribute_params",String
"'('",String
"')'",String
"'['",String
"']'",String
"\"->\"",String
"'.'",String
"'!'",String
"'~'",String
"\"++\"",String
"\"--\"",String
"'+'",String
"'-'",String
"'*'",String
"'/'",String
"'%'",String
"'&'",String
"\"<<\"",String
"\">>\"",String
"'<'",String
"\"<=\"",String
"'>'",String
"\">=\"",String
"\"==\"",String
"\"!=\"",String
"'^'",String
"'|'",String
"\"&&\"",String
"\"||\"",String
"'?'",String
"':'",String
"'='",String
"\"+=\"",String
"\"-=\"",String
"\"*=\"",String
"\"/=\"",String
"\"%=\"",String
"\"&=\"",String
"\"^=\"",String
"\"|=\"",String
"\"<<=\"",String
"\">>=\"",String
"','",String
"';'",String
"'{'",String
"'}'",String
"\"...\"",String
"alignof",String
"alignas",String
"\"_Atomic\"",String
"asm",String
"auto",String
"break",String
"\"_Bool\"",String
"case",String
"char",String
"const",String
"continue",String
"\"_Complex\"",String
"default",String
"do",String
"double",String
"else",String
"enum",String
"extern",String
"float",String
"\"_Float32\"",String
"\"_Float32x\"",String
"\"_Float64\"",String
"\"_Float64x\"",String
"\"_Float128\"",String
"\"_Float128x\"",String
"\"__float128\"",String
"for",String
"\"_Generic\"",String
"goto",String
"if",String
"inline",String
"int",String
"\"__int128\"",String
"\"__int128_t\"",String
"long",String
"\"__label__\"",String
"\"_Noreturn\"",String
"\"_Nullable\"",String
"\"_Nonnull\"",String
"register",String
"restrict",String
"return",String
"short",String
"signed",String
"sizeof",String
"static",String
"\"_Static_assert\"",String
"struct",String
"switch",String
"typedef",String
"typeof",String
"\"__thread\"",String
"union",String
"\"__uint128\"",String
"\"__uint128_t\"",String
"unsigned",String
"void",String
"volatile",String
"while",String
"cchar",String
"cint",String
"cfloat",String
"cstr",String
"ident",String
"tyident",String
"\"__attribute__\"",String
"\"__extension__\"",String
"\"__real__\"",String
"\"__imag__\"",String
"\"__builtin_va_arg\"",String
"\"__builtin_offsetof\"",String
"\"__builtin_types_compatible_p\"",String
"\"__builtin_convertvector\"",String
"clangcversion",String
"\"__builtin_bit_cast\"",String
"\"__kernel\"",String
"\"__read_only\"",String
"\"__write_only\"",String
"\"__global\"",String
"\"__local\"",String
"%eof"]
bit_start :: Int
bit_start = Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.* Int
265
bit_end :: Int
bit_end = (Int
st Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.+ Int
1) Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.* Int
265
read_bit :: Int -> Bool
read_bit = HappyAddr -> Int -> Bool
readArrayBit HappyAddr
happyExpList
bits :: [Bool]
bits = (Int -> Bool) -> [Int] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
Prelude.map Int -> Bool
read_bit [Int
bit_start..Int
bit_end Int -> Int -> Int
forall a. Num a => a -> a -> a
Prelude.- Int
1]
bits_indexed :: [(Bool, Int)]
bits_indexed = [Bool] -> [Int] -> [(Bool, Int)]
forall a b. [a] -> [b] -> [(a, b)]
Prelude.zip [Bool]
bits [Int
0..Int
264]
token_strs_expected :: [String]
token_strs_expected = ((Bool, Int) -> [String]) -> [(Bool, Int)] -> [String]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
Prelude.concatMap (Bool, Int) -> [String]
f [(Bool, Int)]
bits_indexed
f :: (Bool, Int) -> [String]
f (Bool
Prelude.False, Int
_) = []
f (Bool
Prelude.True, Int
nr) = [[String]
token_strs [String] -> Int -> String
forall a. HasCallStack => [a] -> Int -> a
Prelude.!! Int
nr]
happyActOffsets :: HappyAddr
happyActOffsets :: HappyAddr
happyActOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\xad\x07\xd9\x12\xdd\x17\x00\x00\x01\x00\x00\x00\x4e\x05\x15\x1d\xdd\x17\x00\x00\xa2\x02\x17\x01\x0b\x00\x15\x01\x69\x03\x1e\x00\x88\x00\x8c\x00\xbb\x00\x7c\x03\x00\x00\xc6\x00\x90\x00\x00\x00\x00\x00\xeb\x11\x00\x00\x00\x00\xfa\x17\xfa\x17\x00\x00\x00\x00\x00\x00\x00\x00\x86\x03\x2a\x18\xeb\x00\x76\x18\x00\x00\x00\x00\x00\x00\xcd\x00\x00\x00\xa6\x18\xc3\x18\xc3\x18\x57\x01\xab\x01\xb7\x01\xc0\x01\xd5\x01\x46\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc9\x01\xdd\x01\x00\x00\x00\x00\x78\x0b\xe3\x01\xf3\x18\xf6\x01\x0b\x02\xd9\x12\x38\x02\x9c\x00\x5c\x02\xf3\x18\x64\x02\x76\x02\x36\x02\x00\x00\xfc\x01\x00\x00\x52\x02\x00\x00\x14\x04\x19\x04\xf4\x01\x15\x04\x00\x00\x00\x00\x00\x00\x00\x00\xf4\x01\x00\x00\x5b\x1f\x73\x20\xf3\x1c\x2c\x1d\x25\x20\xa5\x20\x00\x00\x00\x00\x16\x02\x00\x00\x71\x04\x00\x00\x00\x00\x00\x00\xe1\x01\x00\x00\x00\x00\x00\x00\x78\x0b\xcc\x08\x00\x00\xca\x01\xca\x01\x8e\x02\x9e\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x37\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\x02\x00\x00\x00\x00\xb2\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x02\xad\x07\x00\x00\x00\x00\x00\x00\x2b\x02\x00\x00\xbc\x02\x62\x12\xf3\x18\xc2\x00\x5e\x02\x65\x02\x62\x12\x3d\x0c\x00\x00\x00\x00\xce\x01\xe1\x02\x76\x03\xf3\x02\xce\x01\xde\x02\x00\x00\x00\x00\x00\x00\xfb\xff\x00\x00\x00\x00\x16\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7f\x1d\x00\x00\x1b\x03\x00\x00\x1f\x1e\x55\x0c\xf9\x02\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\x00\x00\xcd\x04\x2a\x03\x00\x00\xe2\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x03\x0d\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07\x03\x00\x00\x05\x00\x08\x00\x0f\x03\x09\x03\x00\x00\x00\x00\x00\x00\xfb\xff\x00\x00\x00\x00\x36\x03\x00\x00\x25\x03\x21\x03\x00\x00\xe9\x02\x00\x00\xe9\x02\x00\x00\x00\x00\xf3\x18\xf3\x18\x00\x00\x3b\x03\xf3\x18\x48\x03\xf3\x18\x00\x00\xa9\x01\x11\x03\xd9\x12\x00\x00\x00\x00\x00\x00\xf2\xff\x00\x00\x89\x03\x00\x00\x3a\x03\x1f\x03\x00\x00\xcc\x23\xf3\x18\xcc\x23\xcc\x23\xf3\x18\x00\x00\xeb\x11\x00\x00\x00\x00\x24\x03\x00\x00\x00\x00\xeb\x11\xf3\x18\x00\x00\xeb\x11\x00\x00\x00\x00\x00\x00\x91\x03\xaa\x02\xef\x21\xd6\x09\xd6\x09\xeb\x0b\x94\x03\xa7\x03\x00\x24\xf3\x18\xf3\x18\x60\x16\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\xf3\x18\x00\x00\xf3\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x90\x16\xf3\x18\xe2\x03\xe2\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa9\x03\xff\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7a\x03\x7a\x03\x7b\x04\x7b\x04\x8d\x04\x8d\x04\x8d\x04\x8d\x04\x15\x01\x15\x01\xf1\x04\x9f\x03\x9c\x03\x9e\x03\xa4\x03\xf3\x18\xaf\x03\x00\x00\xb6\x03\x00\x00\xdc\x16\x00\x00\x00\x00\x00\x00\x63\x03\xf3\x20\x33\x21\x29\x05\x06\x0f\x00\x00\x00\x00\xe3\x03\xc3\x03\xf5\x03\x00\x00\x00\x04\xdf\x03\xe7\x03\xea\x03\xee\x03\xf4\x03\xd9\x12\x2b\x01\xd1\x03\x9d\x03\xc5\x03\xd9\x12\xf3\x18\x00\x00\x38\x04\xaa\x1f\x1c\x04\x1e\x04\x00\x00\x49\x04\x00\x00\x4c\x04\x51\x04\x16\x00\x72\x02\x7f\x1d\x42\x04\xf7\x03\x6c\x04\x00\x00\x62\x12\x7f\x1d\x55\x04\x00\x00\x00\x00\x6e\x1e\xeb\x0d\x00\x00\x00\x00\x2a\x00\x5f\x00\x6e\x04\x7d\x04\x0f\x03\xa1\x02\x5f\x00\x00\x00\x7f\x1d\x6d\x04\x00\x00\x62\x04\x00\x00\x62\x12\x77\x04\x00\x00\x00\x00\x00\x00\x00\x00\xfb\xff\x00\x00\xa4\x04\x00\x00\x7f\x1d\x88\x04\x00\x00\xcc\x0c\x00\x00\xa6\x04\xba\x0d\x12\x00\x3f\x04\xa7\x00\xa5\x02\xa7\x00\x25\x20\xa5\x20\x01\x03\xbb\x04\x97\x04\x00\x00\xa9\x00\xec\x1f\x00\x00\x00\x00\x00\x00\x00\x00\x72\x02\x85\x05\x72\x02\xe1\x05\x28\x09\x62\x12\x7f\x1d\xaa\x04\x00\x00\xc1\x04\xa5\x03\xa8\x02\xa8\x02\x0f\x03\x00\x00\x0f\x03\x00\x00\x0f\x03\x00\x00\x00\x00\x24\x0f\xca\x04\xce\x04\xd4\x04\xb7\x04\x3e\x04\xc0\x04\xf9\x04\xfd\x04\xdc\xff\x24\x01\x00\x00\x00\x00\x00\x05\x00\x00\x00\x00\x96\x04\x0f\x01\x00\x00\xe5\xff\x3e\x04\xdb\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x0f\xc6\x03\x00\x00\x0f\x03\x00\x00\x0c\x17\x00\x00\x09\x05\x17\x05\xeb\x04\xeb\x04\x3d\x06\x00\x00\x6c\x00\x7b\x00\xeb\x04\x00\x00\xba\x04\xd0\x1d\x00\x00\xb5\x04\x00\x00\xbd\x1e\x0c\x1f\x5d\x03\x5e\x0e\xb5\x04\xb5\x04\x00\x00\xb9\x03\x86\x0c\xb5\x04\x00\x00\xb5\x04\xb5\x04\x00\x00\xd6\x09\x31\x0e\x2e\x05\x36\x05\x12\x00\x00\x00\x40\x05\xea\x04\x43\x0d\x12\x00\x00\x00\x00\x00\x62\x12\x7f\x1d\x31\x05\x00\x00\x50\x05\x54\x05\x2f\x22\x00\x00\x00\x00\x00\x00\xcd\x03\x5b\x05\xcc\x02\xd0\x00\x5d\x05\x0f\x03\x0f\x03\xdb\x03\x00\x00\x00\x00\x00\x00\x62\x0e\x4c\x01\x00\x00\x00\x00\x60\x05\x65\x05\xee\x04\x00\x00\x00\x00\x00\x00\x43\x05\x43\x05\xd9\x12\xd9\x12\xd9\x12\x00\x00\xf3\x18\xf3\x18\xf3\x18\x63\x05\x00\x00\x11\x00\x14\x05\x2b\x01\x0b\x05\x00\x00\x57\x05\x00\x00\x00\x00\x00\x00\x00\x00\x72\x02\x99\x06\x72\x02\xf5\x06\x6a\x05\x27\x02\x00\x00\xf3\x18\x34\x24\x34\x24\xf6\x04\x34\x24\x4f\x05\x4f\x05\x98\x23\x4f\x05\x42\x0f\x00\x00\x46\x0f\xa0\x05\xb7\x05\x0a\x00\x84\x09\x00\x00\x00\x00\xb7\x13\xf3\x18\x00\x00\xf3\x18\x00\x00\xf3\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa6\x01\x0c\x17\xd8\x02\x00\x00\xfa\x02\x00\x00\x70\x05\xf3\x18\xf6\x04\xb7\x13\xb9\x05\xbc\x05\x0d\x00\x00\x00\x0f\x03\x00\x00\x00\x00\x00\x00\x00\x00\xd6\x09\x7f\x05\xb5\x01\x00\x00\x99\x05\xc1\x05\xc4\x01\x00\x00\xcf\x05\xd3\x05\xd5\x05\x00\x00\xb1\x05\x51\x07\xb1\x05\xb1\x05\xb1\x05\x00\x00\x6c\x05\xb3\x05\x00\x00\xbf\x05\x32\x00\xd9\x12\xfc\x05\xc7\x05\xea\x05\xa6\x05\x00\x00\x00\x00\xf4\x05\xf4\x05\x15\x06\x00\x00\x00\x00\xe1\x03\x00\x00\x00\x00\xbc\x01\x00\x00\x00\x00\x00\x00\x00\x00\x80\x0e\x0f\x03\x00\x00\x6c\x22\xc7\x01\x00\x00\x75\x05\x88\x05\x73\x21\xa2\x19\x00\x00\x00\x00\x5b\x23\x00\x00\x00\x00\x00\x00\x00\x00\x18\x06\x1d\x06\x29\x06\x2d\x06\x12\x00\xc3\x05\x00\x00\x35\x06\x00\x00\x00\x00\x38\x06\xf3\x18\x00\x00\x00\x00\x00\x00\xfd\x0c\x74\x0d\x14\x08\x00\x00\x00\x00\xba\x0e\xe4\x0e\x70\x08\x00\x00\x00\x00\x00\x00\x00\x00\xd2\x0e\xbc\x01\xbc\x01\x0e\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa8\x01\xe6\xff\xf3\x18\xda\x00\x00\x00\x44\x06\x29\x17\x51\x06\xdc\xff\x00\x00\x00\x00\x15\x1d\x00\x00\xcf\x01\x00\x00\x2f\x06\x00\x00\x00\x00\x00\x00\xf3\x18\x50\x01\x00\x00\xbc\x01\x58\x0f\xe8\x0e\x6d\x06\x00\x00\x00\x00\xf3\x18\x6f\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x05\x58\x06\xf3\x18\xbf\x01\xb3\x21\x0b\x06\x00\x00\x0b\x06\x00\x00\x0b\x06\x71\x06\xf3\x18\x00\x00\x00\x00\xe8\x0e\x2d\x04\x00\x00\x00\x00\x00\x00\x00\x00\xd9\x12\xf3\x18\xf3\x18\x5e\x06\x00\x00\x1f\x00\x63\x06\x00\x00\x94\x06\x52\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf3\x18\x8d\x05\x00\x00\xf3\x18\x00\x00\x98\x23\xf3\x18\x00\x00\x00\x00\x0f\x03\x00\x00\x4f\x02\x00\x00\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x13\x00\x00\x00\x00\x61\x17\x00\x00\x00\x00\xf3\x18\x87\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x06\x00\x00\x9e\x06\xa6\x06\xf3\x18\x32\x00\x83\x06\x32\x00\x00\x00\xad\x06\xc6\x06\x00\x00\x00\x00\x00\x00\xf3\x18\x00\x00\xbf\x01\xc7\x01\x5b\x06\x00\x00\xf3\x18\x00\x00\x00\x00\xc9\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf3\x18\xad\x17\x00\x00\x00\x00\x00\x00\x15\x1d\x00\x00\x00\x00\x00\x00\x5f\x06\x5f\x06\x00\x00\xd9\x12\xd9\x12\xb4\x00\x00\x00\x00\x00\xd0\x06\x67\x06\x67\x06\x00\x00\x00\x00\xd1\x06\x00\x00\x00\x00\xd6\x06\xe4\x06\x00\x00\xbe\x06\x84\x06\x00\x00\x00\x00\x00\x00\xad\x17\x00\x00\x00\x00\x00\x00\xf2\x06\xce\x06\x00\x00\x00\x00\xf3\x18\xf3\x18\x09\x07\x21\x07\x91\x06\xf9\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyGotoOffsets :: HappyAddr
happyGotoOffsets :: HappyAddr
happyGotoOffsets = Addr# -> HappyAddr
HappyA# Addr#
"\xf6\x05\x67\x00\x05\x0b\xbe\x25\x26\x07\x99\x00\x00\x00\x00\x00\xb6\x06\x87\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9e\x0f\x00\x00\x00\x00\xf0\x05\x3c\x09\x00\x00\x00\x00\x00\x00\x00\x00\xae\x06\xfc\x09\x00\x00\x6d\x0a\x00\x00\x00\x00\x00\x00\xb3\x06\x00\x00\xf7\x0c\xa0\x0a\x88\x0e\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x07\xf6\xff\x00\x00\x1c\x27\x00\x00\x00\x00\xd8\x13\x00\x00\xb4\x06\x00\x00\x41\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2c\x07\x00\x00\x00\x00\x00\x00\xb0\x12\x02\x0a\x00\x00\x00\x00\x00\x00\x00\x00\x1d\x13\x00\x00\x03\x03\xcf\x00\x51\x03\xee\xff\x61\x03\x2f\x01\x00\x00\x00\x00\xe0\x03\x00\x00\xd5\x09\x00\x00\x00\x00\x00\x00\x2e\x04\x2a\x07\x00\x00\x00\x00\x07\x07\x61\x0a\x00\x00\x36\x0c\x16\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd5\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x1a\x35\x27\xca\x06\xcd\x06\xda\x06\x53\x1c\xde\x07\x00\x00\x00\x00\xa9\x02\x00\x00\x89\x04\x00\x00\xfb\x00\x49\x07\x00\x00\x00\x00\x00\x00\x02\x00\x3f\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9c\x02\x00\x00\x13\x07\x00\x00\x85\x11\xd3\x22\x78\x07\x00\x00\x00\x00\x00\x00\x00\x00\xf0\x00\x65\x07\x34\x0a\x00\x00\x00\x00\x06\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7e\x07\x07\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6c\x07\xfd\x08\x2e\x13\x95\x04\x83\x07\x00\x00\x00\x00\x00\x00\x08\x01\x71\x07\x00\x00\x00\x00\x00\x00\x86\x07\x0a\x01\x74\x07\x78\x04\x00\x00\x98\x04\x00\x00\x00\x00\xd7\x25\xf0\x25\x00\x00\x00\x00\x09\x26\x00\x00\x22\x26\x00\x00\xdf\x01\x00\x00\xfd\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\xb9\x04\x00\x00\x05\x1b\x4e\x27\x62\x1c\x79\x1c\x67\x27\x00\x00\xfa\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x56\x10\x80\x27\x00\x00\xb2\x10\x00\x00\x00\x00\x00\x00\x00\x00\x46\x04\xae\x00\xd1\xff\x6d\x00\x38\x0a\x00\x00\x00\x00\xd6\x05\x3b\x26\x8d\x29\x54\x26\xa6\x29\x46\x09\x2f\x1b\xb0\x1b\xa8\x06\x04\x07\xe0\x0f\x77\x11\x10\x16\x61\x19\x4b\x17\x7b\x17\x98\x17\xfc\x17\x1e\x0e\x7e\x0e\xb2\x0e\x00\x00\x99\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x26\x86\x26\x1d\x07\x1e\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5b\x29\x00\x00\x00\x00\x00\x00\x00\x00\x29\x0f\x00\x00\x00\x00\x00\x00\x1c\x07\xb8\x03\x00\x00\x95\x1a\xb5\x13\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6d\x14\x1f\x0b\x93\x07\x52\x07\x29\x07\x87\x14\xb2\x27\x00\x00\x00\x00\xf9\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x05\x03\x94\x07\xbc\x0f\x54\x07\xf4\x04\x00\x00\x00\x00\x51\x1b\x70\x10\x58\x07\x00\x00\x00\x00\xcd\x1a\xc8\x11\x00\x00\x00\x00\xe5\x03\x59\x13\x00\x00\x00\x00\x41\x05\xfa\x03\x7d\x14\x00\x00\x1e\x11\x5e\x07\x00\x00\x00\x00\x8a\x07\x77\x1b\xa2\x07\x00\x00\x00\x00\x00\x00\x00\x00\x86\x01\xa1\x07\x00\x00\x00\x00\x38\x11\x66\x07\x00\x00\x7c\x22\x00\x00\x00\x00\x24\x25\x1c\x05\x51\x02\xa1\x20\x64\x14\xd6\x29\xb1\x03\x88\x01\x08\x15\x00\x00\x00\x00\x00\x00\x00\x00\x1e\x05\x00\x00\x00\x00\x00\x00\x00\x00\x0f\x09\xe4\x0c\x91\x0d\x5b\x0d\x09\x10\xd2\x1b\x64\x11\x6f\x07\x00\x00\x00\x00\x59\x05\xbd\x03\x93\x0b\x5c\x05\x00\x00\x7c\x05\x00\x00\x9d\x05\x00\x00\x00\x00\xd3\xff\x00\x00\x00\x00\x00\x00\x00\x00\x75\x01\x00\x00\x00\x00\x00\x00\x9b\x05\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x43\x07\x00\x00\x00\x00\xec\x05\x95\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcc\x00\x9d\x05\x00\x00\xb5\x05\x00\x00\xd1\x24\x00\x00\x00\x00\x00\x00\x1e\x02\x22\x02\xd2\x0d\x00\x00\x82\x07\x0a\x19\x23\x02\x00\x00\x00\x00\x5f\x12\x00\x00\x8c\x05\x00\x00\x66\x04\x00\x00\x5d\x1a\x71\x16\x90\x05\xac\x05\x00\x00\x13\x1a\x21\x1d\xcd\x05\x00\x00\xd9\x05\xe2\x05\x00\x00\xcd\xff\x14\x23\x00\x00\x00\x00\xe5\x05\x00\x00\x00\x00\x00\x00\x9b\x22\xe8\x05\x00\x00\x00\x00\xf8\x1b\x9f\x11\x79\x07\x00\x00\x00\x00\x00\x00\x07\x08\xa7\x07\x00\x00\x00\x00\x34\x06\x00\x00\x23\x0c\xb2\x0c\x00\x00\x55\x06\x62\x06\x70\x06\x00\x00\x00\x00\x00\x00\x55\x08\x21\x15\x00\x00\x00\x00\x00\x00\x00\x00\x64\x07\x00\x00\x00\x00\x00\x00\x35\x02\x53\x02\xa1\x14\x11\x15\x2b\x15\x00\x00\x5a\x25\x73\x25\x9f\x26\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x0b\x92\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa3\x0c\xa9\x0a\x2a\x0f\x8e\x0a\x00\x00\x56\x19\x00\x00\xcb\x27\xae\x1c\xc4\x1c\xc0\x00\xda\x1c\x00\x00\x00\x00\x6d\x19\x00\x00\xa3\x0a\x00\x00\x9f\x04\x00\x00\x00\x00\x63\x07\x21\x0e\x00\x00\x00\x00\x4e\x24\xe4\x27\x00\x00\x74\x29\x00\x00\xfd\x27\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xee\x24\x1c\x06\x00\x00\x00\x00\x00\x00\x00\x00\x16\x28\x68\x07\x73\x24\x00\x00\x00\x00\x69\x07\x00\x00\x73\x06\x00\x00\x00\x00\x00\x00\x00\x00\x10\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdf\x07\xd8\x0a\xe1\x07\xe4\x07\xef\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8e\x00\x45\x15\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9f\x07\xa0\x07\x00\x00\x00\x00\x00\x00\x90\x06\x00\x00\x00\x00\xa1\x08\x00\x00\x00\x00\x00\x00\x00\x00\x33\x0c\xb1\x06\x00\x00\xb6\x0b\x6b\x19\x00\x00\x00\x00\x00\x00\x7a\x05\xb7\x0d\x00\x00\x00\x00\xd1\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9a\x06\x9d\x06\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2f\x28\x00\x00\x00\x00\x00\x00\xd7\x22\x19\x23\xac\x15\x00\x00\x00\x00\xc3\x09\x6b\x06\x5e\x16\x00\x00\x00\x00\x00\x00\x00\x00\x5b\x0a\xa7\x11\xd4\x13\x97\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7d\x07\x48\x28\x23\x00\x00\x00\x00\x00\xb1\x24\x00\x00\x77\x07\x00\x00\x00\x00\x8c\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x61\x28\x23\x00\x00\x00\xc5\x15\xd3\xff\xb1\x08\x00\x00\x00\x00\x00\x00\x7a\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x84\x07\x00\x00\x93\x28\xe7\x02\xb8\x03\xa0\x06\x00\x00\xc0\x06\x00\x00\xe1\x06\x00\x00\xac\x28\x00\x00\x00\x00\xb1\x08\x22\x07\x00\x00\x00\x00\x00\x00\x00\x00\xb5\x15\x8c\x25\xa5\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb8\x26\x8b\x07\x00\x00\xc5\x28\x00\x00\x9f\x13\xde\x28\x00\x00\x00\x00\x25\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x24\x00\x00\x00\x00\x0b\x25\x00\x00\x00\x00\xf7\x28\x97\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x26\xec\xff\x00\x00\xb5\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x10\x29\x00\x00\x26\x03\x2e\x1a\x96\x07\x00\x00\x29\x29\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x42\x29\xc0\xff\x00\x00\x00\x00\x00\x00\x99\x07\x00\x00\x00\x00\x00\x00\xfc\x06\x9a\x07\x00\x00\xcf\x15\xe9\x15\x00\x00\x00\x00\x00\x00\x00\x00\x98\x07\xa5\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x40\x00\x10\x08\x00\x00\x00\x00\x80\x04\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xea\x26\x03\x27\x00\x00\x00\x00\xa6\x07\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset :: Int# -> Int#
happyAdjustOffset Int#
off = Int#
off
happyDefActions :: HappyAddr
happyDefActions :: HappyAddr
happyDefActions = Addr# -> HappyAddr
HappyA# Addr#
"\xfa\xff\x17\xfe\x00\x00\x00\x00\x00\x00\x17\xfe\x76\xfe\x6a\xfe\x58\xfe\x00\x00\x56\xfe\x52\xfe\x4f\xfe\x4c\xfe\x47\xfe\x44\xfe\x42\xfe\x40\xfe\x3e\xfe\x3c\xfe\x3a\xfe\x37\xfe\x2a\xfe\x00\x00\x87\xfe\x86\xfe\x17\xfe\x59\xfe\x5a\xfe\x00\x00\x00\x00\x5c\xfe\x5b\xfe\x5d\xfe\x5e\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x20\xfe\x21\xfe\x1f\xfe\x1e\xfe\x88\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe4\xff\xe3\xff\xe2\xff\xe1\xff\xe0\xff\xdf\xff\xde\xff\x00\x00\x00\x00\xc7\xff\xd7\xff\xb5\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\xfe\x00\x00\x00\x00\x88\xfe\x18\xfe\x00\x00\xf7\xff\x00\x00\xf6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x95\xff\x8b\xff\x8a\xff\x89\xff\x00\x00\x5f\xff\x98\xff\x7b\xff\x97\xff\x7a\xff\x96\xff\x79\xff\x54\xff\x3a\xff\x17\xfe\x39\xff\x00\x00\xe5\xff\xec\xfe\xea\xfe\xeb\xfe\xa3\xff\xdd\xfe\xdc\xfe\x00\x00\x16\xfe\x15\xfe\x00\x00\x17\xfe\x00\x00\x00\x00\x85\xff\x6f\xff\x77\xff\x6e\xff\x72\xff\x17\xfe\x87\xff\x73\xff\x6b\xff\x6a\xff\x69\xff\x68\xff\x67\xff\x66\xff\x65\xff\x7f\xff\x75\xff\x6d\xff\x74\xff\x7e\xff\x84\xff\x76\xff\x71\xff\x86\xff\x00\x00\x35\xff\x88\xff\x00\x00\x83\xff\x34\xff\x6c\xff\x70\xff\x78\xff\xe0\xfe\x48\xff\x00\x00\x17\xfe\x82\xff\x81\xff\x80\xff\x00\x00\xf5\xff\x00\x00\x17\xfe\x00\x00\x00\x00\x16\xfe\x00\x00\x17\xfe\x00\x00\xe9\xfe\xdb\xfe\x16\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\xff\x5e\xff\x53\xff\x08\xff\xa3\xff\x14\xfe\x00\x00\x42\xff\x0d\xff\x10\xff\x15\xff\x12\xff\x11\xff\x13\xff\x14\xff\x0f\xff\x0e\xff\x17\xfe\xe5\xfe\xb9\xfe\xb7\xfe\xd6\xfe\x24\xfe\x00\x00\x93\xff\x5d\xff\x52\xff\x0c\xff\x08\xff\xa3\xff\x00\x00\x00\x00\x45\xff\x00\x00\x4e\xff\x3c\xff\x3b\xff\x4a\xff\x8f\xff\x8d\xff\x8c\xff\x8e\xff\x49\xff\x57\xff\x50\xff\x4f\xff\xa7\xff\x56\xff\x55\xff\xa8\xff\x63\xff\x5a\xff\x5b\xff\x59\xff\x62\xff\x61\xff\x60\xff\x00\x00\x08\xff\x09\xff\x05\xff\x02\xff\x01\xff\x06\xff\xf8\xfe\x0a\xff\xa3\xff\x00\x00\x17\xfe\x04\xff\x00\x00\x91\xff\x64\xff\x58\xff\x08\xff\xa3\xff\x90\xff\x00\x00\x4d\xff\x00\x00\x08\xff\xa3\xff\x17\xfe\xa6\xff\x17\xfe\xa5\xff\xf3\xff\x00\x00\x00\x00\x25\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x19\xfe\x26\xfe\x00\x00\x00\x00\xbc\xff\x58\xfe\x22\xfe\x00\x00\xbb\xff\x00\x00\xb4\xff\xd5\xff\x17\xfe\xc6\xff\x17\xfe\x00\x00\x17\xfe\x17\xfe\x00\x00\x60\xfe\x17\xfe\x61\xfe\x67\xfe\x1d\xfe\x1c\xfe\x65\xfe\x17\xfe\x00\x00\x63\xfe\x17\xfe\x5f\xfe\x68\xfe\x69\xfe\x00\x00\xc0\xfe\x7b\xff\x7a\xff\x79\xff\x00\x00\x00\x00\x00\x00\x16\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x66\xfe\x00\x00\x35\xfe\x31\xfe\x30\xfe\x34\xfe\x33\xfe\x32\xfe\x2d\xfe\x2c\xfe\x2b\xfe\x2f\xfe\x2e\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x70\xfe\x6f\xfe\xf8\xff\xf9\xff\x72\xfe\x71\xfe\x00\x00\x00\x00\x6c\xfe\x74\xfe\x36\xfe\x53\xfe\x54\xfe\x55\xfe\x50\xfe\x51\xfe\x4d\xfe\x4e\xfe\x48\xfe\x4a\xfe\x49\xfe\x4b\xfe\x45\xfe\x46\xfe\x43\xfe\x41\xfe\x3f\xfe\x3d\xfe\x00\x00\x00\x00\x3b\xfe\x28\xfe\x29\xfe\x85\xfe\x00\x00\xbd\xfe\xba\xfe\xbc\xfe\xbb\xfe\x00\x00\xbe\xfe\xd6\xfe\xaa\xfe\xbf\xfe\x83\xfe\x00\x00\x00\x00\x00\x00\x1b\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd6\xff\xd5\xff\x00\x00\x00\x00\x00\x00\x00\x00\xdb\xff\x00\x00\x17\xfe\x00\x00\x00\x00\xbe\xff\x00\x00\xba\xff\x00\x00\x00\x00\x00\x00\x00\x00\x17\xfe\x98\xfe\x17\xfe\x00\x00\xf1\xff\x17\xfe\x17\xfe\x98\xfe\xef\xff\x03\xff\xd6\xfe\x00\x00\x00\xff\xf4\xfe\x16\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xee\xfe\x17\xfe\x98\xfe\xf0\xff\x36\xff\x33\xff\x17\xfe\x00\x00\x92\xff\x5c\xff\x51\xff\x0b\xff\x08\xff\xa3\xff\x00\x00\x3f\xff\x17\xfe\x98\xfe\xee\xff\x24\xfe\x23\xfe\x00\x00\x24\xfe\x5d\xfe\x17\xfe\xd1\xfe\xcd\xfe\xca\xfe\x97\xff\x7a\xff\xc6\xfe\x00\x00\xd5\xfe\xd3\xfe\x00\x00\x16\xfe\xc2\xfe\xb6\xfe\xec\xff\xa2\xff\x00\x00\x00\x00\x00\x00\x00\x00\x16\xfe\x17\xfe\x17\xfe\x98\xfe\xf2\xff\x00\x00\x00\x00\x00\x00\x17\xfe\xd8\xfe\xdf\xfe\xe4\xfe\xe8\xfe\xeb\xfe\xe7\xfe\xda\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x1c\xff\x00\x00\x00\x00\x00\x00\x00\x00\x10\xfe\x00\x00\x12\xfe\x0e\xfe\x0f\xfe\x47\xff\x46\xff\x00\x00\x00\x00\x1b\xff\x19\xff\x00\x00\x00\x00\x7c\xff\x7d\xff\xe6\xfe\xe3\xfe\xd7\xfe\x00\x00\x00\x00\xde\xfe\xe2\xfe\x9e\xff\x00\x00\xeb\xff\x00\x00\x00\x00\x08\xff\x08\xff\x00\x00\x0a\xff\x00\x00\x17\xfe\x08\xff\xd9\xfe\x00\x00\x17\xfe\xb8\xfe\x17\xfe\xc4\xfe\x00\x00\xc5\xfe\xd6\xfe\xaa\xfe\x17\xfe\x17\xfe\xc9\xfe\xd6\xfe\xaa\xfe\x17\xfe\xcc\xfe\x17\xfe\x17\xfe\xd0\xfe\x17\xfe\x00\x00\x00\x00\x00\x00\x5d\xfe\xb5\xfe\x00\x00\x00\x00\x24\xfe\x5d\xfe\xa0\xff\xe7\xff\x17\xfe\x17\xfe\x98\xfe\xed\xff\x00\x00\x00\x00\x17\xfe\x33\xff\x9a\xff\xe9\xff\x00\x00\x00\x00\x00\x00\x17\xfe\x00\x00\xf1\xfe\xfc\xfe\x00\x00\xff\xfe\xfe\xfe\xf3\xfe\x00\x00\x00\x00\xa1\xff\xe8\xff\x00\x00\x00\x00\x00\x00\x9c\xff\x9b\xff\xea\xff\x08\xff\x08\xff\x00\x00\x00\x00\x00\x00\xbd\xff\x26\xfe\x26\xfe\x00\x00\x00\x00\xdc\xff\x00\x00\x00\x00\xd6\xff\x00\x00\xd3\xff\x00\x00\xd4\xff\xd2\xff\xd0\xff\xd1\xff\x00\x00\x00\x00\x00\x00\x00\x00\x48\xff\x17\xfe\xdd\xff\x00\x00\x17\xfe\x17\xfe\x00\x00\x17\xfe\x00\x00\x64\xfe\x17\xfe\x62\xfe\x17\xfe\xa8\xfe\xa6\xfe\x00\x00\x00\x00\x00\x00\x16\xfe\x9c\xfe\x57\xfe\x96\xfe\x00\x00\x38\xfe\x00\x00\x73\xfe\x00\x00\x75\xfe\x6b\xfe\x39\xfe\x27\xfe\x95\xfe\x00\x00\x00\x00\x00\x00\x8e\xfe\x8f\xfe\x9b\xfe\x00\x00\x00\x00\x00\x00\x96\xfe\x00\x00\x00\x00\x00\x00\xa3\xfe\xa4\xfe\xa2\xfe\xa5\xfe\xa7\xfe\xa9\xfe\x16\xfe\x00\x00\x00\x00\x7c\xfe\x00\x00\x00\x00\x00\x00\x79\xfe\x00\x00\x00\x00\x00\x00\xcf\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd9\xff\x00\x00\x00\x00\xc9\xff\x00\x00\xb3\xff\x00\x00\x00\x00\x00\x00\x00\x00\xc5\xff\xc3\xff\xc2\xff\x98\xfe\x98\xfe\x00\x00\x4c\xff\x4b\xff\x00\x00\xfd\xfe\xf2\xfe\x00\x00\xf7\xfe\xfb\xfe\xef\xfe\xf0\xfe\x00\x00\xfa\xfe\xed\xfe\x17\xfe\x28\xff\x31\xff\x00\x00\x00\x00\x17\xfe\x16\xfe\x32\xff\x37\xff\x17\xfe\x44\xff\x43\xff\x9f\xff\xe6\xff\x00\x00\x00\x00\x00\x00\x00\x00\x5d\xfe\x17\xfe\xb3\xfe\x00\x00\xb4\xfe\xae\xfe\x00\x00\x00\x00\xcf\xfe\xce\xfe\xcb\xfe\x17\xfe\xa6\xfe\x16\xfe\xc8\xfe\xc7\xfe\x17\xfe\xa6\xfe\x16\xfe\xc3\xfe\xd2\xfe\xd4\xfe\xc1\xfe\x00\x00\x00\x00\x00\x00\x08\xff\x41\xff\x40\xff\x97\xfe\xe1\xfe\xf4\xff\x00\x00\x18\xff\x00\x00\x00\x00\x20\xff\x00\x00\x00\x00\x00\x00\x10\xfe\x11\xfe\x13\xfe\x58\xfe\x0b\xfe\x00\x00\x0c\xfe\x00\x00\x1a\xff\x1f\xff\x16\xff\x00\x00\x00\x00\x1e\xff\x00\x00\x16\xfe\x16\xfe\x00\x00\xb1\xfe\xad\xfe\x00\x00\x00\x00\xb2\xfe\xac\xfe\x3e\xff\x3d\xff\x2e\xff\x2c\xff\x24\xff\x00\x00\x00\x00\x16\xfe\x17\xfe\x30\xff\x17\xfe\x2f\xff\x17\xfe\x27\xff\x00\x00\x38\xff\xf9\xfe\x00\x00\x00\x00\xf6\xfe\x07\xff\x99\xff\x9d\xff\x00\x00\x26\xfe\x26\xfe\x00\x00\xda\xff\x00\x00\xb2\xff\xb1\xff\x00\x00\x00\x00\xb9\xff\xd8\xff\xc8\xff\xce\xff\xcc\xff\xcd\xff\x00\x00\xcb\xff\x7e\xfe\x7f\xfe\x80\xfe\x81\xfe\x00\x00\x00\x00\x82\xfe\x00\x00\x84\xfe\x17\xfe\x00\x00\xa1\xfe\x9f\xfe\xa0\xfe\x9e\xfe\x00\x00\x8b\xfe\x00\x00\x90\xfe\x8d\xfe\x8a\xfe\x91\xfe\x94\xfe\x00\x00\x6e\xfe\x93\xfe\x00\x00\x6d\xfe\x8c\xfe\x00\x00\x00\x00\x9a\xfe\x9d\xfe\x7b\xfe\x7d\xfe\x7a\xfe\x78\xfe\x00\x00\xca\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb3\xff\xc1\xff\x00\x00\x00\x00\xc4\xff\xf5\xfe\x26\xff\x00\x00\x2a\xff\x00\x00\x00\x00\x2d\xff\x23\xff\x00\x00\x21\xff\xab\xfe\x00\x00\xb0\xfe\x1d\xff\x17\xff\xa4\xff\x0d\xfe\x00\x00\x00\x00\x09\xfe\x0a\xfe\x1a\xfe\x58\xfe\x08\xfe\xaf\xfe\x22\xff\x17\xfe\x2b\xff\x25\xff\x00\x00\x00\x00\x00\x00\xb8\xff\xb0\xff\x00\x00\x00\x00\x00\x00\x77\xfe\x99\xfe\x00\x00\x92\xfe\x89\xfe\x00\x00\x00\x00\xaf\xff\x00\x00\xac\xff\xd6\xff\xc0\xff\x29\xff\x00\x00\x07\xfe\x06\xfe\xbf\xff\x00\x00\xab\xff\xaa\xff\xb7\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb6\xff\xa9\xff\xad\xff\xae\xff"#
happyCheck :: HappyAddr
happyCheck :: HappyAddr
happyCheck = Addr# -> HappyAddr
HappyA# Addr#
"\xff\xff\x02\x00\x01\x00\x17\x00\x1f\x00\x1f\x00\x01\x00\x3a\x00\x04\x00\x01\x00\x14\x00\x3a\x00\x02\x00\x3a\x00\x0d\x00\x02\x00\x1e\x00\x23\x00\x0d\x00\x02\x00\x38\x00\x0d\x00\x04\x00\x01\x00\x45\x00\x46\x00\x47\x00\x48\x00\x11\x00\x12\x00\x5e\x00\x1d\x00\x2e\x00\x02\x00\x62\x00\x0d\x00\x64\x00\x65\x00\x0a\x00\x2c\x00\x3a\x00\x2a\x00\x0e\x00\x01\x00\x2b\x00\x32\x00\x10\x00\x1e\x00\x3a\x00\x30\x00\x2e\x00\x32\x00\x33\x00\x03\x00\x35\x00\x0d\x00\x37\x00\x79\x00\x7a\x00\x3a\x00\x7c\x00\x1e\x00\x3d\x00\x3d\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x6e\x00\x7e\x00\x7f\x00\x80\x00\x4d\x00\x4e\x00\x4f\x00\x80\x00\x51\x00\x80\x00\x53\x00\x70\x00\x70\x00\x56\x00\x18\x00\x19\x00\x59\x00\x5a\x00\x39\x00\x5c\x00\x5d\x00\x5e\x00\x01\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x7a\x00\x66\x00\x67\x00\x02\x00\x03\x00\x04\x00\x0d\x00\x01\x00\x80\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x6e\x00\x6f\x00\x70\x00\x6e\x00\x6f\x00\x70\x00\x0d\x00\x70\x00\x7a\x00\x01\x00\x70\x00\x7d\x00\x7e\x00\x7f\x00\x1a\x00\x70\x00\x1c\x00\x6e\x00\x1e\x00\x1f\x00\x20\x00\x0d\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x6e\x00\x6f\x00\x70\x00\x02\x00\x03\x00\x04\x00\x37\x00\x6d\x00\x7d\x00\x19\x00\x3b\x00\x15\x00\x16\x00\x17\x00\x1a\x00\x3a\x00\x01\x00\x0d\x00\x03\x00\x02\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x1a\x00\x0d\x00\x1c\x00\x02\x00\x1e\x00\x1f\x00\x20\x00\x7a\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x15\x00\x16\x00\x17\x00\x6e\x00\x6f\x00\x70\x00\x37\x00\x01\x00\x1e\x00\x2a\x00\x3b\x00\x27\x00\x1b\x00\x02\x00\x03\x00\x04\x00\x6e\x00\x6f\x00\x70\x00\x0d\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x7e\x00\x7f\x00\x80\x00\x3a\x00\x6e\x00\x6f\x00\x70\x00\x01\x00\x80\x00\x2c\x00\x1a\x00\x2a\x00\x1c\x00\x23\x00\x1e\x00\x1f\x00\x20\x00\x27\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x3a\x00\x2d\x00\x7a\x00\x3a\x00\x6e\x00\x6f\x00\x37\x00\x1d\x00\x2c\x00\x7f\x00\x3b\x00\x45\x00\x46\x00\x47\x00\x48\x00\x6e\x00\x6f\x00\x7e\x00\x7f\x00\x80\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x61\x00\x0b\x00\x0c\x00\x1d\x00\x1d\x00\x02\x00\x1d\x00\x13\x00\x14\x00\x15\x00\x16\x00\x01\x00\x3d\x00\x80\x00\x7a\x00\x6e\x00\x6f\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x2a\x00\x6d\x00\x10\x00\x2d\x00\x7d\x00\x6e\x00\x6f\x00\x70\x00\x46\x00\x47\x00\x48\x00\x3d\x00\x3d\x00\x1b\x00\x3d\x00\x6e\x00\x6f\x00\x3a\x00\x7f\x00\x80\x00\x01\x00\x2a\x00\x80\x00\x6e\x00\x6f\x00\x23\x00\x7e\x00\x7f\x00\x80\x00\x2b\x00\x2c\x00\x01\x00\x0d\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x34\x00\x35\x00\x36\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3a\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x80\x00\x51\x00\x2d\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x80\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x1d\x00\x79\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x01\x00\x23\x00\x01\x00\x38\x00\x39\x00\x80\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x02\x00\x01\x00\x10\x00\x6e\x00\x6f\x00\x70\x00\x01\x00\x6e\x00\x6f\x00\x01\x00\x01\x00\x3a\x00\x3d\x00\x1b\x00\x7f\x00\x02\x00\x03\x00\x01\x00\x0d\x00\x06\x00\x01\x00\x0d\x00\x38\x00\x39\x00\x01\x00\x2a\x00\x02\x00\x2a\x00\x2d\x00\x0d\x00\x2d\x00\x01\x00\x0d\x00\x2f\x00\x30\x00\x31\x00\x0d\x00\x33\x00\x1e\x00\x35\x00\x2a\x00\x37\x00\x38\x00\x01\x00\x3a\x00\x03\x00\x1e\x00\x3d\x00\x08\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x4a\x00\x2b\x00\x01\x00\x4d\x00\x4e\x00\x4f\x00\x2a\x00\x51\x00\x1e\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x0d\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x80\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x2b\x00\x66\x00\x67\x00\x68\x00\x7d\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x2b\x00\x79\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x01\x00\x1e\x00\x6e\x00\x6f\x00\x70\x00\x6e\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x6e\x00\x6f\x00\x10\x00\x6e\x00\x01\x00\x70\x00\x1d\x00\x6e\x00\x5e\x00\x70\x00\x1d\x00\x1d\x00\x62\x00\x1b\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x1d\x00\x74\x00\x1e\x00\x76\x00\x2f\x00\x30\x00\x79\x00\x7a\x00\x33\x00\x3d\x00\x35\x00\x01\x00\x37\x00\x3d\x00\x3d\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x01\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x1d\x00\x4a\x00\x3d\x00\x01\x00\x4d\x00\x4e\x00\x4f\x00\x01\x00\x51\x00\x2a\x00\x53\x00\x7f\x00\x2d\x00\x56\x00\x2c\x00\x0d\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x70\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x3b\x00\x66\x00\x67\x00\x01\x00\x3d\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\x7a\x00\x01\x00\x07\x00\x7d\x00\x7e\x00\x01\x00\x70\x00\x03\x00\x01\x00\x7f\x00\x01\x00\x01\x00\x03\x00\x0d\x00\x0d\x00\x0e\x00\x0f\x00\x0d\x00\x01\x00\x1d\x00\x0d\x00\x1a\x00\x0d\x00\x1c\x00\x01\x00\x1e\x00\x1f\x00\x20\x00\x01\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x01\x00\x70\x00\x7e\x00\x7f\x00\x80\x00\x6d\x00\x37\x00\x3d\x00\x30\x00\x31\x00\x3b\x00\x33\x00\x0d\x00\x35\x00\x03\x00\x37\x00\x38\x00\x06\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x45\x00\x46\x00\x47\x00\x48\x00\x4d\x00\x4e\x00\x4f\x00\x02\x00\x51\x00\x1f\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x03\x00\x59\x00\x5a\x00\x06\x00\x5c\x00\x01\x00\x5e\x00\x03\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x2c\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x6e\x00\x01\x00\x70\x00\x03\x00\x6e\x00\x6f\x00\x70\x00\x6e\x00\x01\x00\x70\x00\x1f\x00\x7e\x00\x7f\x00\x80\x00\x36\x00\x03\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x21\x00\x2c\x00\x23\x00\x24\x00\x25\x00\x80\x00\x27\x00\x01\x00\x45\x00\x46\x00\x47\x00\x48\x00\x2c\x00\x30\x00\x31\x00\x2c\x00\x33\x00\x2c\x00\x35\x00\x01\x00\x37\x00\x38\x00\x6e\x00\x3a\x00\x70\x00\x3a\x00\x3d\x00\x32\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x45\x00\x46\x00\x47\x00\x48\x00\x4d\x00\x4e\x00\x4f\x00\x2c\x00\x51\x00\x32\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x70\x00\x59\x00\x5a\x00\x36\x00\x5c\x00\x01\x00\x5e\x00\x03\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x2b\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x45\x00\x46\x00\x47\x00\x48\x00\x6e\x00\x6f\x00\x70\x00\x21\x00\x2b\x00\x23\x00\x24\x00\x25\x00\x01\x00\x02\x00\x03\x00\x69\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x17\x00\x18\x00\x21\x00\x80\x00\x23\x00\x24\x00\x25\x00\x0d\x00\x0e\x00\x0f\x00\x01\x00\x3a\x00\x52\x00\x30\x00\x31\x00\x70\x00\x33\x00\x6d\x00\x35\x00\x02\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x1c\x00\x1d\x00\x3d\x00\x3a\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x01\x00\x02\x00\x03\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x04\x00\x51\x00\x10\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x19\x00\x59\x00\x5a\x00\x1a\x00\x5c\x00\x01\x00\x5e\x00\x03\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x1e\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x01\x00\x02\x00\x03\x00\x1b\x00\x6e\x00\x6f\x00\x70\x00\x01\x00\x02\x00\x03\x00\x80\x00\x21\x00\x70\x00\x23\x00\x24\x00\x25\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x01\x00\x02\x00\x03\x00\x27\x00\x2a\x00\x80\x00\x01\x00\x02\x00\x03\x00\x02\x00\x2e\x00\x2f\x00\x30\x00\x30\x00\x31\x00\x3a\x00\x33\x00\x2a\x00\x35\x00\x37\x00\x37\x00\x38\x00\x3a\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x02\x00\x46\x00\x47\x00\x48\x00\x4d\x00\x4e\x00\x4f\x00\x2a\x00\x51\x00\x6e\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x2a\x00\x59\x00\x5a\x00\x2a\x00\x5c\x00\x01\x00\x5e\x00\x2a\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x2a\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x52\x00\x3f\x00\x40\x00\x41\x00\x6e\x00\x6f\x00\x70\x00\x45\x00\x46\x00\x47\x00\x48\x00\x01\x00\x02\x00\x03\x00\x80\x00\x6d\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x80\x00\x01\x00\x40\x00\x41\x00\x7f\x00\x80\x00\x2a\x00\x2b\x00\x46\x00\x47\x00\x48\x00\x2a\x00\x2b\x00\x30\x00\x31\x00\x2b\x00\x33\x00\x2b\x00\x35\x00\x02\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x1f\x00\x4d\x00\x4e\x00\x4f\x00\x80\x00\x51\x00\x70\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x01\x00\x59\x00\x5a\x00\x02\x00\x5c\x00\x01\x00\x5e\x00\x1f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x80\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x02\x00\x52\x00\x53\x00\x54\x00\x6e\x00\x6f\x00\x70\x00\x0b\x00\x0c\x00\x22\x00\x23\x00\x24\x00\x25\x00\x1f\x00\x27\x00\x2c\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x2e\x00\x2f\x00\x30\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x37\x00\x11\x00\x12\x00\x3a\x00\x30\x00\x31\x00\x2c\x00\x33\x00\x01\x00\x35\x00\x1f\x00\x37\x00\x38\x00\x04\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x70\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x2a\x00\x51\x00\x02\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x1f\x00\x59\x00\x5a\x00\x02\x00\x5c\x00\x01\x00\x5e\x00\x02\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x02\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x52\x00\x53\x00\x54\x00\x5e\x00\x6e\x00\x6f\x00\x70\x00\x62\x00\x2c\x00\x64\x00\x65\x00\x80\x00\x52\x00\x53\x00\x54\x00\x2a\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x7e\x00\x7f\x00\x80\x00\x79\x00\x7a\x00\x02\x00\x7c\x00\x30\x00\x31\x00\x02\x00\x33\x00\x01\x00\x35\x00\x6d\x00\x37\x00\x38\x00\x2b\x00\x3a\x00\x17\x00\x18\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x32\x00\x51\x00\x80\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x70\x00\x59\x00\x5a\x00\x6e\x00\x5c\x00\x01\x00\x5e\x00\x03\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x04\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x7e\x00\x7f\x00\x80\x00\x04\x00\x6e\x00\x6f\x00\x70\x00\x2a\x00\x2b\x00\x22\x00\x23\x00\x24\x00\x25\x00\x04\x00\x27\x00\x5c\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x2e\x00\x2f\x00\x30\x00\x01\x00\x1f\x00\x03\x00\x02\x00\x05\x00\x06\x00\x37\x00\x02\x00\x09\x00\x0a\x00\x30\x00\x31\x00\x6d\x00\x33\x00\x02\x00\x35\x00\x02\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x32\x00\x4d\x00\x4e\x00\x4f\x00\x6e\x00\x51\x00\x2c\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x1e\x00\x59\x00\x5a\x00\x2d\x00\x5c\x00\x01\x00\x5e\x00\x1e\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x1e\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x52\x00\x53\x00\x54\x00\x2a\x00\x2b\x00\x6f\x00\x70\x00\x7e\x00\x7f\x00\x80\x00\x1e\x00\x80\x00\x2a\x00\x2b\x00\x27\x00\x02\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x2e\x00\x2f\x00\x30\x00\x52\x00\x53\x00\x54\x00\x52\x00\x53\x00\x54\x00\x37\x00\x2a\x00\x2b\x00\x3a\x00\x30\x00\x31\x00\x1e\x00\x33\x00\x02\x00\x35\x00\x02\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x6e\x00\x6f\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x52\x00\x53\x00\x54\x00\x02\x00\x4d\x00\x4e\x00\x4f\x00\x02\x00\x51\x00\x02\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x2c\x00\x59\x00\x5a\x00\x2d\x00\x5c\x00\x01\x00\x5e\x00\x3e\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x2b\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x52\x00\x53\x00\x54\x00\x2b\x00\x6e\x00\x6f\x00\x70\x00\x00\x00\x01\x00\x7e\x00\x7f\x00\x80\x00\x6e\x00\x6f\x00\x27\x00\x02\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x2e\x00\x2f\x00\x30\x00\x52\x00\x53\x00\x54\x00\x7e\x00\x7f\x00\x80\x00\x37\x00\x7e\x00\x7f\x00\x80\x00\x30\x00\x31\x00\x1f\x00\x33\x00\x2b\x00\x35\x00\x02\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x81\x00\x82\x00\x3d\x00\x02\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x04\x00\x4d\x00\x4e\x00\x4f\x00\x04\x00\x51\x00\x70\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x04\x00\x59\x00\x5a\x00\x04\x00\x5c\x00\x01\x00\x5e\x00\x32\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x02\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x7e\x00\x7f\x00\x80\x00\x5e\x00\x6e\x00\x6f\x00\x70\x00\x62\x00\x02\x00\x64\x00\x65\x00\x80\x00\x7e\x00\x7f\x00\x80\x00\x2b\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7e\x00\x7f\x00\x80\x00\x7e\x00\x7f\x00\x80\x00\x7e\x00\x7f\x00\x80\x00\x79\x00\x7a\x00\x7f\x00\x80\x00\x30\x00\x31\x00\x70\x00\x33\x00\x04\x00\x35\x00\x04\x00\x37\x00\x38\x00\x1e\x00\x3a\x00\x5c\x00\x5d\x00\x3d\x00\x70\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x52\x00\x53\x00\x54\x00\x2b\x00\x4d\x00\x4e\x00\x4f\x00\x2a\x00\x51\x00\x1e\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x01\x00\x59\x00\x5a\x00\x2c\x00\x5c\x00\x01\x00\x5e\x00\x04\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x04\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x52\x00\x53\x00\x54\x00\x04\x00\x6e\x00\x6f\x00\x70\x00\x2b\x00\x02\x00\x45\x00\x46\x00\x47\x00\x48\x00\x52\x00\x53\x00\x54\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x52\x00\x53\x00\x54\x00\x52\x00\x53\x00\x54\x00\x02\x00\x30\x00\x31\x00\x70\x00\x33\x00\x04\x00\x35\x00\x70\x00\x37\x00\x38\x00\x02\x00\x3a\x00\x6d\x00\x04\x00\x3d\x00\x01\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x52\x00\x53\x00\x54\x00\x01\x00\x4d\x00\x4e\x00\x4f\x00\x2b\x00\x51\x00\x80\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x6d\x00\x59\x00\x5a\x00\x02\x00\x5c\x00\x01\x00\x5e\x00\x2a\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x6d\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x52\x00\x53\x00\x54\x00\x5e\x00\x6e\x00\x6f\x00\x70\x00\x62\x00\x02\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7e\x00\x7f\x00\x80\x00\x7e\x00\x7f\x00\x80\x00\x7e\x00\x7f\x00\x80\x00\x79\x00\x7a\x00\x02\x00\x2b\x00\x30\x00\x31\x00\x01\x00\x33\x00\x73\x00\x35\x00\x7d\x00\x37\x00\x38\x00\x7b\x00\x3a\x00\x08\x00\x7d\x00\x3d\x00\x07\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x3a\x00\x4d\x00\x4e\x00\x4f\x00\x1b\x00\x51\x00\x7d\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x80\x00\x59\x00\x5a\x00\x07\x00\x5c\x00\x01\x00\x5e\x00\x7a\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x1b\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x7e\x00\x7f\x00\x80\x00\x5e\x00\x6e\x00\x6f\x00\x70\x00\x62\x00\x54\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x52\x00\x53\x00\x54\x00\x52\x00\x53\x00\x54\x00\x7e\x00\x7f\x00\x80\x00\x79\x00\x7a\x00\x07\x00\x1b\x00\x30\x00\x31\x00\x7d\x00\x33\x00\x07\x00\x35\x00\x1b\x00\x37\x00\x38\x00\x07\x00\x3a\x00\x1b\x00\x07\x00\x3d\x00\x1b\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7d\x00\x7d\x00\x80\x00\x0a\x00\x4d\x00\x4e\x00\x4f\x00\x4f\x00\x51\x00\x7a\x00\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\x07\x00\x59\x00\x5a\x00\x58\x00\x5c\x00\x01\x00\x5e\x00\x58\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x58\x00\x66\x00\x67\x00\x68\x00\x0d\x00\x31\x00\x1b\x00\x7a\x00\x58\x00\x6e\x00\x6f\x00\x70\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x58\x00\x46\x00\x47\x00\x48\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x3c\x00\x58\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x31\x00\x45\x00\x46\x00\x47\x00\x48\x00\x30\x00\x7a\x00\x32\x00\x33\x00\x4f\x00\x35\x00\x80\x00\x37\x00\x7d\x00\x07\x00\x3a\x00\x07\x00\x80\x00\x3d\x00\x07\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x07\x00\x58\x00\x58\x00\x82\x00\x4d\x00\x4e\x00\x4f\x00\x80\x00\x51\x00\x73\x00\x53\x00\x7f\x00\x80\x00\x56\x00\x80\x00\x07\x00\x59\x00\x5a\x00\x7d\x00\x5c\x00\x5d\x00\x5e\x00\x73\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x7a\x00\x66\x00\x67\x00\x01\x00\x80\x00\x03\x00\x3a\x00\x09\x00\x80\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x7a\x00\x7a\x00\x0d\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x7a\x00\x4a\x00\x4b\x00\x7d\x00\x7e\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x32\x00\x33\x00\x34\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\xff\xff\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\x01\x00\x5e\x00\x03\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x3a\x00\xff\xff\x7d\x00\x7e\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\xff\xff\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\x01\x00\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x80\x00\x66\x00\x67\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\x7a\x00\x3a\x00\xff\xff\x7d\x00\x7e\x00\xff\xff\x3f\x00\x40\x00\x41\x00\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x7f\x00\x80\x00\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\x01\x00\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x80\x00\x66\x00\x67\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\x7a\x00\x4a\x00\x4b\x00\x7d\x00\x7e\x00\x3c\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x7f\x00\x80\x00\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\x01\x00\x5e\x00\x03\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x7a\x00\xff\xff\x5e\x00\x7d\x00\x7e\x00\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x30\x00\x79\x00\x7a\x00\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x79\x00\x7a\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\x04\x00\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x3a\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x2e\x00\x2f\x00\x30\x00\x04\x00\x31\x00\x45\x00\x46\x00\x47\x00\x48\x00\x37\x00\xff\xff\x38\x00\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\xff\xff\xff\xff\x21\x00\xff\xff\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x04\x00\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\x68\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x70\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\xff\xff\xff\xff\xff\xff\x7b\x00\x7c\x00\xff\xff\x7f\x00\x80\x00\x22\x00\x23\x00\x24\x00\x25\x00\x5e\x00\x27\x00\xff\xff\xff\xff\x62\x00\x27\x00\x64\x00\x65\x00\x2e\x00\x2f\x00\x30\x00\x04\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\xff\xff\xff\xff\x80\x00\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x2e\x00\x2f\x00\x30\x00\x04\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x37\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x04\x00\xff\xff\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x80\x00\x27\x00\xff\xff\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\x21\x00\x5e\x00\x23\x00\x24\x00\x25\x00\x62\x00\x27\x00\x64\x00\x65\x00\x45\x00\x46\x00\x47\x00\x48\x00\x2e\x00\x2f\x00\x30\x00\x7f\x00\x80\x00\x04\x00\x3a\x00\xff\xff\xff\xff\x37\x00\x80\x00\xff\xff\x3a\x00\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x22\x00\x23\x00\x24\x00\x25\x00\x5e\x00\x27\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x05\x00\x06\x00\x07\x00\x7f\x00\x80\x00\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x79\x00\x7a\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\x05\x00\x06\x00\x07\x00\xff\xff\x09\x00\x80\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1a\x00\xff\xff\x1c\x00\xff\xff\x1e\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\x80\x00\xff\xff\x3b\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4b\x00\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x80\x00\x05\x00\x06\x00\x07\x00\xff\xff\x09\x00\xff\xff\x0b\x00\x0c\x00\x0d\x00\x31\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\x1a\x00\xff\xff\x1c\x00\xff\xff\x1e\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x54\x00\x55\x00\x3b\x00\x57\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x26\x00\x27\x00\xff\xff\x29\x00\x68\x00\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x32\x00\x33\x00\x34\x00\xff\xff\x01\x00\x37\x00\x03\x00\xff\xff\xff\xff\x3b\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\xff\xff\xff\xff\x0d\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\x79\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x7f\x00\x80\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x01\x00\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\x0d\x00\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x40\x00\x41\x00\x10\x00\x7b\x00\x7c\x00\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\x3a\x00\x31\x00\xff\xff\x1b\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x38\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4b\x00\xff\xff\xff\xff\x2f\x00\xff\xff\x31\x00\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\x54\x00\x55\x00\x0d\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\xff\xff\xff\xff\x7f\x00\x80\x00\xff\xff\x68\x00\xff\xff\x04\x00\xff\xff\x54\x00\x55\x00\x6e\x00\x57\x00\x70\x00\xff\xff\xff\xff\x5b\x00\x5c\x00\x7f\x00\x80\x00\xff\xff\x7f\x00\x80\x00\x31\x00\x7b\x00\x7c\x00\xff\xff\xff\xff\xff\xff\x68\x00\x38\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x54\x00\x55\x00\x10\x00\x57\x00\xff\xff\x3c\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x1b\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x3b\x00\x68\x00\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x6e\x00\x6f\x00\x70\x00\x45\x00\x46\x00\x47\x00\x48\x00\x2f\x00\xff\xff\x31\x00\x01\x00\xff\xff\x03\x00\x7b\x00\x7c\x00\xff\xff\x38\x00\x21\x00\xff\xff\x23\x00\x24\x00\x25\x00\x0d\x00\x27\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\xff\xff\xff\xff\x5b\x00\x5c\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x31\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\x68\x00\x38\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x54\x00\x55\x00\x10\x00\x57\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x1b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x80\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\x79\x00\x7a\x00\x2f\x00\xff\xff\x31\x00\x01\x00\xff\xff\x03\x00\x7b\x00\x7c\x00\xff\xff\x38\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x0d\x00\x27\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\xff\xff\xff\xff\x5b\x00\x5c\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\x38\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x54\x00\x55\x00\x10\x00\x57\x00\xff\xff\x3c\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x1b\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7f\x00\x80\x00\x68\x00\xff\xff\x27\x00\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x2f\x00\xff\xff\x31\x00\x01\x00\x36\x00\x37\x00\x7b\x00\x7c\x00\xff\xff\x38\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x0d\x00\x27\x00\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\xff\xff\xff\xff\x5b\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\x38\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\xff\xff\x7b\x00\x7c\x00\x80\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x54\x00\x55\x00\x10\x00\x57\x00\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\x80\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\x01\x00\x2f\x00\x03\x00\x31\x00\x01\x00\xff\xff\xff\xff\x7b\x00\x7c\x00\xff\xff\x38\x00\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\x4a\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\x01\x00\x64\x00\x65\x00\x66\x00\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\xff\xff\xff\xff\x5b\x00\x0d\x00\xff\xff\x31\x00\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\xff\xff\x38\x00\x79\x00\x7a\x00\x68\x00\x38\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\x80\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\xff\xff\xff\xff\x31\x00\x54\x00\x55\x00\xff\xff\x57\x00\x54\x00\x55\x00\x38\x00\x57\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\x0d\x00\xff\xff\xff\xff\x68\x00\xff\xff\x6e\x00\xff\xff\x70\x00\xff\xff\x6e\x00\x6f\x00\x70\x00\x01\x00\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\x5e\x00\x7b\x00\x7c\x00\x0d\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x01\x00\x5e\x00\x03\x00\x68\x00\x01\x00\x62\x00\x31\x00\x64\x00\x65\x00\x6e\x00\x6f\x00\x70\x00\x0d\x00\x38\x00\xff\xff\xff\xff\x0d\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x7b\x00\x7c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\x31\x00\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\x03\x00\x38\x00\xff\xff\xff\xff\xff\xff\x54\x00\x55\x00\x5e\x00\x57\x00\xff\xff\x0d\x00\x62\x00\x31\x00\x64\x00\x65\x00\x66\x00\x31\x00\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\xff\xff\x38\x00\xff\xff\x68\x00\xff\xff\xff\xff\x01\x00\x54\x00\x55\x00\x6e\x00\x57\x00\x70\x00\x79\x00\x7a\x00\xff\xff\x04\x00\xff\xff\xff\xff\x0d\x00\xff\xff\xff\xff\xff\xff\x7b\x00\x7c\x00\x31\x00\x54\x00\x55\x00\x68\x00\x57\x00\x54\x00\x55\x00\x38\x00\x57\x00\x6e\x00\x6f\x00\x70\x00\x01\x00\xff\xff\x03\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x68\x00\x7b\x00\x7c\x00\x0d\x00\x68\x00\xff\xff\x6e\x00\x0d\x00\x70\x00\x31\x00\x6e\x00\x6f\x00\x70\x00\x01\x00\x54\x00\x55\x00\x38\x00\x57\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\xff\xff\x7b\x00\x7c\x00\x0d\x00\x3c\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x68\x00\x45\x00\x46\x00\x47\x00\x48\x00\x31\x00\xff\xff\xff\xff\x70\x00\x31\x00\x54\x00\x55\x00\x38\x00\x57\x00\xff\xff\xff\xff\x38\x00\xff\xff\xff\xff\x7b\x00\x7c\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x31\x00\xff\xff\x62\x00\x68\x00\x64\x00\x65\x00\x66\x00\x38\x00\xff\xff\x6e\x00\xff\xff\x70\x00\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x7b\x00\x7c\x00\xff\xff\x79\x00\x7a\x00\xff\xff\x07\x00\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\xff\xff\x54\x00\x55\x00\x68\x00\x57\x00\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7b\x00\x7c\x00\xff\xff\x68\x00\x7b\x00\x7c\x00\x07\x00\x26\x00\x27\x00\x6e\x00\x29\x00\x70\x00\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7b\x00\x7c\x00\x37\x00\x1a\x00\xff\xff\x1c\x00\x3b\x00\x1e\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\x07\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\x2e\x00\x2f\x00\x30\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\x5e\x00\xff\xff\x37\x00\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x50\x00\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x07\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x07\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\x80\x00\x1a\x00\xff\xff\x1c\x00\x37\x00\x1e\x00\x1f\x00\x20\x00\x3b\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x50\x00\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\x07\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x50\x00\x32\x00\x33\x00\x34\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x07\x00\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1a\x00\xff\xff\x1c\x00\xff\xff\x1e\x00\x1f\x00\x20\x00\x07\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x7e\x00\x7f\x00\x80\x00\x1a\x00\xff\xff\x1c\x00\x37\x00\x1e\x00\x1f\x00\x20\x00\x3b\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\x07\x00\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1a\x00\xff\xff\x1c\x00\xff\xff\x1e\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\x7e\x00\x7f\x00\x80\x00\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x1f\x00\x20\x00\x07\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x7e\x00\x7f\x00\x80\x00\x1a\x00\xff\xff\x1c\x00\x37\x00\x1e\x00\x1f\x00\x20\x00\x3b\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x4c\x00\x4d\x00\x4e\x00\x4f\x00\x5e\x00\x37\x00\xff\xff\xff\xff\x62\x00\x3b\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x01\x00\x46\x00\x47\x00\x48\x00\x79\x00\x7a\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3a\x00\x7e\x00\x7f\x00\x80\x00\x1b\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4b\x00\xff\xff\xff\xff\xff\xff\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x7f\x00\x80\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\x5b\x00\x7f\x00\x80\x00\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\x35\x00\xff\xff\x37\x00\x3b\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4e\x00\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\x04\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\x5b\x00\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\x3c\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x1b\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2b\x00\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\x32\x00\xff\xff\x34\x00\xff\xff\x36\x00\xff\xff\x01\x00\x39\x00\x03\x00\x3b\x00\x3c\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\x04\x00\x49\x00\x4a\x00\x4b\x00\x4c\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x58\x00\xff\xff\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x5f\x00\xff\xff\xff\xff\xff\xff\x2c\x00\x2d\x00\xff\xff\x2f\x00\xff\xff\xff\xff\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3c\x00\x4a\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x4a\x00\x4b\x00\x3b\x00\xff\xff\x5b\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4b\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x01\x00\x79\x00\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\x1b\x00\x4a\x00\x4b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\x2d\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\x03\x00\xff\xff\xff\xff\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x26\x00\x27\x00\x10\x00\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x4a\x00\x1b\x00\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\x7f\x00\x80\x00\x3b\x00\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\x5b\x00\x2c\x00\xff\xff\xff\xff\x2f\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\x50\x00\x3b\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x60\x00\x79\x00\x4a\x00\x05\x00\x06\x00\x07\x00\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x5b\x00\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\x7f\x00\x80\x00\x7d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x05\x00\x06\x00\x07\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\x21\x00\xff\xff\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4b\x00\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x80\x00\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x7f\x00\x80\x00\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x05\x00\x06\x00\x07\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x05\x00\x06\x00\x07\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\x4a\x00\x4b\x00\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x7f\x00\x80\x00\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x7f\x00\x80\x00\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x05\x00\x06\x00\x07\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\x05\x00\x06\x00\x07\x00\xff\xff\xff\xff\xff\xff\x2e\x00\x2f\x00\x30\x00\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x37\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x40\x00\x41\x00\x05\x00\x06\x00\x07\x00\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x80\x00\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\x7f\x00\x80\x00\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\x01\x00\x79\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5e\x00\xff\xff\x10\x00\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x1b\x00\xff\xff\xff\xff\x1e\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\xff\xff\x27\x00\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\x2e\x00\x2f\x00\x30\x00\x2f\x00\xff\xff\x01\x00\x02\x00\xff\xff\xff\xff\x37\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x4a\x00\x1b\x00\x3b\x00\xff\xff\xff\xff\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x5b\x00\xff\xff\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\x4a\x00\xff\xff\xff\xff\x01\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5b\x00\x10\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x2c\x00\x79\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\x1b\x00\xff\xff\xff\xff\x01\x00\x02\x00\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5b\x00\x2c\x00\x10\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\x4a\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5b\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\x4a\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\x1b\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x5b\x00\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2c\x00\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x4a\x00\xff\xff\x62\x00\x01\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5b\x00\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x5e\x00\x79\x00\xff\xff\x2f\x00\x62\x00\x01\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\x5e\x00\x4a\x00\x1b\x00\xff\xff\x62\x00\x01\x00\x64\x00\x65\x00\x66\x00\x67\x00\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5b\x00\xff\xff\x10\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x1b\x00\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x78\x00\x79\x00\x4a\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5b\x00\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\x1b\x00\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x5b\x00\x79\x00\xff\xff\xff\xff\x2f\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\x4a\x00\x79\x00\x7a\x00\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\x5b\x00\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\xff\xff\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\x1b\x00\xff\xff\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5b\x00\xff\xff\x10\x00\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x1b\x00\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\x4a\x00\xff\xff\x2f\x00\xff\xff\x01\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x5b\x00\xff\xff\x10\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4a\x00\x1b\x00\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\x5b\x00\x79\x00\xff\xff\xff\xff\x2f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\xff\xff\xff\xff\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\x4a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x5b\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x0c\x00\x0d\x00\x71\x00\x72\x00\x73\x00\x74\x00\x75\x00\x76\x00\x77\x00\xff\xff\x79\x00\xff\xff\xff\xff\xff\xff\x1a\x00\xff\xff\x1c\x00\xff\xff\x1e\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\x35\x00\xff\xff\xff\xff\x01\x00\x37\x00\xff\xff\xff\xff\x3c\x00\x3b\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x0d\x00\x45\x00\x46\x00\x47\x00\x48\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x50\x00\xff\xff\x5e\x00\x1e\x00\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\xff\xff\x5f\x00\x60\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x35\x00\xff\xff\x37\x00\x79\x00\x7a\x00\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\x1a\x00\xff\xff\x1c\x00\xff\xff\x1e\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\x1f\x00\x20\x00\x3b\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x40\x00\x41\x00\xff\xff\xff\xff\xff\xff\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\xff\xff\x35\x00\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x3c\x00\xff\xff\x3e\x00\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\xff\xff\xff\xff\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\xff\xff\xff\xff\xff\xff\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\x1f\x00\x20\x00\xff\xff\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\x4c\x00\x4d\x00\x4e\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\x26\x00\x27\x00\x37\x00\x29\x00\xff\xff\x2b\x00\x3b\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x50\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x50\x00\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\x50\x00\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\x5e\x00\xff\xff\xff\xff\x3b\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x50\x00\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\xff\xff\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\x50\x00\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\x5e\x00\xff\xff\xff\xff\x3b\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x50\x00\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\x26\x00\x27\x00\x37\x00\x29\x00\xff\xff\x2b\x00\x3b\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\xff\xff\x26\x00\x27\x00\xff\xff\x29\x00\x50\x00\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\x5e\x00\x50\x00\xff\xff\x3b\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\x50\x00\xff\xff\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\xff\xff\x3b\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\x37\x00\xff\xff\xff\xff\x50\x00\x3b\x00\x26\x00\x27\x00\xff\xff\x29\x00\xff\xff\x2b\x00\xff\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x37\x00\xff\xff\xff\xff\x50\x00\x3b\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x2b\x00\xff\xff\xff\xff\xff\xff\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\xff\xff\xff\xff\x50\x00\x38\x00\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\x40\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x23\x00\x24\x00\x25\x00\x26\x00\x27\x00\x28\x00\x29\x00\xff\xff\x4d\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5c\x00\xff\xff\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\xff\xff\x2b\x00\x7e\x00\x7f\x00\x80\x00\x68\x00\x3b\x00\x31\x00\xff\xff\x33\x00\x3f\x00\x40\x00\x41\x00\x70\x00\x38\x00\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\x40\x00\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5c\x00\xff\xff\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x2c\x00\xff\xff\xff\xff\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\xff\xff\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x2e\x00\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\xff\xff\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6e\x00\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\xff\xff\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\xff\xff\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\x5d\x00\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\xff\xff\x30\x00\xff\xff\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x7a\x00\xff\xff\x3a\x00\x7d\x00\x7e\x00\x3d\x00\xff\xff\x3f\x00\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\x53\x00\xff\xff\xff\xff\x56\x00\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\x5e\x00\xff\xff\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x30\x00\x31\x00\xff\xff\x33\x00\xff\xff\xff\xff\x6f\x00\x70\x00\x38\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x40\x00\x7a\x00\xff\xff\xff\xff\x7d\x00\x7e\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4d\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x53\x00\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5c\x00\xff\xff\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x31\x00\xff\xff\x33\x00\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\xff\xff\x40\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\x5c\x00\xff\xff\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\x31\x00\x64\x00\x33\x00\x66\x00\x67\x00\x68\x00\xff\xff\x38\x00\xff\xff\xff\xff\x3f\x00\x40\x00\x41\x00\x70\x00\xff\xff\x40\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\x54\x00\x55\x00\x56\x00\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5c\x00\xff\xff\xff\xff\xff\xff\x60\x00\xff\xff\x62\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x7a\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\x7b\x00\x7c\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\x7b\x00\x7c\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x31\x00\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\x7b\x00\x7c\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\xff\xff\xff\xff\x31\x00\xff\xff\x6f\x00\x70\x00\x35\x00\xff\xff\x37\x00\x38\x00\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x7b\x00\x7c\x00\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\x54\x00\x55\x00\xff\xff\x57\x00\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x64\x00\xff\xff\x66\x00\x67\x00\x68\x00\xff\xff\xff\xff\x2b\x00\xff\xff\x2d\x00\xff\xff\xff\xff\x70\x00\xff\xff\xff\xff\xff\xff\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x7b\x00\x7c\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\x2b\x00\xff\xff\x2d\x00\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x71\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x3a\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x6f\x00\x70\x00\x71\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\xff\xff\x79\x00\x7a\x00\xff\xff\xff\xff\x5e\x00\x7e\x00\x7f\x00\x80\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\x3b\x00\xff\xff\xff\xff\x3a\x00\x77\x00\xff\xff\x79\x00\x7a\x00\x3f\x00\x40\x00\x41\x00\xff\xff\xff\xff\x80\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\xff\xff\x79\x00\x7a\x00\x3a\x00\xff\xff\xff\xff\x7e\x00\x7f\x00\x80\x00\xff\xff\x7e\x00\x7f\x00\x80\x00\x3f\x00\x40\x00\x41\x00\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\xff\xff\xff\xff\x3d\x00\x80\x00\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x71\x00\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x3b\x00\xff\xff\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6f\x00\x70\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6f\x00\x70\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\x35\x00\xff\xff\x37\x00\xff\xff\xff\xff\x3a\x00\x6f\x00\x70\x00\x3d\x00\xff\xff\x3f\x00\xff\xff\x41\x00\x42\x00\x43\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x4e\x00\x4f\x00\xff\xff\x51\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x59\x00\x5a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\x61\x00\xff\xff\x63\x00\x64\x00\xff\xff\x66\x00\x67\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x6f\x00\x70\x00\x57\x00\xff\xff\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\xff\xff\x57\x00\x7d\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\x57\x00\xff\xff\x7d\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x79\x00\x7a\x00\xff\xff\x62\x00\x7d\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x57\x00\x78\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\x83\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x57\x00\xff\xff\xff\xff\xff\xff\xff\xff\x79\x00\x7a\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x77\x00\xff\xff\x79\x00\x7a\x00\x5e\x00\xff\xff\xff\xff\xff\xff\x62\x00\x80\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x76\x00\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x76\x00\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x76\x00\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x76\x00\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\x76\x00\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\x75\x00\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\x63\x00\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\x74\x00\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\x72\x00\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\x78\x00\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\x71\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x5e\x00\xff\xff\x79\x00\x7a\x00\x62\x00\xff\xff\x64\x00\x65\x00\x66\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x3f\x00\x40\x00\x41\x00\xff\xff\xff\xff\xff\xff\x45\x00\x46\x00\x47\x00\x48\x00\x79\x00\x7a\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x51\x00\x52\x00\x53\x00\x54\x00\x55\x00\x56\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#
happyTable :: HappyAddr
happyTable :: HappyAddr
happyTable = Addr# -> HappyAddr
HappyA# Addr#
"\x00\x00\x94\x02\x72\x00\xa8\x03\x10\x03\x21\x03\xbb\x01\xca\x00\x73\x03\xb6\x01\x16\x01\xdb\x00\xa8\x02\xc6\x01\x73\x00\x63\x03\x99\x01\xda\x00\xf4\x00\xc3\x02\x04\x02\xf4\x00\x17\xfe\xef\x01\x0f\x02\x68\x00\x69\x00\xf4\x01\x45\x01\x46\x01\x06\x00\xea\x01\x9a\x01\x82\x03\x07\x00\xf0\x01\x9a\x03\x09\x00\x94\x01\xe5\xff\xdb\x00\x95\x02\x95\x01\x4f\x02\x60\x01\xaa\x01\x3e\x01\xc4\x02\x17\x01\x74\x00\x74\x03\x75\x00\x76\x00\x4e\x03\x77\x00\x50\x02\x78\x00\x18\x00\x19\x00\x79\x00\x9b\x03\x83\x03\x7a\x00\xa8\x01\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x05\x02\xf4\x02\xad\x02\x70\x00\x85\x00\x86\x00\x87\x00\xdc\x00\x88\x00\xb4\x00\x89\x00\x99\x00\x99\x00\x8a\x00\xbd\x03\xbe\x03\x8b\x00\x8c\x00\x1d\x03\x8d\x00\x8e\x00\x8f\x00\xbb\x01\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x4c\x03\x95\x00\x96\x00\x4e\x00\x4f\x00\x50\x00\xf4\x00\x07\x03\xdc\x00\x97\x00\x98\x00\x99\x00\x9a\x00\x97\x00\xbc\x01\x99\x00\x97\x00\xf5\x00\x99\x00\x21\x02\x99\x00\x9b\x00\x06\x03\x99\x00\x9c\x00\x9d\x00\xfb\xff\x51\x00\x99\x00\x52\x00\x97\x00\x53\x00\x54\x00\x55\x00\x21\x02\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x97\x00\xf5\x00\x99\x00\x5e\x01\x4f\x00\x50\x00\x65\x00\x2b\x00\x0a\x02\x3d\x01\x66\x00\x49\x03\x4a\x03\x4b\x03\x3c\x01\xd2\x00\x30\x02\x0d\x01\xc6\x00\x23\x02\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x51\x00\x31\x02\x52\x00\xb5\x03\x53\x00\x54\x00\x55\x00\xbf\x03\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xa6\x03\x4a\x03\x4b\x03\x97\x00\xbc\x01\x99\x00\x65\x00\x4f\x02\xb6\x03\x24\x02\x66\x00\xe2\x00\x3b\x01\x9e\x00\x4f\x00\x50\x00\x97\x00\xbc\x01\x99\x00\x50\x02\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\x6e\x00\x6f\x00\x70\x00\xe3\x00\x97\x00\xf5\x00\x99\x00\x29\x01\xd3\x00\xfd\x01\x51\x00\x38\x01\x52\x00\xe1\x00\x53\x00\x54\x00\x55\x00\xe2\x00\x56\x00\x57\x00\x58\x00\x59\x00\x5a\x00\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xca\x00\x1f\x03\x4c\x03\xe3\x00\x0e\x01\x4e\x00\x65\x00\xcc\x01\xc1\x01\xff\xff\x66\x00\xf5\x01\x68\x00\x69\x00\xf4\x01\x97\x00\xf5\x00\x6e\x00\x6f\x00\x70\x00\x67\x00\x68\x00\x69\x00\x6a\x00\x6b\x00\x6c\x00\x6d\x00\xb3\x02\x47\x01\x48\x01\xbd\x01\xad\x01\x15\x03\xa7\x01\x41\x01\x42\x01\x43\x01\x44\x01\x1b\x00\xa8\x01\xe4\x00\x4c\x03\x0e\x01\x4e\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x11\x03\x26\x01\x23\x00\x12\x03\xb4\x02\x97\x00\xf5\x00\x99\x00\xec\x01\x69\x00\xed\x01\xa8\x01\xa8\x01\x24\x00\xa8\x01\x0e\x01\x4e\x00\xc6\x01\xf7\x01\x70\x00\xbb\x01\x16\x03\xe4\x00\x0e\x01\x4e\x00\xd1\x00\x6e\x00\x6f\x00\x70\x00\x3f\x00\x40\x00\x20\x01\xf4\x00\x25\x00\x74\x00\x17\xfe\x41\x00\x76\x00\x42\x00\x77\x00\x43\x00\x78\x00\x17\xfe\x44\x00\x79\x00\x45\x00\x46\x00\x7a\x00\xd2\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x47\x00\x26\x00\x48\x00\x49\x00\x85\x00\x86\x00\x87\x00\xb4\x00\x88\x00\x95\x03\x89\x00\x17\xfe\x17\xfe\x8a\x00\x17\xfe\x4a\x00\x8b\x00\x8c\x00\x27\x00\x8d\x00\x8e\x00\x8f\x00\x4b\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\xb4\x00\x95\x00\x96\x00\x17\xfe\x4c\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4d\x00\x7b\x02\x99\x00\x7c\x02\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x44\x02\x34\x00\x9b\x00\x17\xfe\x17\xfe\x9c\x00\x9d\x00\x1b\x00\xda\x00\x1f\x01\x08\x02\x09\x02\xd3\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x5f\x03\x1e\x01\x23\x00\x97\x00\xbc\x01\x99\x00\x07\x03\x0e\x01\x4e\x00\xef\x01\x1d\x01\xdb\x00\xa8\x01\x24\x00\xff\xff\x5a\x03\x5b\x03\x20\x02\x21\x02\x5c\x03\x72\x00\xf0\x01\x0d\x03\x09\x02\xef\x01\x6e\x03\x98\x03\x22\x03\x6f\x03\x21\x02\x23\x03\x1c\x01\x73\x00\x25\x00\xd7\xff\xd7\xff\xf0\x01\xd7\xff\x33\x03\xd7\xff\x60\x03\xd7\xff\xd7\xff\xc5\x00\xd7\xff\xc6\x00\x3c\x03\xd7\xff\x9c\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x0a\x02\x26\x00\x1b\x01\xf3\x00\xd7\xff\xd7\xff\xd7\xff\x99\x03\xd7\xff\x1a\x01\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xf4\x00\xd7\xff\xd7\xff\x27\x00\xd7\xff\xd7\xff\xd7\xff\xdc\x00\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x16\x01\xd7\xff\xd7\xff\xd7\xff\x0a\x02\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\xd7\xff\xd7\xff\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x12\x01\x34\x00\xd7\xff\xd7\xff\xd7\xff\xd7\xff\xd7\xff\x1b\x00\x11\x01\x97\x00\xbc\x01\x99\x00\x97\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x97\x00\xf5\x00\x23\x00\x97\x00\x0f\x01\x99\x00\xea\x01\x97\x00\x06\x00\x99\x00\xcc\x01\xad\x01\x07\x00\x24\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\xcc\x02\x08\x01\x19\xfe\x9d\x01\x25\x00\x74\x00\x18\x00\x19\x00\x76\x00\xa8\x01\x77\x00\x0b\x01\x78\x00\xa8\x01\xa8\x01\x79\x00\x97\x00\xf5\x00\x7a\x00\x08\x01\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xcb\x02\x26\x00\xa8\x01\x20\x02\x85\x00\x86\x00\x87\x00\x07\x01\x88\x00\x75\x03\x89\x00\xff\xff\x76\x03\x8a\x00\x40\x00\x21\x02\x8b\x00\x8c\x00\x27\x00\x8d\x00\x8e\x00\x8f\x00\x99\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x36\x02\x95\x00\x96\x00\xa6\x00\xa8\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x98\x00\x99\x00\x7c\x02\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\xa5\x00\x34\x00\x9b\x00\x4f\x02\xe1\x01\x9c\x00\x9d\x00\x2b\x02\x99\x00\xc6\x00\xef\x01\xff\xff\x86\x01\xa2\x00\xc6\x00\x50\x02\x49\x01\x4a\x01\x4b\x01\x2c\x02\xa1\x00\x44\x02\xf0\x01\xe2\x01\x87\x01\x52\x00\xa0\x00\x53\x00\xe3\x01\xe4\x01\x01\x02\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x4f\x02\x99\x00\x37\x02\xa3\x00\x70\x00\x2b\x00\x65\x00\xa8\x01\x74\x00\xb9\x00\xe6\x01\x76\x00\x50\x02\x77\x00\xa2\x02\x78\x00\xba\x00\xa3\x02\x79\x00\x97\x00\xf5\x00\x7a\x00\xf3\x01\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xf3\x01\x68\x00\x69\x00\xf4\x01\x85\x00\x86\x00\x87\x00\xf1\x01\x88\x00\x6c\x03\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x8a\xfe\x8b\x00\x8c\x00\x8a\xfe\x8d\x00\x2b\x02\x8f\x00\xc6\x00\x90\x00\xfd\x00\x92\x00\x93\x00\x94\x00\x40\x00\x95\x00\x96\x00\xbe\x00\x2c\x02\x97\x00\xb1\x01\x99\x00\xc6\x00\x97\x00\xfe\x00\x99\x00\x97\x00\xe9\x01\x99\x00\x8a\xfe\x6e\x00\xe7\x01\x70\x00\x8d\x03\xc6\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xe5\x00\x40\x00\xd5\x00\xd6\x00\xd7\x00\xb4\x00\xe6\x00\xc2\x01\x31\x03\x68\x00\x69\x00\xf4\x01\x40\x00\x74\x00\xb9\x00\xe5\xff\x76\x00\x40\x00\x77\x00\xac\x01\x78\x00\xba\x00\x97\x00\x79\x00\x99\x00\xd8\x00\x7a\x00\xaa\x01\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x62\x02\x68\x00\x69\x00\xf4\x01\x85\x00\x86\x00\x87\x00\x40\x00\x88\x00\xaa\x01\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x99\x00\x8b\x00\x8c\x00\xa2\x03\x8d\x00\x2b\x02\x8f\x00\xc6\x00\x90\x00\xcf\x00\x92\x00\x93\x00\x94\x00\xa2\x01\x95\x00\x96\x00\xbe\x00\x2c\x02\x31\x03\x68\x00\x69\x00\xf4\x01\x97\x00\xd0\x00\x99\x00\xde\x00\xa0\x01\xd5\x00\xd6\x00\xd7\x00\xc5\x00\xf2\x01\xc6\x00\x9c\x01\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x3f\x01\x40\x01\xd4\x00\xe7\x00\xd5\x00\xd6\x00\xd7\x00\x49\x01\x4a\x01\x4b\x01\x98\x01\xd8\x00\x97\x01\x74\x00\x17\xfe\x99\x00\x76\x00\x8d\x01\x77\x00\x89\x01\x78\x00\x17\xfe\x7f\x01\x79\x00\x39\x01\x3a\x01\x7a\x00\xd8\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xb1\x01\x15\x02\xc6\x00\x7e\x01\x85\x00\x86\x00\x87\x00\x96\x02\x88\x00\x3e\x01\x89\x00\x17\xfe\x17\xfe\x8a\x00\x17\xfe\x3d\x01\x8b\x00\x8c\x00\x3c\x01\x8d\x00\x30\x02\x8f\x00\xc6\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x93\x02\x95\x00\x96\x00\x17\xfe\x31\x02\xb1\x01\xf2\x01\xc6\x00\x3b\x01\x97\x00\x98\x00\x99\x00\xb1\x01\xdb\x02\xc6\x00\xdf\x00\xde\x00\x99\x00\xd5\x00\xd6\x00\xd7\x00\x9b\x00\x17\xfe\x17\xfe\x9c\x00\x9d\x00\xb1\x01\xd5\x02\xc6\x00\xc4\x01\x91\x02\xd9\x00\xb1\x01\x41\x03\xc6\x00\x86\x02\xc5\x01\x63\x00\x64\x00\x74\x00\x17\xfe\xd8\x00\x76\x00\x85\x02\x77\x00\x65\x00\x78\x00\x17\xfe\xc6\x01\x79\x00\x0e\x01\x4e\x00\x7a\x00\x84\x02\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x83\x02\xaa\x00\x69\x00\x13\x02\x85\x00\x86\x00\x87\x00\x82\x02\x88\x00\xe0\x01\x89\x00\x17\xfe\x17\xfe\x8a\x00\x17\xfe\x81\x02\x8b\x00\x8c\x00\x80\x02\x8d\x00\x72\x00\x8f\x00\x7f\x02\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x7e\x02\x95\x00\x96\x00\x17\xfe\x73\x00\x70\x02\x54\x02\xec\x00\xed\x00\x97\x00\x98\x00\x99\x00\xf3\x01\x68\x00\x69\x00\xf4\x01\xb1\x01\x88\x03\xc6\x00\xdf\x00\x2b\x00\x9b\x00\x17\xfe\x17\xfe\x9c\x00\x9d\x00\xb4\x00\x6a\x02\x4d\x02\xed\x00\xad\x00\x70\x00\x04\x01\x05\x01\xec\x01\x69\x00\xed\x01\x02\x01\x03\x01\x74\x00\xb9\x00\x68\x02\x76\x00\x67\x02\x77\x00\x66\x02\x78\x00\xba\x00\x65\x02\x79\x00\x0e\x01\x4e\x00\x7a\x00\x64\x02\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xd0\x00\xa3\x00\x70\x00\x18\x02\x85\x00\x86\x00\x87\x00\xb4\x00\x88\x00\x99\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x5e\x02\x8b\x00\x8c\x00\x53\x02\x8d\x00\x72\x00\x8f\x00\x18\x02\x90\x00\xfd\x00\x92\x00\x93\x00\x94\x00\xb4\x00\x95\x00\x96\x00\xbe\x00\x73\x00\x52\x02\xc1\x00\xc2\x00\xc3\x00\x97\x00\xfe\x00\x99\x00\x47\x01\x48\x01\xc3\x01\x57\x00\x58\x00\x59\x00\x18\x02\xc4\x01\x4a\x02\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xc5\x01\x63\x00\x64\x00\x87\x01\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x65\x00\x45\x01\x46\x01\xc6\x01\x74\x00\xb9\x00\x40\x00\x76\x00\x43\x02\x77\x00\x18\x02\x78\x00\xba\x00\x3c\x02\x79\x00\x0e\x01\x4e\x00\x7a\x00\x99\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xa2\x00\xa3\x00\x70\x00\x26\x02\x85\x00\x86\x00\x87\x00\x25\x02\x88\x00\x16\x02\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x18\x02\x8b\x00\x8c\x00\x0f\x02\x8d\x00\x72\x00\x8f\x00\x0e\x02\x90\x00\xcf\x00\x92\x00\x93\x00\x94\x00\x0d\x02\x95\x00\x96\x00\xbe\x00\x73\x00\xc1\x00\xc2\x00\xc3\x00\x06\x00\x97\x00\xd0\x00\x99\x00\x07\x00\x0c\x02\xba\x03\x09\x00\xb4\x00\xaf\x01\xc2\x00\xc3\x00\x08\x02\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xaa\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\xa5\x01\xa3\x00\x70\x00\x18\x00\x19\x00\x07\x02\xbb\x03\x74\x00\xb9\x00\x06\x02\x76\x00\x14\x03\x77\x00\x2b\x00\x78\x00\xba\x00\x0d\x03\x79\x00\x3f\x01\x40\x01\x7a\x00\x0a\x03\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xa4\x01\xa3\x00\x70\x00\x09\x03\x85\x00\x86\x00\x87\x00\xaa\x01\x88\x00\xb4\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x99\x00\x8b\x00\x8c\x00\x04\x03\x8d\x00\x86\x01\x8f\x00\xc6\x00\x90\x00\xca\x01\x92\x00\x93\x00\x94\x00\xf3\x02\x95\x00\x96\x00\xbe\x00\x87\x01\x93\x01\xa3\x00\x70\x00\xf2\x02\x97\x00\xcb\x01\x99\x00\x24\x02\xc2\x02\xaf\x00\x57\x00\x58\x00\x59\x00\xf0\x02\xb0\x00\xef\x02\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xb1\x00\x63\x00\x64\x00\x59\x01\x18\x02\x5a\x01\xe7\x02\x5b\x01\x5c\x01\x65\x00\xe6\x02\x5d\x01\x5e\x01\x74\x00\x17\xfe\x2b\x00\x76\x00\xda\x02\x77\x00\xd8\x02\x78\x00\x17\xfe\xd0\x02\x79\x00\x0e\x01\x4e\x00\x7a\x00\xcf\x02\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x5e\x02\xa3\x00\x70\x00\xaa\x01\x85\x00\x86\x00\x87\x00\xe0\x01\x88\x00\x90\x02\x89\x00\x17\xfe\x17\xfe\x8a\x00\x17\xfe\xc5\x02\x8b\x00\x8c\x00\xbf\x02\x8d\x00\xef\x01\x8f\x00\x18\xfe\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x69\x03\x95\x00\x96\x00\x17\xfe\xf0\x01\x50\x02\xc2\x00\xc3\x00\x24\x02\x51\x03\x98\x00\x99\x00\x38\x02\xa3\x00\x70\x00\x61\x03\xb4\x00\x38\x03\x39\x03\xc8\x00\xaa\x02\x9b\x00\x17\xfe\x17\xfe\x9c\x00\x9d\x00\xc9\x00\x63\x00\x64\x00\xc1\x00\xc2\x00\xc3\x00\x11\x02\xc2\x00\xc3\x00\x65\x00\x36\x03\x37\x03\xca\x00\x74\x00\xb9\x00\x5e\x03\x76\x00\xa9\x02\x77\x00\x65\x03\x78\x00\xba\x00\x64\x03\x79\x00\x7e\x03\x7f\x03\x7a\x00\x5d\x03\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x10\x02\xc2\x00\xc3\x00\x59\x03\x85\x00\x86\x00\x87\x00\x58\x03\x88\x00\x57\x03\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x40\x00\x8b\x00\x8c\x00\x50\x03\x8d\x00\xef\x01\x8f\x00\x45\x03\x90\x00\xfd\x00\x92\x00\x93\x00\x94\x00\x4f\x03\x95\x00\x96\x00\xbe\x00\xf0\x01\xc1\x00\xc2\x00\xc3\x00\x47\x03\x97\x00\xfe\x00\x99\x00\x9d\x00\x05\x00\x33\x03\x34\x03\x70\x00\x0e\x01\x4e\x00\xb0\x00\x48\x03\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xb1\x00\x63\x00\x64\x00\x0b\x03\xc2\x00\xc3\x00\x00\x03\xa3\x00\x70\x00\x65\x00\xfc\x02\xa3\x00\x70\x00\x74\x00\xb9\x00\x18\x02\x76\x00\x46\x03\x77\x00\x42\x03\x78\x00\xba\x00\x2f\x03\x79\x00\x01\x02\x02\x02\x7a\x00\x2e\x03\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xfb\x02\xa3\x00\x70\x00\x2d\x03\x85\x00\x86\x00\x87\x00\x2c\x03\x88\x00\x99\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x29\x03\x8b\x00\x8c\x00\x28\x03\x8d\x00\xef\x01\x8f\x00\xaa\x01\x90\x00\xcf\x00\x92\x00\x93\x00\x94\x00\x1d\x03\x95\x00\x96\x00\xbe\x00\xf0\x01\xf7\x02\xa3\x00\x70\x00\x06\x00\x97\x00\xd0\x00\x99\x00\x07\x00\x18\x03\x2d\x01\x09\x00\xb4\x00\xf6\x02\xa3\x00\x70\x00\x97\x03\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xf5\x02\xa3\x00\x70\x00\xf0\x02\xa3\x00\x70\x00\xeb\x02\xa3\x00\x70\x00\x18\x00\x19\x00\x0e\x03\x70\x00\x74\x00\xb9\x00\x99\x00\x76\x00\x94\x03\x77\x00\x92\x03\x78\x00\xba\x00\x90\x03\x79\x00\x69\x03\x6a\x03\x7a\x00\x99\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x50\x02\xc2\x00\xc3\x00\x84\x03\x85\x00\x86\x00\x87\x00\x81\x03\x88\x00\x8a\x03\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x80\x03\x8b\x00\x8c\x00\x40\x00\x8d\x00\xef\x01\x8f\x00\xad\x03\x90\x00\xca\x01\x92\x00\x93\x00\x94\x00\xac\x03\x95\x00\x96\x00\xbe\x00\xf0\x01\xd6\x02\xc2\x00\xc3\x00\xab\x03\x97\x00\xcb\x01\x99\x00\xa8\x03\xa6\x03\xf3\x01\x68\x00\x69\x00\xf4\x01\xd5\x02\xc2\x00\xc3\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xaa\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x50\x02\xc2\x00\xc3\x00\x61\x03\xc2\x00\xc3\x00\xa5\x03\x74\x00\xb9\x00\x99\x00\x76\x00\xa0\x03\x77\x00\x99\x00\x78\x00\xba\x00\xb4\x03\x79\x00\x2b\x00\xb1\x03\x7a\x00\xc3\x03\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x50\x02\xc2\x00\xc3\x00\xc2\x03\x85\x00\x86\x00\x87\x00\xc1\x03\x88\x00\xb4\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x2b\x00\x8b\x00\x8c\x00\xc7\x03\x8d\x00\xef\x01\x8f\x00\xc6\x03\x90\x00\xfd\x00\x92\x00\x93\x00\x94\x00\x2b\x00\x95\x00\x96\x00\xbe\x00\xf0\x01\x3d\x03\xc2\x00\xc3\x00\x06\x00\x97\x00\xfe\x00\x99\x00\x07\x00\xcb\x03\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x73\x01\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x2a\x03\xa3\x00\x70\x00\x29\x03\xa3\x00\x70\x00\x8c\x03\xa3\x00\x70\x00\x18\x00\x19\x00\xca\x03\xc8\x03\x74\x00\xb9\x00\x05\x00\x76\x00\x4c\x01\x77\x00\x2b\x01\x78\x00\xba\x00\x24\x01\x79\x00\x18\x01\x0b\x01\x7a\x00\x05\x01\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x8b\x03\xa3\x00\x70\x00\xb7\x00\x85\x00\x86\x00\x87\x00\xc0\x00\x88\x00\xfb\x01\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\xb4\x00\x8b\x00\x8c\x00\xeb\x01\x8d\x00\xef\x01\x8f\x00\xfa\x01\x90\x00\xcf\x00\x92\x00\x93\x00\x94\x00\xe9\x01\x95\x00\x96\x00\xbe\x00\xf0\x01\x8a\x03\xa3\x00\x70\x00\x06\x00\x97\x00\xd0\x00\x99\x00\x07\x00\xe0\x01\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x72\x01\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x50\x02\xc2\x00\xc3\x00\x76\x03\xc2\x00\xc3\x00\xb8\x03\xa3\x00\x70\x00\x18\x00\x19\x00\xcd\x01\xcb\x01\x74\x00\xb9\x00\xbf\x01\x76\x00\xbe\x01\x77\x00\xbc\x01\x78\x00\xba\x00\xae\x01\x79\x00\xac\x01\xaa\x01\x7a\x00\xa6\x01\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x61\x01\x60\x01\x8d\x02\x6e\x02\x85\x00\x86\x00\x87\x00\x6d\x02\x88\x00\x6c\x02\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x45\x02\x8b\x00\x8c\x00\x5f\x02\x8d\x00\x72\x00\x8f\x00\x59\x02\x90\x00\xca\x01\x92\x00\x93\x00\x94\x00\x4a\x02\x95\x00\x96\x00\xbe\x00\x73\x00\x48\x02\x43\x02\x12\x03\x40\x02\x97\x00\xcb\x01\x99\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\xb8\x01\x16\x02\xaa\x00\x69\x00\x13\x02\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x61\x02\xe7\x02\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\xdb\x02\x1e\x02\x68\x00\x69\x00\xf4\x01\x74\x00\xcd\x02\x75\x00\x76\x00\xbf\x02\x77\x00\x8d\x02\x78\x00\x66\x03\x55\x03\x79\x00\x53\x03\x8d\x02\x7a\x00\x52\x03\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x51\x03\x43\x03\x42\x03\x16\x03\x85\x00\x86\x00\x87\x00\xb4\x00\x88\x00\x99\x03\x89\x00\xb9\x01\x70\x00\x8a\x00\x90\x03\x7c\x03\x8b\x00\x8c\x00\x7a\x03\x8d\x00\x8e\x00\x8f\x00\xb9\x03\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\xb2\x03\x95\x00\x96\x00\x30\x02\x90\x03\xc6\x00\xca\x00\xbc\x03\x90\x03\x97\x00\x98\x00\x99\x00\x9a\x00\xb1\x03\xc8\x03\x31\x02\x00\x00\xf5\x01\x68\x00\x69\x00\x6a\x00\x9b\x00\xf6\x01\x6d\x00\x9c\x00\x9d\x00\x00\x00\xdc\x02\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\xdd\x02\xde\x02\xdf\x02\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xe0\x02\x00\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\xf7\x01\x70\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x2b\x02\x8f\x00\xc6\x00\x90\x00\xb6\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x2c\x02\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\xb7\x00\x99\x00\x6e\x00\xe1\x02\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\xc6\x01\x00\x00\x9c\x00\x9d\x00\x00\x00\xd1\x02\xec\x00\xed\x00\xd2\x02\xef\x00\x00\x00\x0f\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x72\x00\x8f\x00\x00\x00\x90\x00\xb6\x00\x92\x00\x93\x00\x94\x00\xb4\x00\x95\x00\x96\x00\x00\x00\x73\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\xb7\x00\x99\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\x3f\x03\x00\x00\xaa\x00\x69\x00\x13\x02\x9b\x00\xc6\x01\x00\x00\x9c\x00\x9d\x00\x00\x00\xd1\x02\xec\x00\xed\x00\x00\x00\x00\x00\x00\x00\x0f\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\xb9\x01\x70\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\xef\x01\x8f\x00\x00\x00\x90\x00\xb6\x00\x92\x00\x93\x00\x94\x00\xb4\x00\x95\x00\x96\x00\x00\x00\xf0\x01\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\xb7\x00\x99\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\xb8\x01\x00\x00\xaa\x00\x69\x00\xab\x00\x9b\x00\xac\x00\x6d\x00\x9c\x00\x9d\x00\xff\x00\x00\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x00\x00\x1e\x02\x68\x00\x69\x00\xf4\x01\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\xb9\x01\x70\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x86\x01\x8f\x00\xc6\x00\x90\x00\xb6\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x87\x01\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\xb7\x00\x99\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x2c\x01\x09\x00\x9b\x00\x00\x00\x06\x00\x9c\x00\x9d\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x76\x01\x74\x00\x18\x00\x19\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x18\x00\x19\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\xc6\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x8f\x00\x00\x00\x90\x00\xb6\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb7\x00\x99\x00\x00\x00\x00\x00\xc7\x00\x57\x00\x58\x00\x59\x00\x00\x00\xc8\x00\xca\x00\x9b\x00\x00\x00\x00\x00\x9c\x00\x9d\x00\xc9\x00\x63\x00\x64\x00\xf5\x00\xb9\x00\xf5\x01\x68\x00\x69\x00\xf4\x01\x65\x00\x00\x00\xba\x00\xca\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\xcb\x00\x68\x00\x69\x00\x6a\x00\xcc\x00\x6c\x00\x6d\x00\x00\x00\x00\x00\xf6\x00\x00\x00\xd5\x00\xd6\x00\xd7\x00\x00\x00\xf7\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x00\x00\xf8\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc2\x01\x65\x00\x00\x00\x00\x00\xd8\x00\x00\x00\xbe\x00\x00\x00\x00\x00\xac\x02\x24\x03\x70\x00\x00\x00\x00\x00\x99\x00\xf9\x00\x68\x00\x69\x00\x6a\x00\xfa\x00\x6c\x00\x6d\x00\x00\x00\x00\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\xcd\x00\x70\x00\xc3\x01\x57\x00\x58\x00\x59\x00\x06\x00\xc4\x01\x00\x00\x00\x00\x07\x00\xc8\x00\x29\x01\x09\x00\xc5\x01\x63\x00\x64\x00\xae\x00\xc9\x00\x63\x00\x64\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\xc6\x01\x65\x00\x00\x00\x00\x00\xca\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\xc7\x01\x68\x00\x69\x00\x6a\x00\xc8\x01\x6c\x00\x6d\x00\x00\x00\x00\x00\xfb\x00\xaf\x00\x57\x00\x58\x00\x59\x00\x00\x00\xb0\x00\x7f\x01\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\xb1\x00\x63\x00\x64\x00\xb9\x02\x00\x00\x00\x00\xca\x00\x00\x00\x00\x00\x65\x00\x00\x00\x55\x02\xec\x00\xed\x00\x56\x02\xef\x00\x00\x00\xf5\x01\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\xb2\x00\x68\x00\x69\x00\x6a\x00\xb3\x00\x6c\x00\x6d\x00\xbc\x02\x00\x00\x00\x00\xc7\x00\x57\x00\x58\x00\x59\x00\xb4\x00\xc8\x00\x00\x00\x83\x01\x84\x01\x00\x00\x00\x00\x00\x00\xc9\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\xca\x00\x00\x00\xf6\x00\x06\x00\xd5\x00\xd6\x00\xd7\x00\x07\x00\xf7\x00\x26\x01\x09\x00\xcb\x00\x68\x00\x69\x00\xf4\x01\xf8\x00\x63\x00\x64\x00\x57\x02\x70\x00\x54\x03\xca\x00\x00\x00\x00\x00\x65\x00\xb4\x00\x00\x00\xd8\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x4b\x01\xf9\x00\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\xab\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\xc3\x01\x57\x00\x58\x00\x59\x00\x06\x00\xc4\x01\x18\x00\x19\x00\x07\x00\x00\x00\x22\x01\x09\x00\xc5\x01\x63\x00\x64\x00\x00\x00\x34\x00\x35\x00\x36\x00\xba\x02\x70\x00\x65\x00\x00\x00\x00\x00\xc6\x01\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x18\x00\x19\x00\x00\x00\x00\x00\xc7\x01\x68\x00\x69\x00\xf4\x01\xac\x02\xad\x02\x70\x00\x70\x02\x35\x00\x36\x00\x00\x00\x71\x02\xfb\x00\x72\x02\x73\x02\x74\x02\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x75\x02\x00\x00\x52\x00\x00\x00\x53\x00\x76\x02\x77\x02\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\x78\x02\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\xa6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\xb4\x00\x00\x00\x79\x02\xa7\x00\x68\x00\x69\x00\x6a\x00\x00\x00\xa8\x00\x6d\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x6e\x00\xa9\x00\x70\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3d\x00\x6e\x00\xe7\x01\x70\x00\x70\x02\x35\x00\x36\x00\x00\x00\xc0\x02\x00\x00\x72\x02\x73\x02\x74\x02\xb9\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\xba\x00\x00\x00\x00\x00\x00\x00\x00\x00\x75\x02\x00\x00\x52\x00\x00\x00\x53\x00\x76\x02\x77\x02\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\x78\x02\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\xbb\x00\xbc\x00\x12\x02\xbd\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x79\x02\x00\x00\xa7\x00\x68\x00\x69\x00\xf4\x01\xdc\x02\x5b\x00\x00\x00\x30\x01\xbe\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\xdd\x02\xde\x02\xdf\x02\x00\x00\x86\x01\x65\x00\xc6\x00\x00\x00\x00\x00\xe0\x02\x00\x00\xbf\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x87\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x6e\x00\xa9\x00\x70\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3d\x00\x6e\x00\xe7\x01\x70\x00\xb9\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x6e\x00\xe1\x02\x70\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x72\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x73\x00\x00\x00\xcf\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\xd0\x00\x99\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\xd3\x01\xb6\x01\xed\x00\x23\x00\xbf\x00\xc0\x00\x00\x00\xaa\x00\x69\x00\x13\x02\x00\x00\xca\x00\xb9\x00\x00\x00\x24\x00\x00\x00\x55\x02\xec\x00\xed\x00\xba\x00\x00\x00\x00\x00\xf5\x01\x68\x00\x69\x00\xf4\x01\xaa\x00\x69\x00\xab\x00\x00\x00\xac\x00\x6d\x00\x00\x00\x00\x00\x25\x00\x00\x00\x17\xfe\x30\x02\x00\x00\xc6\x00\x00\x00\x00\x00\x00\x00\x17\xfe\x00\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x31\x02\xbd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x00\x00\x00\x00\xb9\x01\x70\x00\x00\x00\xbe\x00\x00\x00\xbd\x02\x00\x00\x17\xfe\x17\xfe\x97\x00\x17\xfe\x99\x00\x00\x00\x00\x00\x27\x00\xd4\x01\x3e\x03\x70\x00\x00\x00\xad\x00\x70\x00\x17\xfe\xbf\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x17\xfe\x17\xfe\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x99\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\x00\x00\x17\xfe\x17\xfe\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x40\x02\x17\xfe\x17\xfe\x23\x00\x17\xfe\x00\x00\xff\x00\x00\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x24\x00\xf0\x00\x68\x00\x69\x00\xf4\x01\x00\x00\xd8\x02\x17\xfe\x00\x00\x00\x00\xb2\x01\xec\x00\xed\x00\x97\x00\xf5\x00\x99\x00\xa7\x00\x68\x00\x69\x00\xf4\x01\x25\x00\x00\x00\xb9\x00\x30\x02\x00\x00\xc6\x00\x17\xfe\x17\xfe\x00\x00\xba\x00\xf6\x00\x00\x00\xd5\x00\xd6\x00\xd7\x00\x31\x02\xf7\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x00\x63\x00\x64\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\xd8\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x27\x00\x17\xfe\x21\x02\x68\x00\x69\x00\xf4\x01\x00\x00\xb9\x00\x00\x00\x6e\x00\xb4\x01\x70\x00\x00\x00\xbe\x00\xba\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x99\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\xee\x02\xbb\x00\xbc\x00\x23\x00\xbd\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x23\x01\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfb\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\xf5\x00\x99\x00\x00\x00\x00\x00\x18\x00\x19\x00\x25\x00\x00\x00\xb9\x00\x30\x02\x00\x00\xc6\x00\xbf\x00\xc0\x00\x00\x00\xba\x00\x00\x00\xc7\x00\x57\x00\x58\x00\x59\x00\x31\x02\xc8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc9\x00\x63\x00\x64\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\xca\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x27\x00\x16\xfe\x1c\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x16\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbe\x00\x16\xfe\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x99\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x3b\x02\x16\xfe\x16\xfe\x23\x00\x16\xfe\x00\x00\xe9\x00\x00\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x24\x00\x1e\x02\x68\x00\x69\x00\xf4\x01\x1d\x02\x70\x00\x16\xfe\x00\x00\xb0\x00\x00\x00\x00\x00\x00\x00\x97\x00\xf5\x00\x99\x00\xb1\x00\x63\x00\x64\x00\x00\x00\x25\x00\x00\x00\x16\xfe\x59\x02\x30\x03\x65\x00\x16\xfe\x16\xfe\x00\x00\x16\xfe\x00\x00\xc3\x01\x57\x00\x58\x00\x59\x00\xf4\x00\xc4\x01\x00\x00\x00\x00\x31\x03\x68\x00\x69\x00\xf4\x01\xc5\x01\x63\x00\x64\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\xc6\x01\x00\x00\x16\xfe\x16\xfe\x00\x00\x16\xfe\x00\x00\x00\x00\x00\x00\x27\x00\x00\x00\x07\x03\x68\x00\x69\x00\xf4\x01\x00\x00\xb9\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x16\xfe\xba\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x99\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\x00\x00\x16\xfe\x16\xfe\xb4\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\xbb\x00\xbc\x00\x23\x00\xbd\x00\xaf\x00\x57\x00\x58\x00\x59\x00\x00\x00\xb0\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\xb1\x00\x63\x00\x64\x00\xb4\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x97\x00\xf5\x00\x99\x00\x00\x00\x00\x00\x00\x00\x2b\x02\x25\x00\xc6\x00\xb9\x00\xd4\x02\x00\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\xba\x00\x00\x00\x2c\x02\x00\x00\x00\x00\x00\x00\x21\x02\x00\x00\x00\x00\x00\x00\xa4\x02\xc2\x00\xc3\x00\xa5\x02\xa6\x02\x00\x00\x00\x00\x00\x00\x26\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x4f\x02\x12\x01\x09\x00\x69\x01\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x27\x00\x50\x02\x00\x00\x17\xfe\x00\x00\x00\x00\x00\x00\xb9\x00\x00\x00\x00\x00\x17\xfe\x18\x00\x19\x00\xbe\x00\xba\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\xb4\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\x00\x00\x00\x00\xb9\x00\x17\xfe\x17\xfe\x00\x00\x17\xfe\xbb\x00\xbc\x00\xba\x00\xbd\x00\x00\x00\x2b\x02\x00\x00\xc6\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x17\xfe\x2c\x02\x00\x00\x00\x00\xbe\x00\x00\x00\x97\x00\x00\x00\x99\x00\x00\x00\x97\x00\xf5\x00\x99\x00\x24\x03\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x17\xfe\x17\xfe\x00\x00\x06\x00\xbf\x00\xc0\x00\x21\x02\x07\x00\x00\x00\x12\x01\x09\x00\x68\x01\x2b\x02\x06\x00\xc6\x00\xbe\x00\x4f\x02\x07\x00\xb9\x00\x20\x01\x09\x00\x97\x00\xf5\x00\x99\x00\x2c\x02\xba\x00\x00\x00\x00\x00\x50\x02\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\xb9\x00\x00\x00\x00\x00\x00\x00\x86\x01\x00\x00\xc6\x00\xba\x00\x00\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x06\x00\xbd\x00\x00\x00\x87\x01\x07\x00\x16\xfe\x12\x01\x09\x00\x67\x01\xb9\x00\x00\x00\x00\x00\x16\xfe\x00\x00\x00\x00\x00\x00\xba\x00\x00\x00\xbe\x00\x00\x00\x00\x00\xef\x01\xbb\x00\xbc\x00\x97\x00\xbd\x00\x99\x00\x18\x00\x19\x00\x00\x00\xbb\x02\x00\x00\x00\x00\xf0\x01\x00\x00\x00\x00\x00\x00\xbf\x00\xc0\x00\x17\xfe\x16\xfe\x16\xfe\xbe\x00\x16\xfe\xbb\x00\xbc\x00\x17\xfe\xbd\x00\x97\x00\xf5\x00\x99\x00\x86\x01\x00\x00\xc6\x00\x00\x00\x86\x01\x00\x00\xc6\x00\x00\x00\x00\x00\x16\xfe\xbf\x00\xc0\x00\x87\x01\xbe\x00\x00\x00\x97\x00\x87\x01\x99\x00\xb9\x00\x97\x00\xf5\x00\x99\x00\xef\x01\x17\xfe\x17\xfe\xba\x00\x17\xfe\x00\x00\x16\xfe\x16\xfe\x00\x00\x00\x00\xbf\x00\xc0\x00\xf0\x01\xe9\x00\x00\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x17\xfe\xf0\x00\x68\x00\x69\x00\xf4\x01\xb9\x00\x00\x00\x00\x00\x99\x00\x16\xfe\xbb\x00\xbc\x00\xba\x00\xbd\x00\x00\x00\x00\x00\x16\xfe\x00\x00\x00\x00\x17\xfe\x17\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\xb9\x00\x00\x00\x07\x00\xbe\x00\x12\x01\x09\x00\x8e\x02\xba\x00\x00\x00\x97\x00\x00\x00\x99\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x16\xfe\x16\xfe\x00\x00\x16\xfe\x00\x00\xbf\x00\xc0\x00\x00\x00\x18\x00\x19\x00\x00\x00\x2e\x01\x00\x00\x00\x00\x00\x00\x00\x00\xbe\x00\x00\x00\xbb\x00\xbc\x00\x16\xfe\xbd\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbf\x00\xc0\x00\x00\x00\xbe\x00\x16\xfe\x16\xfe\x60\x02\x2f\x01\x5b\x00\x97\x00\x30\x01\x99\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbf\x00\xc0\x00\x65\x00\xe2\x01\x00\x00\x52\x00\x33\x01\x53\x00\xe3\x01\xe4\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x34\x01\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xe6\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2e\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x35\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\xaf\x00\x57\x00\x58\x00\x59\x00\x00\x00\xb0\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x00\x00\xb1\x00\x63\x00\x64\x00\x6e\x00\xe7\x01\x70\x00\x00\x00\x06\x00\x00\x00\x65\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x71\x01\x8d\x01\x00\x00\x00\x00\x00\x00\x1b\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x2e\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x35\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x5a\x02\x6e\x00\x36\x01\x70\x00\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\xb4\x00\xe2\x01\x00\x00\x52\x00\x65\x00\x53\x00\xe3\x01\xe4\x01\x33\x01\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x01\x65\x00\x00\x00\x00\x00\x00\x00\xe6\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x2e\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x35\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x6e\x00\xe7\x01\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xdc\x02\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x89\x01\x2f\x03\xde\x02\xdf\x02\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xe0\x02\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x4b\x02\x35\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe2\x01\x00\x00\x52\x00\x00\x00\x53\x00\xe3\x01\xe4\x01\x41\x02\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x6e\x00\xe1\x02\x70\x00\xe2\x01\x00\x00\x52\x00\x65\x00\x53\x00\xe3\x01\xe4\x01\xe6\x01\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x18\x02\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xe6\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe2\x01\x00\x00\x52\x00\x00\x00\x53\x00\xe3\x01\xe4\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x6e\x00\xe7\x01\x70\x00\xe6\x01\x00\x00\x00\x00\x00\x00\x00\x00\xd4\x01\xd5\x01\xe8\x02\x56\x00\x57\x00\x58\x00\x59\x00\xd6\x01\x5b\x00\x5c\x00\x5d\x00\xd7\x01\xd8\x01\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x6e\x00\xe7\x01\x70\x00\xe2\x01\x00\x00\x52\x00\x65\x00\x53\x00\xe3\x01\xe4\x01\xd9\x01\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\xda\x01\xdb\x01\xdc\x01\xdd\x01\x06\x00\x65\x00\x00\x00\x00\x00\x07\x00\xe6\x01\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x70\x01\x00\x00\x6e\x00\xe7\x01\x70\x00\x00\x00\x00\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\x53\x02\x1b\x00\xaa\x00\x69\x00\x13\x02\x18\x00\x19\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x00\x6e\x00\xde\x01\x70\x00\x24\x00\x55\x02\xec\x00\xed\x00\x56\x02\xef\x00\x00\x00\xf5\x01\x68\x00\x69\x00\x6a\x00\x00\x00\xf6\x01\x6d\x00\x00\x00\x00\x00\x00\x00\x40\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x6e\x00\xe7\x01\x70\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xb9\x01\x70\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x26\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x27\x00\x57\x02\x70\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x98\x00\x99\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\xd4\x01\xd5\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xd6\x01\x5b\x00\x5c\x00\x5d\x00\xd7\x01\xd8\x01\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x77\x00\x00\x00\x78\x00\xd9\x01\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x26\x00\x01\x03\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x27\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x98\x00\x99\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\x00\x00\x6e\x00\xde\x01\x70\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\xff\x00\x00\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x24\x00\xf0\x00\x68\x00\x69\x00\x6a\x00\x00\x01\x6c\x00\x6d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3f\x00\x40\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x41\x00\x00\x00\x42\x00\x00\x00\x43\x00\x00\x00\x1b\x00\x44\x00\xa2\x02\x45\x00\x46\x00\xa3\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\xe8\x00\x47\x00\x26\x00\x48\x00\x49\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x00\x00\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x4b\x00\x00\x00\x00\x00\x00\x00\xa4\x02\x72\x03\x00\x00\x25\x00\x00\x00\x00\x00\x4c\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4d\x00\x4e\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe9\x00\x26\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x00\x00\xf0\x00\x68\x00\x69\x00\x6a\x00\xf1\x00\x6c\x00\x6d\x00\xb1\x01\x00\x00\x27\x00\x00\x00\xb2\x01\xec\x00\xed\x00\xb3\x01\xef\x00\x00\x00\xa7\x00\x68\x00\x69\x00\x6a\x00\x00\x00\xa8\x00\x6d\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4d\x00\x4e\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x1b\x00\x34\x00\xa2\x02\x00\x00\x00\x00\xa3\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\x53\x02\x00\x00\xaa\x00\x69\x00\xab\x00\x24\x00\xac\x00\x6d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6e\x00\xb4\x01\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa4\x02\xae\x03\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\xa2\x02\x00\x00\x00\x00\xa3\x02\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x2f\x01\x5b\x00\x23\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x26\x00\x24\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\xb9\x01\x70\x00\x33\x01\x00\x00\x00\x00\x0f\x01\x35\x00\x36\x00\x00\x00\x00\x00\x27\x00\xa4\x02\x00\x00\x00\x00\x25\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x00\x00\xae\x02\x86\x02\x28\x00\x29\x00\x2a\x00\x2b\x00\x4d\x00\x4e\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x78\x03\x34\x00\x26\x00\x9a\x01\x35\x00\x36\x00\x00\x00\x87\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\x27\x00\x00\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\x4c\x02\x00\x00\xaa\x00\x69\x00\x13\x02\x6e\x00\x36\x01\x70\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x4d\x00\x4e\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x00\x00\x00\x00\x6e\x00\x88\x02\x70\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\xb9\x01\x70\x00\x3d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x7c\x02\x35\x00\x36\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3d\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf6\x00\x00\x00\xd5\x00\xd6\x00\xd7\x00\x00\x00\xf7\x00\x6b\x02\x35\x00\x36\x00\x00\x00\x00\x00\x00\x00\xf8\x00\x63\x00\x64\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x65\x00\x00\x00\x00\x00\xd8\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xca\x02\x35\x00\x36\x00\x31\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x32\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\x4c\x02\x00\x00\xaa\x00\x69\x00\xab\x00\x00\x00\xac\x00\x6d\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x00\x00\xfb\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\xb9\x01\x70\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\xc9\x02\x35\x00\x36\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3d\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xc7\x00\x57\x00\x58\x00\x59\x00\x00\x00\xc8\x00\xc8\x02\x35\x00\x36\x00\x00\x00\x00\x00\x00\x00\xc9\x00\x63\x00\x64\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x65\x00\x00\x00\x00\x00\xca\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x48\x03\x35\x00\x36\x00\x26\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x27\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\xd0\x02\x00\x00\xaa\x00\x69\x00\xab\x00\x00\x00\xac\x00\x6d\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x28\x02\x29\x02\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\xb9\x01\x70\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x86\x03\x35\x00\x36\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3d\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaf\x00\x57\x00\x58\x00\x59\x00\x00\x00\xb0\x00\xb7\x03\x35\x00\x36\x00\x00\x00\x00\x00\x00\x00\xb1\x00\x63\x00\x64\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x65\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4d\x02\xed\x00\xb6\x03\x35\x00\x36\x00\x00\x00\xec\x01\x69\x00\xed\x01\x00\x00\x00\x00\x00\x00\x37\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x00\x00\xa4\x02\xc2\x00\xc3\x00\xa5\x02\xa6\x02\x00\x00\x00\x00\xb6\x01\xed\x00\xb7\x01\xef\x00\xd0\x02\x00\x00\xaa\x00\x69\x00\x13\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x00\x00\xb4\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\xb9\x01\x70\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\x3d\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x3c\x00\x00\x00\x00\x00\x00\x00\x1b\x00\x18\x00\x19\x00\x00\x00\x00\x00\x3d\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x06\x00\x00\x00\x23\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6f\x01\x00\x00\x24\x00\x00\x00\x00\x00\x7a\x01\x00\x00\xaf\x00\x57\x00\x58\x00\x59\x00\x00\x00\xb0\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\xb1\x00\x63\x00\x64\x00\x25\x00\x00\x00\x1b\x00\x66\x01\x00\x00\x00\x00\x65\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\xec\x01\x69\x00\xed\x01\x00\x00\x00\x00\x00\x00\x26\x00\x24\x00\xfd\x02\x00\x00\x00\x00\x00\x00\xa4\x02\xc2\x00\xc3\x00\xa5\x02\xa6\x02\x00\x00\xa7\x00\x68\x00\x69\x00\xf4\x01\x00\x00\x27\x00\x00\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x87\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x26\x00\x00\x00\x00\x00\x1b\x00\xb4\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\x00\x00\x6e\x00\xfe\x02\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x90\x02\x34\x00\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x24\x00\x00\x00\x00\x00\x1b\x00\x1c\x03\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x27\x00\xa4\x02\x23\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x26\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x27\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x26\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x24\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x27\x00\x34\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa4\x02\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x26\x00\x00\x00\x07\x00\x22\x01\x12\x01\x09\x00\x0a\x00\x0b\x00\x6d\x01\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x06\x00\x34\x00\x00\x00\x25\x00\x07\x00\x1b\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x6c\x01\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x26\x00\x24\x00\x00\x00\x07\x00\x22\x01\x12\x01\x09\x00\x0a\x00\x6b\x01\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x27\x00\x00\x00\x23\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x24\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x9d\x03\x34\x00\x26\x00\x00\x00\x25\x00\x00\x00\x2b\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x27\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x24\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x27\x00\x34\x00\x00\x00\x00\x00\x25\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x6a\x01\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x26\x00\x18\x00\x19\x00\x28\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x27\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x00\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x24\x00\x00\x00\x00\x00\x22\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x27\x00\x00\x00\x23\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x24\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x26\x00\x00\x00\x25\x00\x00\x00\x1b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1c\x00\x1d\x00\x1e\x00\x1f\x00\x20\x00\x21\x00\x22\x00\x27\x00\x00\x00\x23\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x26\x00\x24\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x27\x00\x34\x00\x00\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\x00\x00\x00\x00\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x26\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x04\x03\x00\x00\x00\x00\x00\x00\xb2\x01\xec\x00\xed\x00\xb3\x01\xef\x00\x27\x00\xa7\x00\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x2c\x00\xb8\x02\x74\x02\x2d\x00\x2e\x00\x2f\x00\x30\x00\x31\x00\x32\x00\x33\x00\x00\x00\x34\x00\x00\x00\x00\x00\x00\x00\x75\x02\x00\x00\x52\x00\x00\x00\x53\x00\x76\x02\x77\x02\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\x78\x02\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x6e\x00\xb4\x01\x70\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x79\x02\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x39\x03\x00\x00\x00\x00\xef\x01\x65\x00\x00\x00\x00\x00\x3a\x03\x33\x01\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\xf0\x01\x1e\x02\x68\x00\x69\x00\xf4\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x23\x01\xae\x02\x00\x00\x06\x00\x33\x03\x00\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x6e\x01\x00\x00\xaf\x02\xb0\x02\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\xe7\x01\x70\x00\x77\x00\x00\x00\x78\x00\x18\x00\x19\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\xb6\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x97\x00\xb7\x00\x99\x00\x68\x02\x00\x00\x52\x00\x00\x00\x53\x00\xe3\x01\xe4\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xe5\x01\x5b\x00\x5c\x00\x5d\x00\x5e\x00\x5f\x00\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\xd4\x01\xd5\x01\xe6\x01\x56\x00\x57\x00\x58\x00\x59\x00\xd6\x01\x5b\x00\x5c\x00\x5d\x00\xd7\x01\xd8\x01\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xd9\x01\x00\x00\x00\x00\x00\x00\x00\x00\xb6\x01\xed\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x00\x69\x00\x13\x02\x00\x00\x00\x00\x00\x00\xda\x01\xdb\x01\xdc\x01\x00\x00\xa1\x03\x00\x00\x89\x02\xc2\x00\xc3\x00\x8a\x02\x8b\x02\x3a\x03\x00\x00\xea\x00\xeb\x00\xec\x00\xed\x00\xee\x00\xef\x00\x00\x00\x1e\x02\x68\x00\x69\x00\xf4\x01\x6e\x00\xe7\x01\x70\x00\x00\x00\x00\x00\xd4\x01\xd5\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xd6\x01\x5b\x00\x5c\x00\x5d\x00\xd7\x01\xd8\x01\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x6e\x00\xfa\x02\x70\x00\x65\x00\x00\x00\x00\x00\x00\x00\xd9\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x00\x69\x00\x13\x02\x00\x00\x00\x00\x00\x00\xda\x01\xdb\x01\xdc\x01\x00\x00\x00\x00\x00\x00\x89\x02\xc2\x00\xc3\x00\x8a\x02\x8b\x02\xd4\x01\xd5\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xd6\x01\x5b\x00\x5c\x00\x5d\x00\xd7\x01\xd8\x01\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xd9\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6e\x00\xff\x02\x70\x00\x00\x00\x00\x00\x00\x00\xda\x01\xdb\x01\xdc\x01\x00\x00\x00\x00\x00\x00\x89\x02\xc2\x00\xc3\x00\x8a\x02\x8b\x02\xd4\x01\xd5\x01\x00\x00\x56\x00\x57\x00\x58\x00\x59\x00\xd6\x01\x5b\x00\x5c\x00\x5d\x00\xd7\x01\xd8\x01\x60\x00\x61\x00\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\xd9\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x8c\x02\x70\x00\x00\x00\x00\x00\x00\x00\xda\x01\xdb\x01\xdc\x01\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2f\x01\x5b\x00\x65\x00\x30\x01\x00\x00\x31\x01\x33\x01\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\x01\x00\x00\x00\x00\x00\x00\x00\x00\x6e\x00\xde\x01\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x92\x01\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xff\x01\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x75\x01\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x5b\x02\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x06\x00\x00\x00\x00\x00\x33\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x5c\x02\x00\x00\x46\x02\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x47\x02\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x74\x01\x00\x00\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x19\x02\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x06\x00\x00\x00\x00\x00\x33\x01\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x1a\x02\x00\x00\xe9\x02\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xea\x02\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2f\x01\x5b\x00\x65\x00\x30\x01\x00\x00\x31\x01\x33\x01\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x00\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\xf8\x01\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x06\x00\x90\x01\x00\x00\x33\x01\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x8f\x01\x00\x00\xf9\x01\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\x00\x00\x33\x01\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x65\x00\x00\x00\x00\x00\xb6\x02\x33\x01\x2f\x01\x5b\x00\x00\x00\x30\x01\x00\x00\x31\x01\x00\x00\x32\x01\x62\x00\x63\x00\x64\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x65\x00\x00\x00\x00\x00\xb5\x02\x33\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe1\x00\x00\x00\x00\x00\x00\x00\x00\x00\x74\x00\xb9\x00\x00\x00\x76\x00\x00\x00\x00\x00\x00\x00\xb2\x02\xba\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x00\x4e\x01\x4f\x01\x50\x01\x51\x01\x52\x01\x53\x01\x54\x01\x55\x01\x56\x01\x57\x01\x58\x01\x00\x00\x85\x00\x00\x00\x6e\x00\x36\x01\x70\x00\x00\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8d\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x00\x00\xde\x00\x6e\x00\x36\x01\x70\x00\xbe\x00\xf8\x02\xb9\x00\x00\x00\x76\x00\xb2\x01\xec\x00\xed\x00\x99\x00\xba\x00\x00\x00\xa7\x00\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x7c\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x87\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8d\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x6e\x00\xf9\x02\x70\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x40\x00\x00\x00\x00\x00\x00\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x8e\x00\x8f\x00\x00\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\x00\x00\x00\x00\x9c\x00\x9d\x00\x03\x03\x00\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x8f\x00\x00\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\x00\x00\x00\x00\x9c\x00\x9d\x00\x74\x00\x17\xfe\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x17\xfe\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x17\xfe\x17\xfe\x8a\x00\x17\xfe\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x8f\x00\x00\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x17\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x98\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\x17\xfe\x17\xfe\x9c\x00\x9d\x00\x74\x00\x17\xfe\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x17\xfe\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x17\xfe\x17\xfe\x8a\x00\x17\xfe\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x8f\x00\x00\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x17\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\x17\xfe\x17\xfe\x9c\x00\x9d\x00\x74\x00\xb9\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x8f\x00\x00\x00\x90\x00\xca\x01\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcb\x01\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\x00\x00\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x15\xfe\x15\xfe\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x00\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x00\x00\x15\xfe\x15\xfe\x15\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x15\xfe\x15\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x74\x00\xb9\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x00\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x8e\x00\x8f\x00\x00\x00\x90\x00\x91\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\x00\x00\x74\x00\x00\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\x9b\x00\x00\x00\x79\x00\x9c\x00\x9d\x00\x7a\x00\x00\x00\x7b\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x89\x00\x00\x00\x00\x00\x8a\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x8f\x00\x00\x00\x90\x00\xb6\x00\x92\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x74\x00\xb9\x00\x00\x00\x76\x00\x00\x00\x00\x00\xb7\x00\x99\x00\xba\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x7c\x00\x9b\x00\x00\x00\x00\x00\x9c\x00\x9d\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x85\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x89\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8d\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xb9\x00\x00\x00\x76\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x00\x00\x7c\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x8d\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\xb9\x00\x94\x00\x76\x00\x95\x00\x96\x00\xbe\x00\x00\x00\xba\x00\x00\x00\x00\x00\x33\x02\xec\x00\xed\x00\x99\x00\x00\x00\x7c\x00\x34\x02\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\x35\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\xbb\x00\xbc\x00\x8a\x00\xbd\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8d\x00\x00\x00\x00\x00\x00\x00\x90\x00\x00\x00\x92\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x9b\x00\xbf\x00\xc0\x00\x9c\x00\x9d\x00\xb9\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\xca\x01\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xcb\x01\x99\x00\x15\xfe\x00\x00\x00\x00\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\xbf\x00\xc0\x00\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x15\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\x00\x00\x00\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x00\x00\x00\x00\x00\x00\x15\xfe\x00\x00\x00\x00\x15\xfe\x00\x00\x15\xfe\x15\xfe\x00\x00\x15\xfe\x15\xfe\x15\xfe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x15\xfe\x15\xfe\xb9\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x15\xfe\x15\xfe\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\xcf\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd0\x00\x99\x00\xb9\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\xbf\x00\xc0\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\xca\x01\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\x00\x00\x00\x00\xb9\x00\x00\x00\xcb\x01\x99\x00\x77\x00\x00\x00\x78\x00\xba\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\xbf\x00\xc0\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\xbb\x00\xbc\x00\x00\x00\xbd\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x94\x00\x00\x00\x95\x00\x96\x00\xbe\x00\x00\x00\x00\x00\xe3\x02\x00\x00\xe4\x02\x00\x00\x00\x00\x99\x00\x00\x00\x00\x00\x00\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xbf\x00\xc0\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\xe3\x02\x00\x00\x3d\x03\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\xe5\x02\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\xca\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\xc6\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x98\x00\x99\x00\xe5\x02\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcf\x01\x00\x00\x00\x00\x00\x00\x00\x00\x3c\x02\x00\x00\x18\x00\x19\x00\x00\x00\x00\x00\x06\x00\x3d\x02\x3e\x02\x70\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcf\x01\xce\x01\x00\x00\x00\x00\xca\x00\xec\x02\x00\x00\x18\x00\x19\x00\x55\x02\xec\x00\xed\x00\x00\x00\x00\x00\xb4\x00\xf5\x01\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xab\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcf\x01\x00\x00\x00\x00\x00\x00\x00\x00\xd0\x01\x00\x00\x18\x00\x19\x00\xb7\x00\x00\x00\x00\x00\x6e\x00\xd1\x01\x70\x00\x00\x00\xac\x02\x25\x03\x70\x00\x54\x02\xec\x00\xed\x00\x00\x00\x00\x00\x00\x00\xf3\x01\x68\x00\x69\x00\xf4\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xaa\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xf3\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x00\x00\x00\x00\x7a\x00\xb4\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\xe5\x02\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xb2\x02\x00\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x98\x00\x99\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\x98\x00\x99\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\xb6\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x77\x00\x00\x00\x78\x00\x00\x00\x00\x00\x79\x00\xb7\x00\x99\x00\x7a\x00\x00\x00\x7b\x00\x00\x00\x7d\x00\x7e\x00\x7f\x00\x80\x00\x81\x00\x82\x00\x83\x00\x84\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x86\x00\x87\x00\x00\x00\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x8b\x00\x8c\x00\x00\x00\x00\x00\x00\x00\x8f\x00\x00\x00\x00\x00\x91\x00\x00\x00\x93\x00\x94\x00\x00\x00\x95\x00\x96\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x98\x00\x99\x00\x99\x02\x00\x00\x9a\x02\x9b\x02\x9c\x02\x9d\x02\x9e\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x00\x00\x99\x02\xa0\x02\x65\x03\x9b\x02\x9c\x02\x9d\x02\x9e\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x6f\x03\x00\x00\xa0\x02\x70\x03\x9c\x02\x9d\x02\x9e\x02\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x18\x00\x19\x00\x00\x00\x07\x00\xa0\x02\x18\x03\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0a\x03\x19\x03\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x1a\x03\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9f\x02\x00\x00\x6c\x03\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9f\x02\x00\x00\xaf\x03\x00\x00\x00\x00\x00\x00\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x9f\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xcf\x01\x00\x00\x00\x00\x00\x00\x00\x00\x39\x02\x00\x00\x18\x00\x19\x00\x06\x00\x00\x00\x00\x00\x00\x00\x07\x00\xb4\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x08\x01\x00\x00\x09\x01\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x08\x01\x00\x00\xc7\x02\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x08\x01\x00\x00\xc6\x02\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x08\x01\x00\x00\x85\x03\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x08\x01\x00\x00\x84\x03\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x17\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xa3\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xa2\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xa0\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x9e\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x7b\x01\x00\x00\x00\x00\x7c\x01\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x78\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x63\x01\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x64\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x62\x01\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xc5\x02\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\x7b\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xa9\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xc4\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x00\x00\xc3\x03\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x14\x01\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xfd\x01\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x91\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8e\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x8a\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x66\x01\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x6a\x02\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\xb7\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x98\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x96\x02\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x67\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x26\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x1f\x03\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x95\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x92\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x8e\x03\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x88\x03\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x79\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x77\x03\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xae\x03\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xa3\x03\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\xa0\x03\x18\x00\x19\x00\x07\x00\x00\x00\x9d\x03\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x13\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x9e\x03\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x91\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x97\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x7a\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x06\x00\x00\x00\x18\x00\x19\x00\x07\x00\x00\x00\x12\x01\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x10\x00\x11\x00\x77\x01\x2c\x02\xec\x00\xed\x00\x00\x00\x00\x00\x00\x00\x2d\x02\x68\x00\x69\x00\xf4\x01\x18\x00\x19\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x2e\x02\x80\x01\xc2\x00\xc3\x00\x81\x01\x82\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#
happyReduceArr :: Array
Int
(Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)
happyReduceArr = (Int, Int)
-> [(Int,
Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)]
-> Array
Int
(Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn)
forall i e. Ix i => (i, i) -> [(i, e)] -> Array i e
Happy_Data_Array.array (Int
4, Int
505) [
(Int
4 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4),
(Int
5 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5),
(Int
6 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6),
(Int
7 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7),
(Int
8 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8),
(Int
9 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9),
(Int
10 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10),
(Int
11 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11),
(Int
12 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12),
(Int
13 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13),
(Int
14 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14),
(Int
15 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15),
(Int
16 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16),
(Int
17 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17),
(Int
18 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18),
(Int
19 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19),
(Int
20 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20),
(Int
21 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21),
(Int
22 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22),
(Int
23 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23),
(Int
24 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24),
(Int
25 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25),
(Int
26 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26),
(Int
27 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27),
(Int
28 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28),
(Int
29 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29),
(Int
30 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30),
(Int
31 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31),
(Int
32 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32),
(Int
33 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33),
(Int
34 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34),
(Int
35 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35),
(Int
36 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36),
(Int
37 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37),
(Int
38 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38),
(Int
39 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39),
(Int
40 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40),
(Int
41 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41),
(Int
42 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42),
(Int
43 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43),
(Int
44 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44),
(Int
45 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45),
(Int
46 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46),
(Int
47 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47),
(Int
48 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48),
(Int
49 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49),
(Int
50 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50),
(Int
51 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51),
(Int
52 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52),
(Int
53 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53),
(Int
54 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54),
(Int
55 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55),
(Int
56 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56),
(Int
57 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57),
(Int
58 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58),
(Int
59 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59),
(Int
60 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60),
(Int
61 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61),
(Int
62 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62),
(Int
63 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63),
(Int
64 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64),
(Int
65 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65),
(Int
66 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66),
(Int
67 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67),
(Int
68 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68),
(Int
69 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69),
(Int
70 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70),
(Int
71 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71),
(Int
72 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72),
(Int
73 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73),
(Int
74 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74),
(Int
75 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75),
(Int
76 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76),
(Int
77 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77),
(Int
78 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78),
(Int
79 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79),
(Int
80 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80),
(Int
81 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81),
(Int
82 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82),
(Int
83 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83),
(Int
84 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84),
(Int
85 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85),
(Int
86 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86),
(Int
87 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87),
(Int
88 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88),
(Int
89 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89),
(Int
90 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90),
(Int
91 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91),
(Int
92 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92),
(Int
93 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93),
(Int
94 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94),
(Int
95 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95),
(Int
96 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96),
(Int
97 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97),
(Int
98 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98),
(Int
99 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99),
(Int
100 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100),
(Int
101 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101),
(Int
102 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102),
(Int
103 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103),
(Int
104 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104),
(Int
105 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105),
(Int
106 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106),
(Int
107 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107),
(Int
108 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108),
(Int
109 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109),
(Int
110 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110),
(Int
111 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111),
(Int
112 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112),
(Int
113 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113),
(Int
114 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114),
(Int
115 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115),
(Int
116 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116),
(Int
117 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117),
(Int
118 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118),
(Int
119 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119),
(Int
120 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120),
(Int
121 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121),
(Int
122 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122),
(Int
123 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123),
(Int
124 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124),
(Int
125 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125),
(Int
126 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126),
(Int
127 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127),
(Int
128 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128),
(Int
129 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129),
(Int
130 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130),
(Int
131 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131),
(Int
132 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132),
(Int
133 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133),
(Int
134 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134),
(Int
135 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135),
(Int
136 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136),
(Int
137 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137),
(Int
138 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138),
(Int
139 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139),
(Int
140 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140),
(Int
141 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141),
(Int
142 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142),
(Int
143 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143),
(Int
144 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144),
(Int
145 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145),
(Int
146 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146),
(Int
147 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147),
(Int
148 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148),
(Int
149 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149),
(Int
150 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150),
(Int
151 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151),
(Int
152 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152),
(Int
153 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153),
(Int
154 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154),
(Int
155 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155),
(Int
156 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156),
(Int
157 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157),
(Int
158 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158),
(Int
159 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159),
(Int
160 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160),
(Int
161 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161),
(Int
162 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162),
(Int
163 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163),
(Int
164 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164),
(Int
165 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165),
(Int
166 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166),
(Int
167 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167),
(Int
168 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168),
(Int
169 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169),
(Int
170 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170),
(Int
171 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171),
(Int
172 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172),
(Int
173 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173),
(Int
174 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174),
(Int
175 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175),
(Int
176 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176),
(Int
177 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177),
(Int
178 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178),
(Int
179 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179),
(Int
180 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180),
(Int
181 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181),
(Int
182 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182),
(Int
183 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183),
(Int
184 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184),
(Int
185 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185),
(Int
186 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186),
(Int
187 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187),
(Int
188 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188),
(Int
189 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189),
(Int
190 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190),
(Int
191 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191),
(Int
192 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192),
(Int
193 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193),
(Int
194 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194),
(Int
195 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195),
(Int
196 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196),
(Int
197 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197),
(Int
198 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198),
(Int
199 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199),
(Int
200 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200),
(Int
201 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201),
(Int
202 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202),
(Int
203 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203),
(Int
204 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204),
(Int
205 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205),
(Int
206 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206),
(Int
207 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207),
(Int
208 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208),
(Int
209 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209),
(Int
210 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210),
(Int
211 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211),
(Int
212 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212),
(Int
213 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213),
(Int
214 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214),
(Int
215 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215),
(Int
216 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216),
(Int
217 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217),
(Int
218 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218),
(Int
219 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219),
(Int
220 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220),
(Int
221 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221),
(Int
222 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222),
(Int
223 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223),
(Int
224 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224),
(Int
225 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225),
(Int
226 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226),
(Int
227 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227),
(Int
228 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228),
(Int
229 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229),
(Int
230 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230),
(Int
231 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231),
(Int
232 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232),
(Int
233 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233),
(Int
234 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234),
(Int
235 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235),
(Int
236 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236),
(Int
237 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237),
(Int
238 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238),
(Int
239 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239),
(Int
240 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240),
(Int
241 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241),
(Int
242 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242),
(Int
243 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243),
(Int
244 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244),
(Int
245 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245),
(Int
246 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246),
(Int
247 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247),
(Int
248 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248),
(Int
249 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249),
(Int
250 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250),
(Int
251 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251),
(Int
252 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252),
(Int
253 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253),
(Int
254 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254),
(Int
255 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255),
(Int
256 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256),
(Int
257 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257),
(Int
258 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258),
(Int
259 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259),
(Int
260 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260),
(Int
261 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261),
(Int
262 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262),
(Int
263 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263),
(Int
264 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264),
(Int
265 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265),
(Int
266 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266),
(Int
267 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267),
(Int
268 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268),
(Int
269 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269),
(Int
270 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270),
(Int
271 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271),
(Int
272 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272),
(Int
273 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273),
(Int
274 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274),
(Int
275 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275),
(Int
276 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276),
(Int
277 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277),
(Int
278 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278),
(Int
279 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279),
(Int
280 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280),
(Int
281 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281),
(Int
282 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282),
(Int
283 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283),
(Int
284 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284),
(Int
285 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285),
(Int
286 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286),
(Int
287 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287),
(Int
288 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288),
(Int
289 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289),
(Int
290 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290),
(Int
291 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291),
(Int
292 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292),
(Int
293 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293),
(Int
294 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294),
(Int
295 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295),
(Int
296 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296),
(Int
297 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297),
(Int
298 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298),
(Int
299 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299),
(Int
300 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300),
(Int
301 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301),
(Int
302 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302),
(Int
303 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303),
(Int
304 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304),
(Int
305 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305),
(Int
306 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306),
(Int
307 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307),
(Int
308 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308),
(Int
309 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309),
(Int
310 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310),
(Int
311 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311),
(Int
312 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312),
(Int
313 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313),
(Int
314 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314),
(Int
315 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315),
(Int
316 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316),
(Int
317 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317),
(Int
318 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318),
(Int
319 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319),
(Int
320 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320),
(Int
321 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321),
(Int
322 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322),
(Int
323 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323),
(Int
324 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324),
(Int
325 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325),
(Int
326 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326),
(Int
327 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327),
(Int
328 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328),
(Int
329 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329),
(Int
330 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330),
(Int
331 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331),
(Int
332 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332),
(Int
333 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333),
(Int
334 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334),
(Int
335 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335),
(Int
336 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336),
(Int
337 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337),
(Int
338 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338),
(Int
339 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339),
(Int
340 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340),
(Int
341 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341),
(Int
342 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342),
(Int
343 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343),
(Int
344 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344),
(Int
345 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345),
(Int
346 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346),
(Int
347 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347),
(Int
348 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348),
(Int
349 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349),
(Int
350 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350),
(Int
351 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351),
(Int
352 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352),
(Int
353 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353),
(Int
354 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354),
(Int
355 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355),
(Int
356 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356),
(Int
357 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357),
(Int
358 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358),
(Int
359 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359),
(Int
360 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360),
(Int
361 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361),
(Int
362 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362),
(Int
363 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363),
(Int
364 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364),
(Int
365 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365),
(Int
366 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366),
(Int
367 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367),
(Int
368 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368),
(Int
369 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369),
(Int
370 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370),
(Int
371 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371),
(Int
372 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372),
(Int
373 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373),
(Int
374 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374),
(Int
375 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375),
(Int
376 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376),
(Int
377 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377),
(Int
378 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378),
(Int
379 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379),
(Int
380 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380),
(Int
381 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381),
(Int
382 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382),
(Int
383 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383),
(Int
384 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384),
(Int
385 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385),
(Int
386 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386),
(Int
387 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387),
(Int
388 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388),
(Int
389 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389),
(Int
390 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390),
(Int
391 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391),
(Int
392 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392),
(Int
393 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393),
(Int
394 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394),
(Int
395 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395),
(Int
396 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396),
(Int
397 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397),
(Int
398 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398),
(Int
399 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399),
(Int
400 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400),
(Int
401 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401),
(Int
402 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402),
(Int
403 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403),
(Int
404 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404),
(Int
405 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405),
(Int
406 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406),
(Int
407 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407),
(Int
408 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408),
(Int
409 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409),
(Int
410 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410),
(Int
411 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411),
(Int
412 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412),
(Int
413 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413),
(Int
414 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414),
(Int
415 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415),
(Int
416 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416),
(Int
417 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417),
(Int
418 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418),
(Int
419 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419),
(Int
420 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420),
(Int
421 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421),
(Int
422 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422),
(Int
423 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423),
(Int
424 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424),
(Int
425 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425),
(Int
426 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426),
(Int
427 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427),
(Int
428 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428),
(Int
429 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429),
(Int
430 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430),
(Int
431 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431),
(Int
432 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432),
(Int
433 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433),
(Int
434 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434),
(Int
435 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435),
(Int
436 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436),
(Int
437 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437),
(Int
438 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438),
(Int
439 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439),
(Int
440 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_440),
(Int
441 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_441),
(Int
442 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_442),
(Int
443 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_443),
(Int
444 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_444),
(Int
445 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_445),
(Int
446 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_446),
(Int
447 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_447),
(Int
448 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_448),
(Int
449 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_449),
(Int
450 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_450),
(Int
451 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_451),
(Int
452 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_452),
(Int
453 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_453),
(Int
454 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_454),
(Int
455 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_455),
(Int
456 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_456),
(Int
457 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_457),
(Int
458 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_458),
(Int
459 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_459),
(Int
460 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_460),
(Int
461 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_461),
(Int
462 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_462),
(Int
463 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_463),
(Int
464 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_464),
(Int
465 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_465),
(Int
466 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_466),
(Int
467 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_467),
(Int
468 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_468),
(Int
469 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_469),
(Int
470 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_470),
(Int
471 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_471),
(Int
472 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_472),
(Int
473 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_473),
(Int
474 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_474),
(Int
475 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_475),
(Int
476 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_476),
(Int
477 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_477),
(Int
478 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_478),
(Int
479 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_479),
(Int
480 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_480),
(Int
481 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_481),
(Int
482 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_482),
(Int
483 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_483),
(Int
484 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_484),
(Int
485 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_485),
(Int
486 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_486),
(Int
487 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_487),
(Int
488 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_488),
(Int
489 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_489),
(Int
490 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_490),
(Int
491 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_491),
(Int
492 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_492),
(Int
493 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_493),
(Int
494 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_494),
(Int
495 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_495),
(Int
496 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_496),
(Int
497 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_497),
(Int
498 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_498),
(Int
499 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_499),
(Int
500 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_500),
(Int
501 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_501),
(Int
502 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_502),
(Int
503 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_503),
(Int
504 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_504),
(Int
505 , Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_505)
]
happy_n_terms :: Int
happy_n_terms = Int
128 :: Prelude.Int
happy_n_nonterms :: Int
happy_n_nonterms = Int
132 :: Prelude.Int
happyReduce_4 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_4 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_4 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
0# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_4
happyReduction_4 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_4 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTranslUnit -> (CTranslUnit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 Reversed [CExtDecl]
happy_var_1) ->
( let decls :: [CExtDecl]
decls = Reversed [CExtDecl] -> [CExtDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CExtDecl]
happy_var_1 in
case [CExtDecl]
decls of
[] -> do{ Name
n <- P Name
getNewName; Position
p <- P Position
getCurrentPosition; CTranslUnit -> P CTranslUnit
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (CTranslUnit -> P CTranslUnit) -> CTranslUnit -> P CTranslUnit
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> NodeInfo -> CTranslUnit
forall a. [CExternalDeclaration a] -> a -> CTranslationUnit a
CTranslUnit [CExtDecl]
decls (Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
p (Position
p,Int
0) Name
n) }
(CExtDecl
d:[CExtDecl]
ds) -> CExtDecl -> (NodeInfo -> CTranslUnit) -> P CTranslUnit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExtDecl
d ((NodeInfo -> CTranslUnit) -> P CTranslUnit)
-> (NodeInfo -> CTranslUnit) -> P CTranslUnit
forall a b. (a -> b) -> a -> b
$ [CExtDecl] -> NodeInfo -> CTranslUnit
forall a. [CExternalDeclaration a] -> a -> CTranslationUnit a
CTranslUnit [CExtDecl]
decls)})
) (\CTranslUnit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTranslUnit -> HappyAbsSyn
happyIn7 CTranslUnit
r))
happyReduce_5 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_5 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_5 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
1# HappyAbsSyn
happyReduction_5
happyReduction_5 :: HappyAbsSyn
happyReduction_5 = Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
(Reversed [CExtDecl]
forall a. Reversed [a]
RList.empty
)
happyReduce_6 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_6 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_6 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6
happyReduction_6 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_6 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 Reversed [CExtDecl]
happy_var_1) ->
Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
(Reversed [CExtDecl]
happy_var_1
)}
happyReduce_7 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_7 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_7 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
1# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7
happyReduction_7 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_7 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap8
happyOut8 HappyAbsSyn
happy_x_1 of { (HappyWrap8 Reversed [CExtDecl]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 CExtDecl
happy_var_2) ->
Reversed [CExtDecl] -> HappyAbsSyn
happyIn8
(Reversed [CExtDecl]
happy_var_1 Reversed [CExtDecl] -> CExtDecl -> Reversed [CExtDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CExtDecl
happy_var_2
)}}
happyReduce_8 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_8 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_8 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_8
happyReduction_8 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_8 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap10
happyOut10 HappyAbsSyn
happy_x_1 of { (HappyWrap10 CFunDef
happy_var_1) ->
CExtDecl -> HappyAbsSyn
happyIn9
(CFunDef -> CExtDecl
forall a. CFunctionDef a -> CExternalDeclaration a
CFDefExt CFunDef
happy_var_1
)}
happyReduce_9 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_9 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_9 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
2# HappyAbsSyn -> HappyAbsSyn
happyReduction_9
happyReduction_9 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_9 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 CDecl
happy_var_1) ->
CExtDecl -> HappyAbsSyn
happyIn9
(CDecl -> CExtDecl
forall a. CDeclaration a -> CExternalDeclaration a
CDeclExt CDecl
happy_var_1
)}
happyReduce_10 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_10 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_10 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
2# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_10
happyReduction_10 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_10 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
happy_x_2 of { (HappyWrap9 CExtDecl
happy_var_2) ->
CExtDecl -> HappyAbsSyn
happyIn9
(CExtDecl
happy_var_2
)}
happyReduce_11 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_11 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_11 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
2# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11
happyReduction_11 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_11 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExtDecl -> (CExtDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_3 of { (HappyWrap129 CStrLit
happy_var_3) ->
( CToken -> (NodeInfo -> CExtDecl) -> P CExtDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExtDecl) -> P CExtDecl)
-> (NodeInfo -> CExtDecl) -> P CExtDecl
forall a b. (a -> b) -> a -> b
$ CStrLit -> NodeInfo -> CExtDecl
forall a. CStringLiteral a -> a -> CExternalDeclaration a
CAsmExt CStrLit
happy_var_3)}})
) (\CExtDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExtDecl -> HappyAbsSyn
happyIn9 CExtDecl
r))
happyReduce_12 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_12 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_12 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12
happyReduction_12 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_12 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_1 of { (HappyWrap11 CDeclr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_2 of { (HappyWrap14 CStat
happy_var_2) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [] CDeclr
happy_var_1 [] CStat
happy_var_2))}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_13 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_13 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_13 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13
happyReduction_13 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_13 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CAttr] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_14 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_14 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_14 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14
happyReduction_14 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_14 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_15 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_15 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_15 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15
happyReduction_15 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_15 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_16 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_16 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_16 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16
happyReduction_16 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_16 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_17 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_17 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_17 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17
happyReduction_17 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_17 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_18 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_18 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_18 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18
happyReduction_18 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_18 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_3 of { (HappyWrap11 CDeclr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 [] CStat
happy_var_4))}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_19 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_19 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_19 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19
happyReduction_19 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_19 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_1 of { (HappyWrap80 CDeclr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_2 of { (HappyWrap34 Reversed [CDecl]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [] CDeclr
happy_var_1 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_2) CStat
happy_var_3)}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_20 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_20 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_20 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_20
happyReduction_20 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_20 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_3 of { (HappyWrap34 Reversed [CDecl]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( CDeclr -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclr
happy_var_2 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_21 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_21 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_21 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_21
happyReduction_21 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_21 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_3 of { (HappyWrap34 Reversed [CDecl]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_22 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_22 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_22 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_22
happyReduction_22 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_22 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_3 of { (HappyWrap34 Reversed [CDecl]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_23 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_23 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_23 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_23
happyReduction_23 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_23 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_3 of { (HappyWrap34 Reversed [CDecl]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_24 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_24 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_24 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_24
happyReduction_24 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_24 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_2 of { (HappyWrap80 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_3 of { (HappyWrap34 Reversed [CDecl]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_3) CStat
happy_var_4)}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_25 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_25 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_25 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
3# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_25
happyReduction_25 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_25 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap80
happyOut80 HappyAbsSyn
happy_x_3 of { (HappyWrap80 CDeclr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_4 of { (HappyWrap34 Reversed [CDecl]
happy_var_4) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_5 of { (HappyWrap14 CStat
happy_var_5) ->
( Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 (Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_4) CStat
happy_var_5)}}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn10 CFunDef
r))
happyReduce_26 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_26 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_26 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
4# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_26
happyReduction_26 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_26 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclr -> (CDeclr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_1 of { (HappyWrap76 CDeclrR
happy_var_1) ->
( let declr :: CDeclr
declr = CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1 in
P ()
enterScope P () -> P () -> P ()
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P ()
doFuncParamDeclIdent CDeclr
declr P () -> P CDeclr -> P CDeclr
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> CDeclr -> P CDeclr
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclr
declr)})
) (\CDeclr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclr -> HappyAbsSyn
happyIn11 CDeclr
r))
happyReduce_27 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_27 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_27 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_27
happyReduction_27 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_27 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap13
happyOut13 HappyAbsSyn
happy_x_1 of { (HappyWrap13 CStat
happy_var_1) ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_28 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_28 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_28 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_28
happyReduction_28 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_28 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_1 of { (HappyWrap14 CStat
happy_var_1) ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_29 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_29 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_29 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_29
happyReduction_29 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_29 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap22
happyOut22 HappyAbsSyn
happy_x_1 of { (HappyWrap22 CStat
happy_var_1) ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_30 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_30 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_30 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_30
happyReduction_30 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_30 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap23
happyOut23 HappyAbsSyn
happy_x_1 of { (HappyWrap23 CStat
happy_var_1) ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_31 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_31 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_31 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_31
happyReduction_31 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_31 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap24
happyOut24 HappyAbsSyn
happy_x_1 of { (HappyWrap24 CStat
happy_var_1) ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_32 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_32 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_32 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
5# HappyAbsSyn -> HappyAbsSyn
happyReduction_32
happyReduction_32 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_32 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap25
happyOut25 HappyAbsSyn
happy_x_1 of { (HappyWrap25 CStat
happy_var_1) ->
CStat -> HappyAbsSyn
happyIn12
(CStat
happy_var_1
)}
happyReduce_33 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_33 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_33 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
5# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33
happyReduction_33 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_33 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap26
happyOut26 HappyAbsSyn
happy_x_1 of { (HappyWrap26 CAsmStmt
happy_var_1) ->
( CAsmStmt -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CAsmStmt
happy_var_1 (CAsmStmt -> NodeInfo -> CStat
forall a. CAssemblyStatement a -> a -> CStatement a
CAsm CAsmStmt
happy_var_1))})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn12 CStat
r))
happyReduce_34 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_34 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_34 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34
happyReduction_34 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_34 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 CStat
happy_var_4) ->
( Ident -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> CStat -> [CAttr] -> NodeInfo -> CStat
forall a.
Ident -> CStatement a -> [CAttribute a] -> a -> CStatement a
CLabel Ident
happy_var_1 CStat
happy_var_4 [CAttr]
happy_var_3)}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_35 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_35 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_35 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_35
happyReduction_35 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_35 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_2 of { (HappyWrap127 CExpr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_4 of { (HappyWrap12 CStat
happy_var_4) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> NodeInfo -> CStat
forall a. CExpression a -> CStatement a -> a -> CStatement a
CCase CExpr
happy_var_2 CStat
happy_var_4)}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_36 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_36 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_36 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_36
happyReduction_36 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_36 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_3 of { (HappyWrap12 CStat
happy_var_3) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CStat -> NodeInfo -> CStat
forall a. CStatement a -> a -> CStatement a
CDefault CStat
happy_var_3)}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_37 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_37 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_37 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
6# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_37
happyReduction_37 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_37 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_2 of { (HappyWrap127 CExpr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_4 of { (HappyWrap127 CExpr
happy_var_4) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_6 of { (HappyWrap12 CStat
happy_var_6) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> CStat -> NodeInfo -> CStat
forall a.
CExpression a -> CExpression a -> CStatement a -> a -> CStatement a
CCases CExpr
happy_var_2 CExpr
happy_var_4 CStat
happy_var_6)}}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn13 CStat
r))
happyReduce_38 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_38 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_38 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_38
happyReduction_38 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_38 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_3 of { (HappyWrap17 Reversed [CBlockItem]
happy_var_3) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [Ident] -> [CBlockItem] -> NodeInfo -> CStat
forall a. [Ident] -> [CCompoundBlockItem a] -> a -> CStatement a
CCompound [] (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CBlockItem]
happy_var_3))}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn14 CStat
r))
happyReduce_39 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_39 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_39 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
7# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_39
happyReduction_39 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_39 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_3 of { (HappyWrap21 Reversed [Ident]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_4 of { (HappyWrap17 Reversed [CBlockItem]
happy_var_4) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ [Ident] -> [CBlockItem] -> NodeInfo -> CStat
forall a. [Ident] -> [CCompoundBlockItem a] -> a -> CStatement a
CCompound (Reversed [Ident] -> [Ident]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [Ident]
happy_var_3) (Reversed [CBlockItem] -> [CBlockItem]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CBlockItem]
happy_var_4))}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn14 CStat
r))
happyReduce_40 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_40 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_40 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
0# Int#
8# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p} {p}. p -> p -> P HappyAbsSyn
happyReduction_40
happyReduction_40 :: p -> p -> P HappyAbsSyn
happyReduction_40 (p
happyRest) p
tk
= P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
enterScope))
) (\()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn15 ()
r))
happyReduce_41 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_41 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_41 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
0# Int#
9# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p} {p}. p -> p -> P HappyAbsSyn
happyReduction_41
happyReduction_41 :: p -> p -> P HappyAbsSyn
happyReduction_41 (p
happyRest) p
tk
= P () -> (() -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((( P ()
leaveScope))
) (\()
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (() -> HappyAbsSyn
happyIn16 ()
r))
happyReduce_42 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_42 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_42 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
10# HappyAbsSyn
happyReduction_42
happyReduction_42 :: HappyAbsSyn
happyReduction_42 = Reversed [CBlockItem] -> HappyAbsSyn
happyIn17
(Reversed [CBlockItem]
forall a. Reversed [a]
RList.empty
)
happyReduce_43 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_43 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_43 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
10# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_43
happyReduction_43 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_43 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap17
happyOut17 HappyAbsSyn
happy_x_1 of { (HappyWrap17 Reversed [CBlockItem]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap18
happyOut18 HappyAbsSyn
happy_x_2 of { (HappyWrap18 CBlockItem
happy_var_2) ->
Reversed [CBlockItem] -> HappyAbsSyn
happyIn17
(Reversed [CBlockItem]
happy_var_1 Reversed [CBlockItem] -> CBlockItem -> Reversed [CBlockItem]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CBlockItem
happy_var_2
)}}
happyReduce_44 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_44 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_44 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
11# HappyAbsSyn -> HappyAbsSyn
happyReduction_44
happyReduction_44 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_44 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_1 of { (HappyWrap12 CStat
happy_var_1) ->
CBlockItem -> HappyAbsSyn
happyIn18
(CStat -> CBlockItem
forall a. CStatement a -> CCompoundBlockItem a
CBlockStmt CStat
happy_var_1
)}
happyReduce_45 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_45 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_45 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
11# HappyAbsSyn -> HappyAbsSyn
happyReduction_45
happyReduction_45 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_45 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_1 of { (HappyWrap19 CBlockItem
happy_var_1) ->
CBlockItem -> HappyAbsSyn
happyIn18
(CBlockItem
happy_var_1
)}
happyReduce_46 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_46 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_46 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
12# HappyAbsSyn -> HappyAbsSyn
happyReduction_46
happyReduction_46 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_46 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_1 of { (HappyWrap33 CDecl
happy_var_1) ->
CBlockItem -> HappyAbsSyn
happyIn19
(CDecl -> CBlockItem
forall a. CDeclaration a -> CCompoundBlockItem a
CBlockDecl CDecl
happy_var_1
)}
happyReduce_47 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_47 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_47 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
12# HappyAbsSyn -> HappyAbsSyn
happyReduction_47
happyReduction_47 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_47 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap20
happyOut20 HappyAbsSyn
happy_x_1 of { (HappyWrap20 CFunDef
happy_var_1) ->
CBlockItem -> HappyAbsSyn
happyIn19
(CFunDef -> CBlockItem
forall a. CFunctionDef a -> CCompoundBlockItem a
CNestedFunDef CFunDef
happy_var_1
)}
happyReduce_48 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_48 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_48 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
12# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_48
happyReduction_48 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_48 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap19
happyOut19 HappyAbsSyn
happy_x_2 of { (HappyWrap19 CBlockItem
happy_var_2) ->
CBlockItem -> HappyAbsSyn
happyIn19
(CBlockItem
happy_var_2
)}
happyReduce_49 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_49 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_49 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49
happyReduction_49 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_49 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_50 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_50 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_50 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_50
happyReduction_50 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_50 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> ([CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef [CDeclSpec]
happy_var_1 CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_51 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_51 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_51 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_51
happyReduction_51 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_51 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CDeclSpec] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_52 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_52 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_52 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52
happyReduction_52 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_52 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_2 of { (HappyWrap11 CDeclr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_3 of { (HappyWrap14 CStat
happy_var_3) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) CDeclr
happy_var_2 [] CStat
happy_var_3))}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_53 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_53 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_53 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
13# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53
happyReduction_53 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_53 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunDef -> (CFunDef -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap11
happyOut11 HappyAbsSyn
happy_x_3 of { (HappyWrap11 CDeclr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_4 of { (HappyWrap14 CStat
happy_var_4) ->
( P ()
leaveScope P () -> P CFunDef -> P CFunDef
forall a b. P a -> P b -> P b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> (Reversed [CTypeQual] -> (NodeInfo -> CFunDef) -> P CFunDef
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CFunDef) -> P CFunDef)
-> (NodeInfo -> CFunDef) -> P CFunDef
forall a b. (a -> b) -> a -> b
$ [CDeclSpec] -> CDeclr -> [CDecl] -> CStat -> NodeInfo -> CFunDef
forall a.
[CDeclarationSpecifier a]
-> CDeclarator a
-> [CDeclaration a]
-> CStatement a
-> a
-> CFunctionDef a
CFunDef (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) CDeclr
happy_var_3 [] CStat
happy_var_4))}}}})
) (\CFunDef
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunDef -> HappyAbsSyn
happyIn20 CFunDef
r))
happyReduce_54 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_54 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_54 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
14# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54
happyReduction_54 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_54 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_2 of { (HappyWrap86 Reversed [Ident]
happy_var_2) ->
Reversed [Ident] -> HappyAbsSyn
happyIn21
(Reversed [Ident]
happy_var_2
)}
happyReduce_55 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_55 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_55 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
14# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_55
happyReduction_55 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_55 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap21
happyOut21 HappyAbsSyn
happy_x_1 of { (HappyWrap21 Reversed [Ident]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 Reversed [Ident]
happy_var_3) ->
Reversed [Ident] -> HappyAbsSyn
happyIn21
(Reversed [Ident]
happy_var_1 Reversed [Ident] -> Reversed [Ident] -> Reversed [Ident]
forall a. Reversed [a] -> Reversed [a] -> Reversed [a]
`RList.rappendr` Reversed [Ident]
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_56 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_56 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_56 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
15# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56
happyReduction_56 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_56 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CExpr Maybe CExpr
forall a. Maybe a
Nothing)})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))
happyReduce_57 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_57 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_57 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
15# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57
happyReduction_57 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_57 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_1 of { (HappyWrap123 CExpr
happy_var_1) ->
( CExpr -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CExpr (CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_1))})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn22 CStat
r))
happyReduce_58 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_58 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_58 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58
happyReduction_58 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_58 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 CStat
happy_var_5) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> NodeInfo -> CStat
forall a.
CExpression a
-> CStatement a -> Maybe (CStatement a) -> a -> CStatement a
CIf CExpr
happy_var_3 CStat
happy_var_5 Maybe CStat
forall a. Maybe a
Nothing)}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))
happyReduce_59 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_59 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_59 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59
happyReduction_59 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_59 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 CStat
happy_var_5) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_7 of { (HappyWrap12 CStat
happy_var_7) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Maybe CStat -> NodeInfo -> CStat
forall a.
CExpression a
-> CStatement a -> Maybe (CStatement a) -> a -> CStatement a
CIf CExpr
happy_var_3 CStat
happy_var_5 (CStat -> Maybe CStat
forall a. a -> Maybe a
Just CStat
happy_var_7))}}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))
happyReduce_60 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_60 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_60 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
16# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60
happyReduction_60 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_60 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 CStat
happy_var_5) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> NodeInfo -> CStat
forall a. CExpression a -> CStatement a -> a -> CStatement a
CSwitch CExpr
happy_var_3 CStat
happy_var_5)}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn23 CStat
r))
happyReduce_61 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_61 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_61 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61
happyReduction_61 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_61 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_5 of { (HappyWrap12 CStat
happy_var_5) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> NodeInfo -> CStat
forall a.
CExpression a -> CStatement a -> Bool -> a -> CStatement a
CWhile CExpr
happy_var_3 CStat
happy_var_5 Bool
False)}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_62 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_62 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_62 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62
happyReduction_62 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_62 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_2 of { (HappyWrap12 CStat
happy_var_2) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_5 of { (HappyWrap123 CExpr
happy_var_5) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> CStat -> Bool -> NodeInfo -> CStat
forall a.
CExpression a -> CStatement a -> Bool -> a -> CStatement a
CWhile CExpr
happy_var_5 CStat
happy_var_2 Bool
True)}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_63 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_63 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_63 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
9# Int#
17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63
happyReduction_63 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_63 (HappyAbsSyn
happy_x_9 `HappyStk`
HappyAbsSyn
happy_x_8 `HappyStk`
HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_3 of { (HappyWrap125 Maybe CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_5 of { (HappyWrap125 Maybe CExpr
happy_var_5) ->
case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_7 of { (HappyWrap125 Maybe CExpr
happy_var_7) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_9 of { (HappyWrap12 CStat
happy_var_9) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> NodeInfo -> CStat
forall a.
Either (Maybe (CExpression a)) (CDeclaration a)
-> Maybe (CExpression a)
-> Maybe (CExpression a)
-> CStatement a
-> a
-> CStatement a
CFor (Maybe CExpr -> Either (Maybe CExpr) CDecl
forall a b. a -> Either a b
Left Maybe CExpr
happy_var_3) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_64 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_64 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_64 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
10# Int#
17# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64
happyReduction_64 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_64 (HappyAbsSyn
happy_x_10 `HappyStk`
HappyAbsSyn
happy_x_9 `HappyStk`
HappyAbsSyn
happy_x_8 `HappyStk`
HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_4 of { (HappyWrap33 CDecl
happy_var_4) ->
case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_5 of { (HappyWrap125 Maybe CExpr
happy_var_5) ->
case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_7 of { (HappyWrap125 Maybe CExpr
happy_var_7) ->
case HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
happy_x_9 of { (HappyWrap12 CStat
happy_var_9) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Either (Maybe CExpr) CDecl
-> Maybe CExpr -> Maybe CExpr -> CStat -> NodeInfo -> CStat
forall a.
Either (Maybe (CExpression a)) (CDeclaration a)
-> Maybe (CExpression a)
-> Maybe (CExpression a)
-> CStatement a
-> a
-> CStatement a
CFor (CDecl -> Either (Maybe CExpr) CDecl
forall a b. b -> Either a b
Right CDecl
happy_var_4) Maybe CExpr
happy_var_5 Maybe CExpr
happy_var_7 CStat
happy_var_9)}}}}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn24 CStat
r))
happyReduce_65 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_65 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_65 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65
happyReduction_65 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_65 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 Ident
happy_var_2) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CStat
forall a. Ident -> a -> CStatement a
CGoto Ident
happy_var_2)}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_66 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_66 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_66 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66
happyReduction_66 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_66 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CStat
forall a. CExpression a -> a -> CStatement a
CGotoPtr CExpr
happy_var_3)}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_67 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_67 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_67 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67
happyReduction_67 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_67 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStat
forall a. a -> CStatement a
CCont)})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_68 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_68 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_68 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68
happyReduction_68 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_68 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStat
forall a. a -> CStatement a
CBreak)})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_69 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_69 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_69 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
18# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69
happyReduction_69 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_69 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStat -> (CStat -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap125
happyOut125 HappyAbsSyn
happy_x_2 of { (HappyWrap125 Maybe CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CStat) -> P CStat
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStat) -> P CStat) -> (NodeInfo -> CStat) -> P CStat
forall a b. (a -> b) -> a -> b
$ Maybe CExpr -> NodeInfo -> CStat
forall a. Maybe (CExpression a) -> a -> CStatement a
CReturn Maybe CExpr
happy_var_2)}})
) (\CStat
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStat -> HappyAbsSyn
happyIn25 CStat
r))
happyReduce_70 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_70 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_70 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_70
happyReduction_70 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_70 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 Maybe CTypeQual
happy_var_2) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_4 of { (HappyWrap129 CStrLit
happy_var_4) ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [] [] [])}}})
) (\CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_71 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_71 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_71 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
8# Int#
19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_71
happyReduction_71 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_71 (HappyAbsSyn
happy_x_8 `HappyStk`
HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 Maybe CTypeQual
happy_var_2) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_4 of { (HappyWrap129 CStrLit
happy_var_4) ->
case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_6 of { (HappyWrap28 [CAsmOperand]
happy_var_6) ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [] [])}}}})
) (\CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_72 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_72 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_72 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
10# Int#
19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_72
happyReduction_72 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_72 (HappyAbsSyn
happy_x_10 `HappyStk`
HappyAbsSyn
happy_x_9 `HappyStk`
HappyAbsSyn
happy_x_8 `HappyStk`
HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 Maybe CTypeQual
happy_var_2) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_4 of { (HappyWrap129 CStrLit
happy_var_4) ->
case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_6 of { (HappyWrap28 [CAsmOperand]
happy_var_6) ->
case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_8 of { (HappyWrap28 [CAsmOperand]
happy_var_8) ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [CAsmOperand]
happy_var_8 [])}}}}})
) (\CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_73 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_73 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_73 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
12# Int#
19# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_73
happyReduction_73 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_73 (HappyAbsSyn
happy_x_12 `HappyStk`
HappyAbsSyn
happy_x_11 `HappyStk`
HappyAbsSyn
happy_x_10 `HappyStk`
HappyAbsSyn
happy_x_9 `HappyStk`
HappyAbsSyn
happy_x_8 `HappyStk`
HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmStmt -> (CAsmStmt -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap27
happyOut27 HappyAbsSyn
happy_x_2 of { (HappyWrap27 Maybe CTypeQual
happy_var_2) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_4 of { (HappyWrap129 CStrLit
happy_var_4) ->
case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_6 of { (HappyWrap28 [CAsmOperand]
happy_var_6) ->
case HappyAbsSyn -> HappyWrap28
happyOut28 HappyAbsSyn
happy_x_8 of { (HappyWrap28 [CAsmOperand]
happy_var_8) ->
case HappyAbsSyn -> HappyWrap31
happyOut31 HappyAbsSyn
happy_x_10 of { (HappyWrap31 [CStrLit]
happy_var_10) ->
( CToken -> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmStmt) -> P CAsmStmt)
-> (NodeInfo -> CAsmStmt) -> P CAsmStmt
forall a b. (a -> b) -> a -> b
$ Maybe CTypeQual
-> CStrLit
-> [CAsmOperand]
-> [CAsmOperand]
-> [CStrLit]
-> NodeInfo
-> CAsmStmt
forall a.
Maybe (CTypeQualifier a)
-> CStringLiteral a
-> [CAssemblyOperand a]
-> [CAssemblyOperand a]
-> [CStringLiteral a]
-> a
-> CAssemblyStatement a
CAsmStmt Maybe CTypeQual
happy_var_2 CStrLit
happy_var_4 [CAsmOperand]
happy_var_6 [CAsmOperand]
happy_var_8 [CStrLit]
happy_var_10)}}}}}})
) (\CAsmStmt
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmStmt -> HappyAbsSyn
happyIn26 CAsmStmt
r))
happyReduce_74 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_74 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_74 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
20# HappyAbsSyn
happyReduction_74
happyReduction_74 :: HappyAbsSyn
happyReduction_74 = Maybe CTypeQual -> HappyAbsSyn
happyIn27
(Maybe CTypeQual
forall a. Maybe a
Nothing
)
happyReduce_75 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_75 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_75 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
20# HappyAbsSyn -> HappyAbsSyn
happyReduction_75
happyReduction_75 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_75 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 CTypeQual
happy_var_1) ->
Maybe CTypeQual -> HappyAbsSyn
happyIn27
(CTypeQual -> Maybe CTypeQual
forall a. a -> Maybe a
Just CTypeQual
happy_var_1
)}
happyReduce_76 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_76 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_76 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
21# HappyAbsSyn
happyReduction_76
happyReduction_76 :: HappyAbsSyn
happyReduction_76 = [CAsmOperand] -> HappyAbsSyn
happyIn28
([]
)
happyReduce_77 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_77 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_77 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
21# HappyAbsSyn -> HappyAbsSyn
happyReduction_77
happyReduction_77 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_77 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
happy_x_1 of { (HappyWrap29 Reversed [CAsmOperand]
happy_var_1) ->
[CAsmOperand] -> HappyAbsSyn
happyIn28
(Reversed [CAsmOperand] -> [CAsmOperand]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CAsmOperand]
happy_var_1
)}
happyReduce_78 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_78 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_78 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
22# HappyAbsSyn -> HappyAbsSyn
happyReduction_78
happyReduction_78 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_78 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_1 of { (HappyWrap30 CAsmOperand
happy_var_1) ->
Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29
(CAsmOperand -> Reversed [CAsmOperand]
forall a. a -> Reversed [a]
RList.singleton CAsmOperand
happy_var_1
)}
happyReduce_79 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_79 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_79 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
22# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79
happyReduction_79 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_79 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap29
happyOut29 HappyAbsSyn
happy_x_1 of { (HappyWrap29 Reversed [CAsmOperand]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap30
happyOut30 HappyAbsSyn
happy_x_3 of { (HappyWrap30 CAsmOperand
happy_var_3) ->
Reversed [CAsmOperand] -> HappyAbsSyn
happyIn29
(Reversed [CAsmOperand]
happy_var_1 Reversed [CAsmOperand] -> CAsmOperand -> Reversed [CAsmOperand]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CAsmOperand
happy_var_3
)}}
happyReduce_80 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_80 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_80 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_80
happyReduction_80 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_80 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_1 of { (HappyWrap129 CStrLit
happy_var_1) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
( CStrLit -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CStrLit
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand Maybe Ident
forall a. Maybe a
Nothing CStrLit
happy_var_1 CExpr
happy_var_3)}})
) (\CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))
happyReduce_81 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_81 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_81 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81
happyReduction_81 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_81 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokIdent PosLength
_ Ident
happy_var_2) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_4 of { (HappyWrap129 CStrLit
happy_var_4) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_6 of { (HappyWrap123 CExpr
happy_var_6) ->
( CToken -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_2) CStrLit
happy_var_4 CExpr
happy_var_6)}}}})
) (\CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))
happyReduce_82 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_82 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_82 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
23# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82
happyReduction_82 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_82 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAsmOperand -> (CAsmOperand -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent PosLength
_ Ident
happy_var_2) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_4 of { (HappyWrap129 CStrLit
happy_var_4) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_6 of { (HappyWrap123 CExpr
happy_var_6) ->
( CToken -> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAsmOperand) -> P CAsmOperand)
-> (NodeInfo -> CAsmOperand) -> P CAsmOperand
forall a b. (a -> b) -> a -> b
$ Maybe Ident -> CStrLit -> CExpr -> NodeInfo -> CAsmOperand
forall a.
Maybe Ident
-> CStringLiteral a -> CExpression a -> a -> CAssemblyOperand a
CAsmOperand (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_2) CStrLit
happy_var_4 CExpr
happy_var_6)}}}})
) (\CAsmOperand
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAsmOperand -> HappyAbsSyn
happyIn30 CAsmOperand
r))
happyReduce_83 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_83 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_83 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
24# HappyAbsSyn
happyReduction_83
happyReduction_83 :: HappyAbsSyn
happyReduction_83 = [CStrLit] -> HappyAbsSyn
happyIn31
([]
)
happyReduce_84 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_84 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_84 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
24# HappyAbsSyn -> HappyAbsSyn
happyReduction_84
happyReduction_84 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_84 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 Reversed [CStrLit]
happy_var_1) ->
[CStrLit] -> HappyAbsSyn
happyIn31
(Reversed [CStrLit] -> [CStrLit]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CStrLit]
happy_var_1
)}
happyReduce_85 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_85 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_85 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
25# HappyAbsSyn -> HappyAbsSyn
happyReduction_85
happyReduction_85 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_85 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_1 of { (HappyWrap129 CStrLit
happy_var_1) ->
Reversed [CStrLit] -> HappyAbsSyn
happyIn32
(CStrLit -> Reversed [CStrLit]
forall a. a -> Reversed [a]
RList.singleton CStrLit
happy_var_1
)}
happyReduce_86 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_86 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_86 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
25# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_86
happyReduction_86 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_86 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap32
happyOut32 HappyAbsSyn
happy_x_1 of { (HappyWrap32 Reversed [CStrLit]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_3 of { (HappyWrap129 CStrLit
happy_var_3) ->
Reversed [CStrLit] -> HappyAbsSyn
happyIn32
(Reversed [CStrLit]
happy_var_1 Reversed [CStrLit] -> CStrLit -> Reversed [CStrLit]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CStrLit
happy_var_3
)}}
happyReduce_87 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_87 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_87 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87
happyReduction_87 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_87 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 Reversed [CDeclSpec]
happy_var_1) ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn33 CDecl
r))
happyReduce_88 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_88 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_88 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88
happyReduction_88 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_88 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 Reversed [CDeclSpec]
happy_var_1) ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn33 CDecl
r))
happyReduce_89 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_89 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_89 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89
happyReduction_89 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_89 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 CDecl
happy_var_1) ->
( case CDecl
happy_var_1 of CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at -> NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies)))})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn33 CDecl
r))
happyReduce_90 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_90 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_90 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_90
happyReduction_90 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_90 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_1 of { (HappyWrap35 CDecl
happy_var_1) ->
( case CDecl
happy_var_1 of CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at -> NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies)))})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn33 CDecl
r))
happyReduce_91 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_91 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_91 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
26# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_91
happyReduction_91 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_91 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_3 of { (HappyWrap127 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_5 of { (HappyWrap129 CStrLit
happy_var_5) ->
( CToken -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ CExpr -> CStrLit -> NodeInfo -> CDecl
forall a. CExpression a -> CStringLiteral a -> a -> CDeclaration a
CStaticAssert CExpr
happy_var_3 CStrLit
happy_var_5)}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn33 CDecl
r))
happyReduce_92 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_92 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_92 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
27# HappyAbsSyn
happyReduction_92
happyReduction_92 :: HappyAbsSyn
happyReduction_92 = Reversed [CDecl] -> HappyAbsSyn
happyIn34
(Reversed [CDecl]
forall a. Reversed [a]
RList.empty
)
happyReduce_93 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_93 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_93 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
27# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_93
happyReduction_93 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_93 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap34
happyOut34 HappyAbsSyn
happy_x_1 of { (HappyWrap34 Reversed [CDecl]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap33
happyOut33 HappyAbsSyn
happy_x_2 of { (HappyWrap33 CDecl
happy_var_2) ->
Reversed [CDecl] -> HappyAbsSyn
happyIn34
(Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDecl
happy_var_2
)}}
happyReduce_94 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_94 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_94 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_94
happyReduction_94 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_94 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_3 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_3) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_4 of { (HappyWrap95 Maybe CInit
happy_var_4) ->
( let declspecs :: [CDeclSpec]
declspecs = Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$
[CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall a. Maybe a
Nothing)] })}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn35 CDecl
r))
happyReduce_95 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_95 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_95 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_95
happyReduction_95 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_95 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_3 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_3) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_4 of { (HappyWrap95 Maybe CInit
happy_var_4) ->
( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall a. Maybe a
Nothing)] })}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn35 CDecl
r))
happyReduce_96 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_96 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_96 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_96
happyReduction_96 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_96 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_3 of { (HappyWrap76 CDeclrR
happy_var_3) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_4 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_4) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_5 of { (HappyWrap95 Maybe CInit
happy_var_5) ->
( let declspecs :: [CDeclSpec]
declspecs = Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_4 CDeclrR
happy_var_3
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl ([CDeclSpec]
declspecs [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_5, Maybe CExpr
forall a. Maybe a
Nothing)] })}}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn35 CDecl
r))
happyReduce_97 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_97 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_97 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_97
happyReduction_97 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_97 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_3 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_3) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_4 of { (HappyWrap95 Maybe CInit
happy_var_4) ->
( let declspecs :: [CDeclSpec]
declspecs = [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1 in
do{ CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2
; [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
; [CAttr] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall a. Maybe a
Nothing)] })}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn35 CDecl
r))
happyReduce_98 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_98 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_98 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
28# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_98
happyReduction_98 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_98 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap35
happyOut35 HappyAbsSyn
happy_x_1 of { (HappyWrap35 CDecl
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_4 of { (HappyWrap76 CDeclrR
happy_var_4) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_5 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_5) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_6 of { (HappyWrap95 Maybe CInit
happy_var_6) ->
( case CDecl
happy_var_1 of
CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at -> do
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs ((Maybe CStrLit, [CAttr]) -> Maybe CStrLit
forall a b. (a, b) -> a
fst (Maybe CStrLit, [CAttr])
happy_var_5, (Maybe CStrLit, [CAttr]) -> [CAttr]
forall a b. (a, b) -> b
snd (Maybe CStrLit, [CAttr])
happy_var_5 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_3) CDeclrR
happy_var_4
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
NodeInfo -> (NodeInfo -> CDecl) -> P CDecl
forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
at ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_6, Maybe CExpr
forall a. Maybe a
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. a -> [a] -> [a]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies))}}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn35 CDecl
r))
happyReduce_99 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_99 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_99 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
29# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_99
happyReduction_99 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_99 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap68
happyOut68 HappyAbsSyn
happy_x_1 of { (HappyWrap68 Maybe CStrLit
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
(Maybe CStrLit, [CAttr]) -> HappyAbsSyn
happyIn36
((Maybe CStrLit
happy_var_1,[CAttr]
happy_var_2)
)}}
happyReduce_100 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_100 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_100 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
30# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100
happyReduction_100 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_100 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_3 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_3) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_4 of { (HappyWrap95 Maybe CInit
happy_var_4) ->
( do{
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2;
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclrR
declr;
[CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall a. Maybe a
Nothing)] })}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn37 CDecl
r))
happyReduce_101 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_101 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_101 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
30# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_101
happyReduction_101 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_101 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_2 of { (HappyWrap67 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_3 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_3) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_4 of { (HappyWrap95 Maybe CInit
happy_var_4) ->
( do{
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit, [CAttr])
happy_var_3 CDeclrR
happy_var_2;
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
happy_var_1 CDeclrR
declr;
[CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_4, Maybe CExpr
forall a. Maybe a
Nothing)] })}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn37 CDecl
r))
happyReduce_102 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_102 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_102 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
30# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_102
happyReduction_102 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_102 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap37
happyOut37 HappyAbsSyn
happy_x_1 of { (HappyWrap37 CDecl
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_4 of { (HappyWrap67 CDeclrR
happy_var_4) ->
case HappyAbsSyn -> HappyWrap36
happyOut36 HappyAbsSyn
happy_x_5 of { (HappyWrap36 (Maybe CStrLit, [CAttr])
happy_var_5) ->
case HappyAbsSyn -> HappyWrap95
happyOut95 HappyAbsSyn
happy_x_6 of { (HappyWrap95 Maybe CInit
happy_var_6) ->
( case CDecl
happy_var_1 of
CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at -> do
CDeclrR
declr <- (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs ((Maybe CStrLit, [CAttr]) -> Maybe CStrLit
forall a b. (a, b) -> a
fst (Maybe CStrLit, [CAttr])
happy_var_5, (Maybe CStrLit, [CAttr]) -> [CAttr]
forall a b. (a, b) -> b
snd (Maybe CStrLit, [CAttr])
happy_var_5 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_3) CDeclrR
happy_var_4
[CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs CDeclrR
declr
CDecl -> P CDecl
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return ([CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
declr), Maybe CInit
happy_var_6, Maybe CExpr
forall a. Maybe a
Nothing) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. a -> [a] -> [a]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at))}}}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn37 CDecl
r))
happyReduce_103 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_103 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_103 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
31# HappyAbsSyn -> HappyAbsSyn
happyReduction_103
happyReduction_103 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_103 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 Reversed [CDeclSpec]
happy_var_1) ->
[CDeclSpec] -> HappyAbsSyn
happyIn38
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_104 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_104 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_104 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
31# HappyAbsSyn -> HappyAbsSyn
happyReduction_104
happyReduction_104 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_104 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 Reversed [CDeclSpec]
happy_var_1) ->
[CDeclSpec] -> HappyAbsSyn
happyIn38
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_105 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_105 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_105 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
31# HappyAbsSyn -> HappyAbsSyn
happyReduction_105
happyReduction_105 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_105 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 Reversed [CDeclSpec]
happy_var_1) ->
[CDeclSpec] -> HappyAbsSyn
happyIn38
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_106 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_106 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_106 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
32# HappyAbsSyn -> HappyAbsSyn
happyReduction_106
happyReduction_106 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_106 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_1 of { (HappyWrap41 CDeclSpec
happy_var_1) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
(CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
RList.singleton CDeclSpec
happy_var_1
)}
happyReduce_107 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_107 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_107 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
32# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_107
happyReduction_107 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_107 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 CDeclSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_2
)}}
happyReduce_108 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_108 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_108 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
32# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_108
happyReduction_108 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_108 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_2 of { (HappyWrap41 CDeclSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_2
)}}
happyReduce_109 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_109 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_109 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
32# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_109
happyReduction_109 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_109 HappyAbsSyn
happy_x_3
HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap41
happyOut41 HappyAbsSyn
happy_x_3 of { (HappyWrap41 CDeclSpec
happy_var_3) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
(((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_3
)}}}
happyReduce_110 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_110 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_110 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
32# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_110
happyReduction_110 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_110 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_2 of { (HappyWrap40 CDeclSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_2
)}}
happyReduce_111 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_111 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_111 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
32# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_111
happyReduction_111 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_111 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn39
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_112 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_112 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_112 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_112
happyReduction_112 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_112 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 CStorageSpec
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_1
)}
happyReduce_113 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_113 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_113 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_113
happyReduction_113 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_113 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_1 of { (HappyWrap65 CTypeQual
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_1
)}
happyReduce_114 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_114 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_114 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_114
happyReduction_114 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_114 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 CFunSpec
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CFunSpec -> CDeclSpec
forall a. CFunctionSpecifier a -> CDeclarationSpecifier a
CFunSpec CFunSpec
happy_var_1
)}
happyReduce_115 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_115 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_115 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
33# HappyAbsSyn -> HappyAbsSyn
happyReduction_115
happyReduction_115 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_115 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 CAlignSpec
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn40
(CAlignSpec -> CDeclSpec
forall a. CAlignmentSpecifier a -> CDeclarationSpecifier a
CAlignSpec CAlignSpec
happy_var_1
)}
happyReduce_116 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_116 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_116 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
34# HappyAbsSyn -> HappyAbsSyn
happyReduction_116
happyReduction_116 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_116 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_1 of { (HappyWrap42 CStorageSpec
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn41
(CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_1
)}
happyReduce_117 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_117 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_117 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
34# HappyAbsSyn -> HappyAbsSyn
happyReduction_117
happyReduction_117 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_117 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap43
happyOut43 HappyAbsSyn
happy_x_1 of { (HappyWrap43 CFunSpec
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn41
(CFunSpec -> CDeclSpec
forall a. CFunctionSpecifier a -> CDeclarationSpecifier a
CFunSpec CFunSpec
happy_var_1
)}
happyReduce_118 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_118 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_118 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
34# HappyAbsSyn -> HappyAbsSyn
happyReduction_118
happyReduction_118 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_118 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap44
happyOut44 HappyAbsSyn
happy_x_1 of { (HappyWrap44 CAlignSpec
happy_var_1) ->
CDeclSpec -> HappyAbsSyn
happyIn41
(CAlignSpec -> CDeclSpec
forall a. CAlignmentSpecifier a -> CDeclarationSpecifier a
CAlignSpec CAlignSpec
happy_var_1
)}
happyReduce_119 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_119 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_119 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119
happyReduction_119 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_119 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CTypedef)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_120 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_120 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_120 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120
happyReduction_120 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_120 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CExtern)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_121 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_121 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_121 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_121
happyReduction_121 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_121 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CStatic)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_122 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_122 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_122 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_122
happyReduction_122 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_122 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CAuto)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_123 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_123 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_123 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_123
happyReduction_123 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_123 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CRegister)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_124 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_124 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_124 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_124
happyReduction_124 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_124 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CThread)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_125 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_125 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_125 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_125
happyReduction_125 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_125 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClKernel)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_126 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_126 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_126 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_126
happyReduction_126 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_126 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClGlobal)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_127 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_127 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_127 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
35# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_127
happyReduction_127 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_127 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStorageSpec -> (CStorageSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStorageSpec) -> P CStorageSpec)
-> (NodeInfo -> CStorageSpec) -> P CStorageSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CStorageSpec
forall a. a -> CStorageSpecifier a
CClLocal)})
) (\CStorageSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStorageSpec -> HappyAbsSyn
happyIn42 CStorageSpec
r))
happyReduce_128 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_128 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_128 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
36# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_128
happyReduction_128 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_128 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunSpec -> (CFunSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CFunSpec) -> P CFunSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CFunSpec) -> P CFunSpec)
-> (NodeInfo -> CFunSpec) -> P CFunSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CFunSpec
forall a. a -> CFunctionSpecifier a
CInlineQual)})
) (\CFunSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunSpec -> HappyAbsSyn
happyIn43 CFunSpec
r))
happyReduce_129 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_129 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_129 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
36# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_129
happyReduction_129 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_129 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CFunSpec -> (CFunSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CFunSpec) -> P CFunSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CFunSpec) -> P CFunSpec)
-> (NodeInfo -> CFunSpec) -> P CFunSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CFunSpec
forall a. a -> CFunctionSpecifier a
CNoreturnQual)})
) (\CFunSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CFunSpec -> HappyAbsSyn
happyIn43 CFunSpec
r))
happyReduce_130 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_130 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_130 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
37# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_130
happyReduction_130 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_130 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAlignSpec -> (CAlignSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
( CToken -> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAlignSpec) -> P CAlignSpec)
-> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CAlignSpec
forall a. CDeclaration a -> a -> CAlignmentSpecifier a
CAlignAsType CDecl
happy_var_3)}})
) (\CAlignSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAlignSpec -> HappyAbsSyn
happyIn44 CAlignSpec
r))
happyReduce_131 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_131 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_131 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
37# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_131
happyReduction_131 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_131 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CAlignSpec -> (CAlignSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_3 of { (HappyWrap127 CExpr
happy_var_3) ->
( CToken -> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CAlignSpec) -> P CAlignSpec)
-> (NodeInfo -> CAlignSpec) -> P CAlignSpec
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CAlignSpec
forall a. CExpression a -> a -> CAlignmentSpecifier a
CAlignAsExpr CExpr
happy_var_3)}})
) (\CAlignSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CAlignSpec -> HappyAbsSyn
happyIn44 CAlignSpec
r))
happyReduce_132 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_132 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_132 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_132
happyReduction_132 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_132 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 Reversed [CDeclSpec]
happy_var_1) ->
[CDeclSpec] -> HappyAbsSyn
happyIn45
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_133 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_133 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_133 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_133
happyReduction_133 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_133 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 Reversed [CDeclSpec]
happy_var_1) ->
[CDeclSpec] -> HappyAbsSyn
happyIn45
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_134 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_134 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_134 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
38# HappyAbsSyn -> HappyAbsSyn
happyReduction_134
happyReduction_134 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_134 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 Reversed [CDeclSpec]
happy_var_1) ->
[CDeclSpec] -> HappyAbsSyn
happyIn45
(Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1
)}
happyReduce_135 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_135 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_135 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_135
happyReduction_135 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_135 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CVoidType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_136 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_136 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_136 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_136
happyReduction_136 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_136 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CCharType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_137 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_137 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_137 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_137
happyReduction_137 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_137 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CShortType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_138 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_138 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_138 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_138
happyReduction_138 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_138 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CIntType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_139 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_139 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_139 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_139
happyReduction_139 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_139 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CLongType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_140 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_140 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_140 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140
happyReduction_140 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_140 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CFloatType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_141 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_141 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_141 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141
happyReduction_141 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_141 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CDoubleType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_142 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_142 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_142 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142
happyReduction_142 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_142 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CSignedType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_143 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_143 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_143 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_143
happyReduction_143 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_143 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CUnsigType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_144 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_144 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_144 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_144
happyReduction_144 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_144 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CBoolType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_145 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_145 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_145 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145
happyReduction_145 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_145 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CComplexType)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_146 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_146 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_146 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146
happyReduction_146 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_146 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CInt128Type)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_147 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_147 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_147 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147
happyReduction_147 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_147 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeSpec
forall a. a -> CTypeSpecifier a
CUInt128Type)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_148 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_148 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_148 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148
happyReduction_148 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_148 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
32 Bool
False))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_149 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_149 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_149 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149
happyReduction_149 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_149 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
32 Bool
True))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_150 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_150 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_150 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150
happyReduction_150 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_150 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
64 Bool
False))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_151 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_151 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_151 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_151
happyReduction_151 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_151 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
64 Bool
True))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_152 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_152 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_152 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_152
happyReduction_152 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_152 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
128 Bool
False))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_153 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_153 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_153 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_153
happyReduction_153 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_153 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
128 Bool
True))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_154 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_154 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_154 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
39# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_154
happyReduction_154 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_154 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ (Int -> Bool -> NodeInfo -> CTypeSpec
forall a. Int -> Bool -> a -> CTypeSpecifier a
CFloatNType Int
128 Bool
False))})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn46 CTypeSpec
r))
happyReduce_155 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_155 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_155 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_155
happyReduction_155 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_155 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_156 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_156 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_156 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_156
happyReduction_156 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_156 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_2 of { (HappyWrap42 CStorageSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
)}}
happyReduce_157 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_157 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_157 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_157
happyReduction_157 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_157 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_2 of { (HappyWrap40 CDeclSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_2
)}}
happyReduce_158 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_158 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_158 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158
happyReduction_158 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_158 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_159 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_159 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_159 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
40# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_159
happyReduction_159 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_159 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap47
happyOut47 HappyAbsSyn
happy_x_1 of { (HappyWrap47 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn47
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_160 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_160 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_160 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
41# HappyAbsSyn -> HappyAbsSyn
happyReduction_160
happyReduction_160 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_160 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_1 of { (HappyWrap46 CTypeSpec
happy_var_1) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
RList.singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_1)
)}
happyReduce_161 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_161 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_161 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161
happyReduction_161 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_161 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CDeclSpec] -> Reversed [CDeclSpec])
-> [CDeclSpec] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> a -> b
$ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2)
)}}
happyReduce_162 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_162 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_162 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162
happyReduction_162 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_162 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_163 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_163 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_163 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163
happyReduction_163 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_163 HappyAbsSyn
happy_x_3
HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_3 of { (HappyWrap46 CTypeSpec
happy_var_3) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_3
)}}}
happyReduce_164 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_164 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_164 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164
happyReduction_164 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_164 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 CTypeQual
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
)}}
happyReduce_165 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_165 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_165 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165
happyReduction_165 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_165 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap46
happyOut46 HappyAbsSyn
happy_x_2 of { (HappyWrap46 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_166 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_166 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_166 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
41# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166
happyReduction_166 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_166 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap48
happyOut48 HappyAbsSyn
happy_x_1 of { (HappyWrap48 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn48
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_167 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_167 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_167 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_167
happyReduction_167 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_167 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_2 of { (HappyWrap53 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_168 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_168 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_168 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_168
happyReduction_168 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_168 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_2 of { (HappyWrap42 CStorageSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
)}}
happyReduce_169 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_169 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_169 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_169
happyReduction_169 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_169 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_2 of { (HappyWrap40 CDeclSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_2
)}}
happyReduce_170 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_170 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_170 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
42# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170
happyReduction_170 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_170 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap49
happyOut49 HappyAbsSyn
happy_x_1 of { (HappyWrap49 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn49
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_171 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_171 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_171 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
43# HappyAbsSyn -> HappyAbsSyn
happyReduction_171
happyReduction_171 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_171 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_1 of { (HappyWrap53 CTypeSpec
happy_var_1) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
RList.singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_1)
)}
happyReduce_172 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_172 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_172 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_172
happyReduction_172 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_172 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_2 of { (HappyWrap53 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(([CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CDeclSpec] -> Reversed [CDeclSpec])
-> [CDeclSpec] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> a -> b
$ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2)
)}}
happyReduce_173 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_173 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_173 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173
happyReduction_173 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_173 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_2 of { (HappyWrap53 CTypeSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_2
)}}
happyReduce_174 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_174 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_174 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_174
happyReduction_174 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_174 HappyAbsSyn
happy_x_3
HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap53
happyOut53 HappyAbsSyn
happy_x_3 of { (HappyWrap53 CTypeSpec
happy_var_3) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
((CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec CTypeSpec
happy_var_3
)}}}
happyReduce_175 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_175 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_175 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_175
happyReduction_175 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_175 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 CTypeQual
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
)}}
happyReduce_176 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_176 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_176 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
43# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_176
happyReduction_176 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_176 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap50
happyOut50 HappyAbsSyn
happy_x_1 of { (HappyWrap50 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn50
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_177 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_177 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_177 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_177
happyReduction_177 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_177 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap42
happyOut42 HappyAbsSyn
happy_x_2 of { (HappyWrap42 CStorageSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CStorageSpec -> CDeclSpec
forall a. CStorageSpecifier a -> CDeclarationSpecifier a
CStorageSpec CStorageSpec
happy_var_2
)}}
happyReduce_178 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_178 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_178 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_178
happyReduction_178 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_178 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent PosLength
_ Ident
happy_var_2) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at))}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_179 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_179 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_179 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_179
happyReduction_179 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_179 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { CToken
happy_var_2 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_4 of { (HappyWrap123 CExpr
happy_var_4) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at))}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_180 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_180 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_180 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
44# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180
happyReduction_180 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_180 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { CToken
happy_var_2 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_4 of { (HappyWrap87 CDecl
happy_var_4) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at))}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51 Reversed [CDeclSpec]
r))
happyReduce_181 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_181 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_181 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_181
happyReduction_181 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_181 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap40
happyOut40 HappyAbsSyn
happy_x_2 of { (HappyWrap40 CDeclSpec
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDeclSpec
happy_var_2
)}}
happyReduce_182 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_182 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_182 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
44# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_182
happyReduction_182 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_182 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap51
happyOut51 HappyAbsSyn
happy_x_1 of { (HappyWrap51 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn51
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_183 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_183 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_183 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_183
happyReduction_183 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_183 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent PosLength
_ Ident
happy_var_1) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
RList.singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_1 NodeInfo
at)))})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_184 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_184 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_184 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_184
happyReduction_184 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_184 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
RList.singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_3 NodeInfo
at)))}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_185 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_185 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_185 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_185
happyReduction_185 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_185 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> CDeclSpec -> Reversed [CDeclSpec]
forall a. a -> Reversed [a]
RList.singleton (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_3 NodeInfo
at)))}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_186 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_186 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_186 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186
happyReduction_186 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_186 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent PosLength
_ Ident
happy_var_2) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at))}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_187 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_187 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_187 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187
happyReduction_187 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_187 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { CToken
happy_var_2 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_4 of { (HappyWrap123 CExpr
happy_var_4) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at))}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_188 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_188 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_188 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188
happyReduction_188 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_188 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { CToken
happy_var_2 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_4 of { (HappyWrap87 CDecl
happy_var_4) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at))}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_189 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_189 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_189 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189
happyReduction_189 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_189 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { (CTokTyIdent PosLength
_ Ident
happy_var_2) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_2 NodeInfo
at)))}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_190 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_190 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_190 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_190
happyReduction_190 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_190 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_4 of { (HappyWrap123 CExpr
happy_var_4) ->
( [CAttr]
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_4 NodeInfo
at)))}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_191 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_191 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_191 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_191
happyReduction_191 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_191 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { CToken
happy_var_2 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_4 of { (HappyWrap87 CDecl
happy_var_4) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_2 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. [a] -> Reversed [a]
reverseList ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_4 NodeInfo
at)))}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_192 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_192 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_192 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_192
happyReduction_192 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_192 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokTyIdent PosLength
_ Ident
happy_var_3) ->
( Ident
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (Ident -> NodeInfo -> CTypeSpec
forall a. Ident -> a -> CTypeSpecifier a
CTypeDef Ident
happy_var_3 NodeInfo
at))}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_193 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_193 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_193 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_193
happyReduction_193 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_193 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { CToken
happy_var_3 ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_5 of { (HappyWrap123 CExpr
happy_var_5) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CExpr -> NodeInfo -> CTypeSpec
forall a. CExpression a -> a -> CTypeSpecifier a
CTypeOfExpr CExpr
happy_var_5 NodeInfo
at))}}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_194 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_194 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_194 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
45# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_194
happyReduction_194 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_194 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDeclSpec])
-> (Reversed [CDeclSpec] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { CToken
happy_var_3 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_5 of { (HappyWrap87 CDecl
happy_var_5) ->
( CToken
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_3 ((NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec]))
-> (NodeInfo -> Reversed [CDeclSpec]) -> P (Reversed [CDeclSpec])
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> (CTypeQual -> CDeclSpec)
-> Reversed [CTypeQual] -> Reversed [CDeclSpec]
forall a b. (a -> b) -> Reversed [a] -> Reversed [b]
RList.rmap CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual Reversed [CTypeQual]
happy_var_1 Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CDecl -> NodeInfo -> CTypeSpec
forall a. CDeclaration a -> a -> CTypeSpecifier a
CTypeOfType CDecl
happy_var_5 NodeInfo
at))}}}})
) (\Reversed [CDeclSpec]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52 Reversed [CDeclSpec]
r))
happyReduce_195 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_195 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_195 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
45# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_195
happyReduction_195 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_195 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 CTypeQual
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52
(Reversed [CDeclSpec]
happy_var_1 Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual CTypeQual
happy_var_2
)}}
happyReduce_196 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_196 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_196 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
45# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_196
happyReduction_196 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_196 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap52
happyOut52 HappyAbsSyn
happy_x_1 of { (HappyWrap52 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
Reversed [CDeclSpec] -> HappyAbsSyn
happyIn52
(Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
happy_var_1 [CAttr]
happy_var_2
)}}
happyReduce_197 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_197 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_197 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197
happyReduction_197 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_197 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap54
happyOut54 HappyAbsSyn
happy_x_1 of { (HappyWrap54 CStructUnion
happy_var_1) ->
( CStructUnion -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CStructUnion
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CStructUnion -> NodeInfo -> CTypeSpec
forall a. CStructureUnion a -> a -> CTypeSpecifier a
CSUType CStructUnion
happy_var_1)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn53 CTypeSpec
r))
happyReduce_198 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_198 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_198 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
46# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_198
happyReduction_198 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_198 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeSpec -> (CTypeSpec -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap62
happyOut62 HappyAbsSyn
happy_x_1 of { (HappyWrap62 CEnum
happy_var_1) ->
( CEnum -> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CEnum
happy_var_1 ((NodeInfo -> CTypeSpec) -> P CTypeSpec)
-> (NodeInfo -> CTypeSpec) -> P CTypeSpec
forall a b. (a -> b) -> a -> b
$ CEnum -> NodeInfo -> CTypeSpec
forall a. CEnumeration a -> a -> CTypeSpecifier a
CEnumType CEnum
happy_var_1)})
) (\CTypeSpec
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeSpec -> HappyAbsSyn
happyIn53 CTypeSpec
r))
happyReduce_199 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_199 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_199 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
47# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_199
happyReduction_199 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_199 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_1 of { (HappyWrap55 Located CStructTag
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_5 of { (HappyWrap56 Reversed [CDecl]
happy_var_5) ->
( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_3) ([CDecl] -> Maybe [CDecl]
forall a. a -> Maybe a
Just([CDecl] -> Maybe [CDecl]) -> [CDecl] -> Maybe [CDecl]
forall a b. (a -> b) -> a -> b
$ Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_5) [CAttr]
happy_var_2)}}}})
) (\CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn54 CStructUnion
r))
happyReduce_200 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_200 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_200 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
47# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_200
happyReduction_200 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_200 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_1 of { (HappyWrap55 Located CStructTag
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_4 of { (HappyWrap56 Reversed [CDecl]
happy_var_4) ->
( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) Maybe Ident
forall a. Maybe a
Nothing ([CDecl] -> Maybe [CDecl]
forall a. a -> Maybe a
Just([CDecl] -> Maybe [CDecl]) -> [CDecl] -> Maybe [CDecl]
forall a b. (a -> b) -> a -> b
$ Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_4) [CAttr]
happy_var_2)}}})
) (\CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn54 CStructUnion
r))
happyReduce_201 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_201 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_201 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
47# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_201
happyReduction_201 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_201 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStructUnion -> (CStructUnion -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap55
happyOut55 HappyAbsSyn
happy_x_1 of { (HappyWrap55 Located CStructTag
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
( Located CStructTag -> (NodeInfo -> CStructUnion) -> P CStructUnion
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CStructTag
happy_var_1 ((NodeInfo -> CStructUnion) -> P CStructUnion)
-> (NodeInfo -> CStructUnion) -> P CStructUnion
forall a b. (a -> b) -> a -> b
$ CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct (Located CStructTag -> CStructTag
forall a. Located a -> a
unL Located CStructTag
happy_var_1) (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_3) Maybe [CDecl]
forall a. Maybe a
Nothing [CAttr]
happy_var_2)}}})
) (\CStructUnion
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStructUnion -> HappyAbsSyn
happyIn54 CStructUnion
r))
happyReduce_202 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_202 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_202 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
48# HappyAbsSyn -> HappyAbsSyn
happyReduction_202
happyReduction_202 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_202 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CStructTag -> HappyAbsSyn
happyIn55
(CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CStructTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_203 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_203 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_203 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
48# HappyAbsSyn -> HappyAbsSyn
happyReduction_203
happyReduction_203 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_203 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CStructTag -> HappyAbsSyn
happyIn55
(CStructTag -> Position -> Located CStructTag
forall a. a -> Position -> Located a
L CStructTag
CUnionTag (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_204 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_204 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_204 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
49# HappyAbsSyn
happyReduction_204
happyReduction_204 :: HappyAbsSyn
happyReduction_204 = Reversed [CDecl] -> HappyAbsSyn
happyIn56
(Reversed [CDecl]
forall a. Reversed [a]
RList.empty
)
happyReduce_205 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_205 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_205 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_205
happyReduction_205 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_205 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_1 of { (HappyWrap56 Reversed [CDecl]
happy_var_1) ->
Reversed [CDecl] -> HappyAbsSyn
happyIn56
(Reversed [CDecl]
happy_var_1
)}
happyReduce_206 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_206 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_206 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
49# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_206
happyReduction_206 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_206 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap56
happyOut56 HappyAbsSyn
happy_x_1 of { (HappyWrap56 Reversed [CDecl]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 CDecl
happy_var_2) ->
Reversed [CDecl] -> HappyAbsSyn
happyIn56
(Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDecl
happy_var_2
)}}
happyReduce_207 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_207 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_207 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
50# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_207
happyReduction_207 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_207 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_1 of { (HappyWrap59 CDecl
happy_var_1) ->
CDecl -> HappyAbsSyn
happyIn57
(case CDecl
happy_var_1 of CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
)}
happyReduce_208 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_208 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_208 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
50# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_208
happyReduction_208 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_208 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_1 of { (HappyWrap58 CDecl
happy_var_1) ->
CDecl -> HappyAbsSyn
happyIn57
(case CDecl
happy_var_1 of CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ([(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. [a] -> [a]
List.reverse [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
)}
happyReduce_209 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_209 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_209 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
50# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_209
happyReduction_209 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_209 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap57
happyOut57 HappyAbsSyn
happy_x_2 of { (HappyWrap57 CDecl
happy_var_2) ->
CDecl -> HappyAbsSyn
happyIn57
(CDecl
happy_var_2
)}
happyReduce_210 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_210 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_210 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
51# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210
happyReduction_210 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_210 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_3 of { (HappyWrap61 (Maybe CDeclr, Maybe CExpr)
happy_var_3) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_3 of (Maybe CDeclr
d,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [(Maybe CDeclr
d,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn58 CDecl
r))
happyReduce_211 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_211 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_211 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
51# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_211
happyReduction_211 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_211 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_2 of { (HappyWrap61 (Maybe CDeclr, Maybe CExpr)
happy_var_2) ->
( [CAttr] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CAttr]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_2 of (Maybe CDeclr
d,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_1) [(Maybe CDeclr
d,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn58 CDecl
r))
happyReduce_212 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_212 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_212 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
51# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_212
happyReduction_212 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_212 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap58
happyOut58 HappyAbsSyn
happy_x_1 of { (HappyWrap58 CDecl
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_4 of { (HappyWrap61 (Maybe CDeclr, Maybe CExpr)
happy_var_4) ->
CDecl -> HappyAbsSyn
happyIn58
(case CDecl
happy_var_1 of
CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
at ->
case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
(Just CDeclr
d,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
happy_var_3 CDeclr
d,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. a -> [a] -> [a]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
(Maybe CDeclr
Nothing,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
forall a. Maybe a
Nothing,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. a -> [a] -> [a]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
at
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_213 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_213 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_213 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
52# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_213
happyReduction_213 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_213 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_2 of { (HappyWrap60 (Maybe CDeclr, Maybe CExpr)
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ case (Maybe CDeclr, Maybe CExpr)
happy_var_2 of { (Just CDeclr
d,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
happy_var_3 CDeclr
d,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s)]
; (Maybe CDeclr
Nothing,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(Maybe CDeclr
forall a. Maybe a
Nothing,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s)] })}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn59 CDecl
r))
happyReduce_214 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_214 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_214 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
52# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_214
happyReduction_214 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_214 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap59
happyOut59 HappyAbsSyn
happy_x_1 of { (HappyWrap59 CDecl
happy_var_1) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap60
happyOut60 HappyAbsSyn
happy_x_4 of { (HappyWrap60 (Maybe CDeclr, Maybe CExpr)
happy_var_4) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_5 of { (HappyWrap133 [CAttr]
happy_var_5) ->
CDecl -> HappyAbsSyn
happyIn59
(case CDecl
happy_var_1 of
CDecl [CDeclSpec]
declspecs [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies NodeInfo
attr ->
case (Maybe CDeclr, Maybe CExpr)
happy_var_4 of
(Just CDeclr
d,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just(CDeclr -> Maybe CDeclr) -> CDeclr -> Maybe CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclr -> CDeclr
appendObjAttrs ([CAttr]
happy_var_3[CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++[CAttr]
happy_var_5) CDeclr
d,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. a -> [a] -> [a]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
attr
(Maybe CDeclr
Nothing,Maybe CExpr
s) -> [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
declspecs ((Maybe CDeclr
forall a. Maybe a
Nothing,Maybe CInit
forall a. Maybe a
Nothing,Maybe CExpr
s) (Maybe CDeclr, Maybe CInit, Maybe CExpr)
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
forall a. a -> [a] -> [a]
: [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dies) NodeInfo
attr
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}}
happyReduce_215 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_215 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_215 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
52# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_215
happyReduction_215 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_215 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn59 CDecl
r))
happyReduce_216 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_216 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_216 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
53# HappyAbsSyn -> HappyAbsSyn
happyReduction_216
happyReduction_216 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_216 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 CDeclrR
happy_var_1) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), Maybe CExpr
forall a. Maybe a
Nothing)
)}
happyReduce_217 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_217 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_217 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217
happyReduction_217 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_217 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_2 of { (HappyWrap127 CExpr
happy_var_2) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
((Maybe CDeclr
forall a. Maybe a
Nothing, CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_2)
)}
happyReduce_218 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_218 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_218 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
53# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_218
happyReduction_218 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_218 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap67
happyOut67 HappyAbsSyn
happy_x_1 of { (HappyWrap67 CDeclrR
happy_var_1) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_3 of { (HappyWrap127 CExpr
happy_var_3) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn60
((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_3)
)}}
happyReduce_219 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_219 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_219 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
54# HappyAbsSyn -> HappyAbsSyn
happyReduction_219
happyReduction_219 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_219 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_1 of { (HappyWrap76 CDeclrR
happy_var_1) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn61
((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), Maybe CExpr
forall a. Maybe a
Nothing)
)}
happyReduce_220 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_220 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_220 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
54# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_220
happyReduction_220 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_220 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_2 of { (HappyWrap127 CExpr
happy_var_2) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn61
((Maybe CDeclr
forall a. Maybe a
Nothing, CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_2)
)}
happyReduce_221 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_221 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_221 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
54# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_221
happyReduction_221 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_221 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_1 of { (HappyWrap76 CDeclrR
happy_var_1) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_3 of { (HappyWrap127 CExpr
happy_var_3) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn61
((CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1), CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_3)
)}}
happyReduce_222 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_222 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_222 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
54# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_222
happyReduction_222 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_222 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap61
happyOut61 HappyAbsSyn
happy_x_1 of { (HappyWrap61 (Maybe CDeclr, Maybe CExpr)
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
(Maybe CDeclr, Maybe CExpr) -> HappyAbsSyn
happyIn61
(case (Maybe CDeclr, Maybe CExpr)
happy_var_1 of { (Maybe CDeclr
Nothing,Maybe CExpr
expr) -> (Maybe CDeclr
forall a. Maybe a
Nothing,Maybe CExpr
expr)
; (Just (CDeclr Maybe Ident
name [CDerivedDeclarator NodeInfo]
derived Maybe CStrLit
asmname [CAttr]
attrs NodeInfo
node), Maybe CExpr
bsz) ->
(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
name [CDerivedDeclarator NodeInfo]
derived Maybe CStrLit
asmname ([CAttr]
attrs[CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++[CAttr]
happy_var_2) NodeInfo
node),Maybe CExpr
bsz)
}
)}}
happyReduce_223 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_223 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_223 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
55# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_223
happyReduction_223 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_223 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_4 of { (HappyWrap63 Reversed [(Ident, Maybe CExpr)]
happy_var_4) ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
forall a. Maybe a
Nothing ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a. a -> Maybe a
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4) [CAttr]
happy_var_2)}}})
) (\CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn62 CEnum
r))
happyReduce_224 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_224 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_224 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
55# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_224
happyReduction_224 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_224 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_4 of { (HappyWrap63 Reversed [(Ident, Maybe CExpr)]
happy_var_4) ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
forall a. Maybe a
Nothing ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a. a -> Maybe a
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [(Ident, Maybe CExpr)]
happy_var_4) [CAttr]
happy_var_2)}}})
) (\CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn62 CEnum
r))
happyReduce_225 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_225 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_225 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
55# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_225
happyReduction_225 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_225 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_5 of { (HappyWrap63 Reversed [(Ident, Maybe CExpr)]
happy_var_5) ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_3) ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a. a -> Maybe a
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5) [CAttr]
happy_var_2)}}}})
) (\CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn62 CEnum
r))
happyReduce_226 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_226 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_226 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
55# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_226
happyReduction_226 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_226 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_5 of { (HappyWrap63 Reversed [(Ident, Maybe CExpr)]
happy_var_5) ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_3) ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a. a -> Maybe a
Just([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)])
-> [(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a b. (a -> b) -> a -> b
$ Reversed [(Ident, Maybe CExpr)] -> [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [(Ident, Maybe CExpr)]
happy_var_5) [CAttr]
happy_var_2)}}}})
) (\CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn62 CEnum
r))
happyReduce_227 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_227 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_227 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
55# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_227
happyReduction_227 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_227 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CEnum -> (CEnum -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_2 of { (HappyWrap133 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
( CToken -> (NodeInfo -> CEnum) -> P CEnum
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CEnum) -> P CEnum) -> (NodeInfo -> CEnum) -> P CEnum
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
happy_var_3) Maybe [(Ident, Maybe CExpr)]
forall a. Maybe a
Nothing [CAttr]
happy_var_2)}}})
) (\CEnum
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CEnum -> HappyAbsSyn
happyIn62 CEnum
r))
happyReduce_228 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_228 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_228 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
56# HappyAbsSyn -> HappyAbsSyn
happyReduction_228
happyReduction_228 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_228 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_1 of { (HappyWrap64 (Ident, Maybe CExpr)
happy_var_1) ->
Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn63
((Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. a -> Reversed [a]
RList.singleton (Ident, Maybe CExpr)
happy_var_1
)}
happyReduce_229 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_229 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_229 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
56# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_229
happyReduction_229 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_229 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap63
happyOut63 HappyAbsSyn
happy_x_1 of { (HappyWrap63 Reversed [(Ident, Maybe CExpr)]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap64
happyOut64 HappyAbsSyn
happy_x_3 of { (HappyWrap64 (Ident, Maybe CExpr)
happy_var_3) ->
Reversed [(Ident, Maybe CExpr)] -> HappyAbsSyn
happyIn63
(Reversed [(Ident, Maybe CExpr)]
happy_var_1 Reversed [(Ident, Maybe CExpr)]
-> (Ident, Maybe CExpr) -> Reversed [(Ident, Maybe CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (Ident, Maybe CExpr)
happy_var_3
)}}
happyReduce_230 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_230 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_230 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
57# HappyAbsSyn -> HappyAbsSyn
happyReduction_230
happyReduction_230 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_230 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn64
((Ident
happy_var_1, Maybe CExpr
forall a. Maybe a
Nothing)
)}
happyReduce_231 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_231 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_231 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
57# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_231
happyReduction_231 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_231 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn64
((Ident
happy_var_1, Maybe CExpr
forall a. Maybe a
Nothing)
)}
happyReduce_232 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_232 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_232 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
57# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_232
happyReduction_232 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_232 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_4 of { (HappyWrap127 CExpr
happy_var_4) ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn64
((Ident
happy_var_1, CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_4)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_233 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_233 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_233 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
57# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_233
happyReduction_233 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_233 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_3 of { (HappyWrap127 CExpr
happy_var_3) ->
(Ident, Maybe CExpr) -> HappyAbsSyn
happyIn64
((Ident
happy_var_1, CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_3)
)}}
happyReduce_234 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_234 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_234 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234
happyReduction_234 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_234 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CConstQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_235 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_235 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_235 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_235
happyReduction_235 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_235 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CVolatQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_236 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_236 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_236 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_236
happyReduction_236 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_236 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CRestrQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_237 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_237 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_237 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237
happyReduction_237 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_237 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CNullableQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_238 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_238 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_238 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238
happyReduction_238 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_238 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CNonnullQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_239 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_239 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_239 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_239
happyReduction_239 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_239 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CAtomicQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_240 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_240 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_240 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_240
happyReduction_240 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_240 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CClRdOnlyQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_241 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_241 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_241 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
58# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_241
happyReduction_241 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_241 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CTypeQual -> (CTypeQual -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CTypeQual) -> P CTypeQual
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CTypeQual) -> P CTypeQual)
-> (NodeInfo -> CTypeQual) -> P CTypeQual
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CTypeQual
forall a. a -> CTypeQualifier a
CClWrOnlyQual)})
) (\CTypeQual
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CTypeQual -> HappyAbsSyn
happyIn65 CTypeQual
r))
happyReduce_242 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_242 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_242 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
59# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_242
happyReduction_242 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_242 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_1 of { (HappyWrap133 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 CTypeQual
happy_var_2) ->
Reversed [CTypeQual] -> HappyAbsSyn
happyIn66
([CTypeQual] -> Reversed [CTypeQual]
forall a. [a] -> Reversed [a]
reverseList ((CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
happy_var_1) Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeQual
happy_var_2
)}}
happyReduce_243 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_243 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_243 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
59# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_243
happyReduction_243 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_243 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_2 of { (HappyWrap65 CTypeQual
happy_var_2) ->
Reversed [CTypeQual] -> HappyAbsSyn
happyIn66
(Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeQual
happy_var_2
)}}
happyReduce_244 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_244 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_244 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
59# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_244
happyReduction_244 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_244 HappyAbsSyn
happy_x_3
HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap65
happyOut65 HappyAbsSyn
happy_x_3 of { (HappyWrap65 CTypeQual
happy_var_3) ->
Reversed [CTypeQual] -> HappyAbsSyn
happyIn66
((Reversed [CTypeQual]
happy_var_1 Reversed [CTypeQual] -> [CTypeQual] -> Reversed [CTypeQual]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
happy_var_2) Reversed [CTypeQual] -> CTypeQual -> Reversed [CTypeQual]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeQual
happy_var_3
)}}}
happyReduce_245 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_245 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_245 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
60# HappyAbsSyn -> HappyAbsSyn
happyReduction_245
happyReduction_245 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_245 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_1 of { (HappyWrap76 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn67
(CDeclrR
happy_var_1
)}
happyReduce_246 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_246 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_246 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
60# HappyAbsSyn -> HappyAbsSyn
happyReduction_246
happyReduction_246 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_246 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap69
happyOut69 HappyAbsSyn
happy_x_1 of { (HappyWrap69 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn67
(CDeclrR
happy_var_1
)}
happyReduce_247 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_247 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_247 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
61# HappyAbsSyn
happyReduction_247
happyReduction_247 :: HappyAbsSyn
happyReduction_247 = Maybe CStrLit -> HappyAbsSyn
happyIn68
(Maybe CStrLit
forall a. Maybe a
Nothing
)
happyReduce_248 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_248 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_248 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
61# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_248
happyReduction_248 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_248 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_3 of { (HappyWrap129 CStrLit
happy_var_3) ->
Maybe CStrLit -> HappyAbsSyn
happyIn68
(CStrLit -> Maybe CStrLit
forall a. a -> Maybe a
Just CStrLit
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_249 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_249 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_249 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
62# HappyAbsSyn -> HappyAbsSyn
happyReduction_249
happyReduction_249 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_249 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_1 of { (HappyWrap73 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn69
(CDeclrR
happy_var_1
)}
happyReduce_250 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_250 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_250 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
62# HappyAbsSyn -> HappyAbsSyn
happyReduction_250
happyReduction_250 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_250 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_1 of { (HappyWrap70 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn69
(CDeclrR
happy_var_1
)}
happyReduce_251 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_251 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_251 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_251
happyReduction_251 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_251 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent PosLength
_ Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))
happyReduce_252 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_252 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_252 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
63# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252
happyReduction_252 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_252 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent PosLength
_ Ident
happy_var_1) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_2 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_2) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> CDeclrR -> CDeclrR
happy_var_2 (Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1 NodeInfo
at))}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn70 CDeclrR
r))
happyReduce_253 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_253 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_253 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
63# HappyAbsSyn -> HappyAbsSyn
happyReduction_253
happyReduction_253 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_253 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_1 of { (HappyWrap71 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn70
(CDeclrR
happy_var_1
)}
happyReduce_254 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_254 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_254 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
64# HappyAbsSyn -> HappyAbsSyn
happyReduction_254
happyReduction_254 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_254 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap72
happyOut72 HappyAbsSyn
happy_x_1 of { (HappyWrap72 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn71
(CDeclrR
happy_var_1
)}
happyReduce_255 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_255 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_255 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255
happyReduction_255 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_255 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_2 of { (HappyWrap70 CDeclrR
happy_var_2) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn71 CDeclrR
r))
happyReduce_256 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_256 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_256 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_256
happyReduction_256 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_256 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_3 of { (HappyWrap70 CDeclrR
happy_var_3) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn71 CDeclrR
r))
happyReduce_257 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_257 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_257 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_257
happyReduction_257 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_257 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_3 of { (HappyWrap70 CDeclrR
happy_var_3) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn71 CDeclrR
r))
happyReduce_258 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_258 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_258 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
64# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_258
happyReduction_258 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_258 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_3 of { (HappyWrap134 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_4 of { (HappyWrap70 CDeclrR
happy_var_4) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn71 CDeclrR
r))
happyReduce_259 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_259 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_259 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
65# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_259
happyReduction_259 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_259 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn72
(CDeclrR
happy_var_2
)}
happyReduce_260 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_260 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_260 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
65# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_260
happyReduction_260 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_260 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_2 of { (HappyWrap71 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_4 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_4) ->
CDeclrR -> HappyAbsSyn
happyIn72
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_261 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_261 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_261 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
65# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_261
happyReduction_261 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_261 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_3 of { (HappyWrap71 CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn72
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_262 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_262 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_262 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
65# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_262
happyReduction_262 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_262 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap71
happyOut71 HappyAbsSyn
happy_x_3 of { (HappyWrap71 CDeclrR
happy_var_3) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_5 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_5) ->
CDeclrR -> HappyAbsSyn
happyIn72
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_263 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_263 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_263 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
66# HappyAbsSyn -> HappyAbsSyn
happyReduction_263
happyReduction_263 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_263 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap74
happyOut74 HappyAbsSyn
happy_x_1 of { (HappyWrap74 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn73
(CDeclrR
happy_var_1
)}
happyReduce_264 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_264 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_264 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264
happyReduction_264 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_264 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_3 of { (HappyWrap75 CDeclrR
happy_var_3) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
r))
happyReduce_265 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_265 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_265 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_265
happyReduction_265 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_265 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_4 of { (HappyWrap75 CDeclrR
happy_var_4) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
r))
happyReduce_266 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_266 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_266 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_266
happyReduction_266 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_266 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_3 of { (HappyWrap134 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_5 of { (HappyWrap75 CDeclrR
happy_var_5) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_5 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
r))
happyReduce_267 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_267 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_267 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_267
happyReduction_267 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_267 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 CDeclrR
happy_var_2) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
r))
happyReduce_268 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_268 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_268 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_268
happyReduction_268 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_268 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_3 of { (HappyWrap73 CDeclrR
happy_var_3) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
r))
happyReduce_269 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_269 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_269 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
66# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_269
happyReduction_269 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_269 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_3 of { (HappyWrap134 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_4 of { (HappyWrap73 CDeclrR
happy_var_4) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn73 CDeclrR
r))
happyReduce_270 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_270 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_270 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
67# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_270
happyReduction_270 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_270 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn74
(CDeclrR
happy_var_2
)}
happyReduce_271 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_271 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_271 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
67# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_271
happyReduction_271 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_271 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_3 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn74
(CDeclrR -> CDeclrR
happy_var_3 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_272 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_272 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_272 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
67# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_272
happyReduction_272 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_272 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap73
happyOut73 HappyAbsSyn
happy_x_2 of { (HappyWrap73 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_4 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_4) ->
CDeclrR -> HappyAbsSyn
happyIn74
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_273 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_273 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_273 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
68# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_273
happyReduction_273 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_273 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent PosLength
_ Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn75 CDeclrR
r))
happyReduce_274 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_274 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_274 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
68# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_274
happyReduction_274 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_274 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap75
happyOut75 HappyAbsSyn
happy_x_2 of { (HappyWrap75 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn75
(CDeclrR
happy_var_2
)}
happyReduce_275 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_275 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_275 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
69# HappyAbsSyn -> HappyAbsSyn
happyReduction_275
happyReduction_275 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_275 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_1 of { (HappyWrap77 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn76
(CDeclrR
happy_var_1
)}
happyReduce_276 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_276 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_276 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
69# HappyAbsSyn -> HappyAbsSyn
happyReduction_276
happyReduction_276 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_276 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_1 of { (HappyWrap79 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn76
(CDeclrR
happy_var_1
)}
happyReduce_277 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_277 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_277 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
70# HappyAbsSyn -> HappyAbsSyn
happyReduction_277
happyReduction_277 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_277 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap78
happyOut78 HappyAbsSyn
happy_x_1 of { (HappyWrap78 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn77
(CDeclrR
happy_var_1
)}
happyReduce_278 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_278 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_278 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
70# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278
happyReduction_278 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_278 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn77 CDeclrR
r))
happyReduce_279 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_279 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_279 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
70# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_279
happyReduction_279 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_279 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_3 of { (HappyWrap76 CDeclrR
happy_var_3) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn77 CDeclrR
r))
happyReduce_280 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_280 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_280 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
70# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_280
happyReduction_280 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_280 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_3 of { (HappyWrap76 CDeclrR
happy_var_3) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn77 CDeclrR
r))
happyReduce_281 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_281 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_281 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
70# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_281
happyReduction_281 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_281 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_3 of { (HappyWrap134 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_4 of { (HappyWrap76 CDeclrR
happy_var_4) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_4 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn77 CDeclrR
r))
happyReduce_282 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_282 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_282 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
71# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_282
happyReduction_282 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_282 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_1 of { (HappyWrap79 CDeclrR
happy_var_1) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_2 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn78
(CDeclrR -> CDeclrR
happy_var_2 CDeclrR
happy_var_1
)}}
happyReduce_283 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_283 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_283 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
71# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_283
happyReduction_283 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_283 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_2 of { (HappyWrap77 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn78
(CDeclrR
happy_var_2
)}
happyReduce_284 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_284 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_284 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
71# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_284
happyReduction_284 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_284 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_2 of { (HappyWrap77 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_4 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_4) ->
CDeclrR -> HappyAbsSyn
happyIn78
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_285 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_285 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_285 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
71# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_285
happyReduction_285 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_285 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_3 of { (HappyWrap77 CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn78
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_286 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_286 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_286 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
71# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_286
happyReduction_286 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_286 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap77
happyOut77 HappyAbsSyn
happy_x_3 of { (HappyWrap77 CDeclrR
happy_var_3) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_5 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_5) ->
CDeclrR -> HappyAbsSyn
happyIn78
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_287 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_287 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_287 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
72# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_287
happyReduction_287 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_287 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
happy_var_1)})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn79 CDeclrR
r))
happyReduce_288 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_288 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_288 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
72# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_288
happyReduction_288 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_288 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_2 of { (HappyWrap79 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn79
(CDeclrR
happy_var_2
)}
happyReduce_289 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_289 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_289 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
72# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_289
happyReduction_289 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_289 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_3 of { (HappyWrap79 CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn79
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_290 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_290 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_290 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
73# HappyAbsSyn -> HappyAbsSyn
happyReduction_290
happyReduction_290 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_290 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_1 of { (HappyWrap81 CDeclrR
happy_var_1) ->
CDeclr -> HappyAbsSyn
happyIn80
(CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_1
)}
happyReduce_291 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_291 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_291 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
74# HappyAbsSyn -> HappyAbsSyn
happyReduction_291
happyReduction_291 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_291 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap82
happyOut82 HappyAbsSyn
happy_x_1 of { (HappyWrap82 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn81
(CDeclrR
happy_var_1
)}
happyReduce_292 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_292 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_292 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_292
happyReduction_292 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_292 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_2 of { (HappyWrap81 CDeclrR
happy_var_2) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn81 CDeclrR
r))
happyReduce_293 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_293 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_293 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
74# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_293
happyReduction_293 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_293 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_3 of { (HappyWrap81 CDeclrR
happy_var_3) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn81 CDeclrR
r))
happyReduce_294 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_294 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_294 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
75# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_294
happyReduction_294 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_294 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap79
happyOut79 HappyAbsSyn
happy_x_1 of { (HappyWrap79 CDeclrR
happy_var_1) ->
case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_3 of { (HappyWrap86 Reversed [Ident]
happy_var_3) ->
( CDeclrR -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CDeclrR
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr CDeclrR
happy_var_1 ([Ident] -> Either [Ident] ([CDecl], Bool)
forall a b. a -> Either a b
Left ([Ident] -> Either [Ident] ([CDecl], Bool))
-> [Ident] -> Either [Ident] ([CDecl], Bool)
forall a b. (a -> b) -> a -> b
$ Reversed [Ident] -> [Ident]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [Ident]
happy_var_3) [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn82 CDeclrR
r))
happyReduce_295 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_295 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_295 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
75# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_295
happyReduction_295 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_295 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_2 of { (HappyWrap81 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn82
(CDeclrR
happy_var_2
)}
happyReduce_296 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_296 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_296 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
75# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_296
happyReduction_296 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_296 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap81
happyOut81 HappyAbsSyn
happy_x_2 of { (HappyWrap81 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_4 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_4) ->
CDeclrR -> HappyAbsSyn
happyIn82
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_297 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_297 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_297 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
76# HappyAbsSyn
happyReduction_297
happyReduction_297 :: HappyAbsSyn
happyReduction_297 = ([CDecl], Bool) -> HappyAbsSyn
happyIn83
(([], Bool
False)
)
happyReduce_298 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_298 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_298 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
76# HappyAbsSyn -> HappyAbsSyn
happyReduction_298
happyReduction_298 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_298 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_1 of { (HappyWrap84 Reversed [CDecl]
happy_var_1) ->
([CDecl], Bool) -> HappyAbsSyn
happyIn83
((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_1, Bool
False)
)}
happyReduce_299 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_299 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_299 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
76# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_299
happyReduction_299 :: p -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_299 p
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_1 of { (HappyWrap84 Reversed [CDecl]
happy_var_1) ->
([CDecl], Bool) -> HappyAbsSyn
happyIn83
((Reversed [CDecl] -> [CDecl]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDecl]
happy_var_1, Bool
True)
)}
happyReduce_300 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_300 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_300 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
77# HappyAbsSyn -> HappyAbsSyn
happyReduction_300
happyReduction_300 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_300 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_1 of { (HappyWrap85 CDecl
happy_var_1) ->
Reversed [CDecl] -> HappyAbsSyn
happyIn84
(CDecl -> Reversed [CDecl]
forall a. a -> Reversed [a]
RList.singleton CDecl
happy_var_1
)}
happyReduce_301 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_301 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_301 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
77# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_301
happyReduction_301 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_301 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap84
happyOut84 HappyAbsSyn
happy_x_1 of { (HappyWrap84 Reversed [CDecl]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap85
happyOut85 HappyAbsSyn
happy_x_3 of { (HappyWrap85 CDecl
happy_var_3) ->
Reversed [CDecl] -> HappyAbsSyn
happyIn84
(Reversed [CDecl]
happy_var_1 Reversed [CDecl] -> CDecl -> Reversed [CDecl]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDecl
happy_var_3
)}}
happyReduce_302 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_302 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_302 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302
happyReduction_302 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_302 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_303 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_303 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_303 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303
happyReduction_303 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_303 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_304 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_304 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_304 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304
happyReduction_304 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_304 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_305 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_305 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_305 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_305
happyReduction_305 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_305 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap38
happyOut38 HappyAbsSyn
happy_x_1 of { (HappyWrap38 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_2 of { (HappyWrap70 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_306 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_306 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_306 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_306
happyReduction_306 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_306 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_307 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_307 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_307 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_307
happyReduction_307 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_307 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_308 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_308 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_308 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_308
happyReduction_308 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_308 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap39
happyOut39 HappyAbsSyn
happy_x_1 of { (HappyWrap39 Reversed [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( Reversed [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CDeclSpec] -> [CDeclSpec]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDeclSpec]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_309 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_309 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_309 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_309
happyReduction_309 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_309 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_310 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_310 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_310 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_310
happyReduction_310 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_310 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_311 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_311 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_311 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_311
happyReduction_311 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_311 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_312 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_312 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_312 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_312
happyReduction_312 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_312 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap70
happyOut70 HappyAbsSyn
happy_x_2 of { (HappyWrap70 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr (CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$! [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_313 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_313 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_313 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313
happyReduction_313 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_313 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_314 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_314 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_314 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_314
happyReduction_314 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_314 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_315 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_315 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_315 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_315
happyReduction_315 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_315 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_316 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_316 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_316 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
78# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_316
happyReduction_316 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_316 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap76
happyOut76 HappyAbsSyn
happy_x_2 of { (HappyWrap76 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr(CDeclrR -> CDeclr) -> CDeclrR -> CDeclr
forall a b. (a -> b) -> a -> b
$ [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_3 CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn85 CDecl
r))
happyReduce_317 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_317 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_317 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
79# HappyAbsSyn -> HappyAbsSyn
happyReduction_317
happyReduction_317 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_317 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
Reversed [Ident] -> HappyAbsSyn
happyIn86
(Ident -> Reversed [Ident]
forall a. a -> Reversed [a]
RList.singleton Ident
happy_var_1
)}
happyReduce_318 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_318 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_318 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
79# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_318
happyReduction_318 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_318 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap86
happyOut86 HappyAbsSyn
happy_x_1 of { (HappyWrap86 Reversed [Ident]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_3 of { (CTokIdent PosLength
_ Ident
happy_var_3) ->
Reversed [Ident] -> HappyAbsSyn
happyIn86
(Reversed [Ident]
happy_var_1 Reversed [Ident] -> Ident -> Reversed [Ident]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` Ident
happy_var_3
)}}
happyReduce_319 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_319 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_319 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
80# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_319
happyReduction_319 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_319 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [])})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn87 CDecl
r))
happyReduce_320 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_320 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_320 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
80# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_320
happyReduction_320 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_320 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap45
happyOut45 HappyAbsSyn
happy_x_1 of { (HappyWrap45 [CDeclSpec]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( [CDeclSpec] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CDeclSpec]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl [CDeclSpec]
happy_var_1 [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn87 CDecl
r))
happyReduce_321 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_321 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_321 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
80# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_321
happyReduction_321 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_321 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1 [CDeclSpec] -> [CDeclSpec] -> [CDeclSpec]
forall a. [a] -> [a] -> [a]
++ [CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
happy_var_2) [])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn87 CDecl
r))
happyReduce_322 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_322 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_322 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
80# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_322
happyReduction_322 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_322 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDecl -> (CDecl -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_1 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( Reversed [CTypeQual] -> (NodeInfo -> CDecl) -> P CDecl
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Reversed [CTypeQual]
happy_var_1 ((NodeInfo -> CDecl) -> P CDecl) -> (NodeInfo -> CDecl) -> P CDecl
forall a b. (a -> b) -> a -> b
$ [CDeclSpec]
-> [(Maybe CDeclr, Maybe CInit, Maybe CExpr)] -> NodeInfo -> CDecl
forall a.
[CDeclarationSpecifier a]
-> [(Maybe (CDeclarator a), Maybe (CInitializer a),
Maybe (CExpression a))]
-> a
-> CDeclaration a
CDecl (Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals Reversed [CTypeQual]
happy_var_1) [(CDeclr -> Maybe CDeclr
forall a. a -> Maybe a
Just (CDeclrR -> CDeclr
reverseDeclr CDeclrR
happy_var_2), Maybe CInit
forall a. Maybe a
Nothing, Maybe CExpr
forall a. Maybe a
Nothing)])}})
) (\CDecl
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDecl -> HappyAbsSyn
happyIn87 CDecl
r))
happyReduce_323 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_323 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_323 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
81# HappyAbsSyn -> HappyAbsSyn
happyReduction_323
happyReduction_323 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_323 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_1 of { (HappyWrap92 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn88
(CDeclrR
happy_var_1
)}
happyReduce_324 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_324 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_324 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
81# HappyAbsSyn -> HappyAbsSyn
happyReduction_324
happyReduction_324 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_324 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_1 of { (HappyWrap93 CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn88
(CDeclrR
happy_var_1
)}
happyReduce_325 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_325 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_325 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
81# HappyAbsSyn -> HappyAbsSyn
happyReduction_325
happyReduction_325 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_325 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_1 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_1) ->
CDeclrR -> HappyAbsSyn
happyIn88
(CDeclrR -> CDeclrR
happy_var_1 CDeclrR
emptyDeclr
)}
happyReduce_326 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_326 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_326 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
82# HappyAbsSyn -> HappyAbsSyn
happyReduction_326
happyReduction_326 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_326 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
happy_x_1 of { (HappyWrap90 CDeclrR -> CDeclrR
happy_var_1) ->
(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89
(CDeclrR -> CDeclrR
happy_var_1
)}
happyReduce_327 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_327 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_327 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
82# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327
happyReduction_327 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_327 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap83
happyOut83 HappyAbsSyn
happy_x_2 of { (HappyWrap83 ([CDecl], Bool)
happy_var_2) ->
( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> case ([CDecl], Bool)
happy_var_2 of
([CDecl]
params, Bool
variadic) -> CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr CDeclrR
declr (([CDecl], Bool) -> Either [Ident] ([CDecl], Bool)
forall a b. b -> Either a b
Right ([CDecl]
params,Bool
variadic)) [] NodeInfo
at)}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn89 CDeclrR -> CDeclrR
r))
happyReduce_328 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_328 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_328 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
83# HappyAbsSyn -> HappyAbsSyn
happyReduction_328
happyReduction_328 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_328 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_1 of { (HappyWrap91 CDeclrR -> CDeclrR
happy_var_1) ->
(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90
(CDeclrR -> CDeclrR
happy_var_1
)}
happyReduce_329 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_329 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_329 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
83# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_329
happyReduction_329 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_329 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap90
happyOut90 HappyAbsSyn
happy_x_1 of { (HappyWrap90 CDeclrR -> CDeclrR
happy_var_1) ->
case HappyAbsSyn -> HappyWrap91
happyOut91 HappyAbsSyn
happy_x_2 of { (HappyWrap91 CDeclrR -> CDeclrR
happy_var_2) ->
(CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn90
(\CDeclrR
decl -> CDeclrR -> CDeclrR
happy_var_2 (CDeclrR -> CDeclrR
happy_var_1 CDeclrR
decl)
)}}
happyReduce_330 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_330 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_330 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_330
happyReduction_330 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_330 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_2 of { (HappyWrap126 Maybe CExpr
happy_var_2) ->
( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
False Maybe CExpr
happy_var_2 NodeInfo
at)}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_331 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_331 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_331 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_331
happyReduction_331 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_331 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 Maybe CExpr
happy_var_3) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
False Maybe CExpr
happy_var_3 NodeInfo
at)}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_332 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_332 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_332 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_332
happyReduction_332 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_332 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_3 of { (HappyWrap126 Maybe CExpr
happy_var_3) ->
( CToken
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
False Maybe CExpr
happy_var_3 NodeInfo
at)}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_333 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_333 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_333 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333
happyReduction_333 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_333 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_3 of { (HappyWrap134 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap126
happyOut126 HappyAbsSyn
happy_x_4 of { (HappyWrap126 Maybe CExpr
happy_var_4) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
False Maybe CExpr
happy_var_4 NodeInfo
at)}}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_334 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_334 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_334 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334
happyReduction_334 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_334 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_4 of { (HappyWrap121 CExpr
happy_var_4) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
False Bool
True (CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_4) NodeInfo
at)}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_335 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_335 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_335 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335
happyReduction_335 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_335 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_3 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_4 of { (HappyWrap133 [CAttr]
happy_var_4) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_5 of { (HappyWrap121 CExpr
happy_var_5) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_4 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_3) Bool
False Bool
True (CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_5) NodeInfo
at)}}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_336 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_336 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_336 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336
happyReduction_336 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_336 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_5 of { (HappyWrap133 [CAttr]
happy_var_5) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_6 of { (HappyWrap121 CExpr
happy_var_6) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_3 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_5) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2) Bool
False Bool
True (CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_6) NodeInfo
at)}}}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_337 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_337 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_337 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337
happyReduction_337 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_337 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
True Bool
False Maybe CExpr
forall a. Maybe a
Nothing NodeInfo
at)}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_338 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_338 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_338 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338
happyReduction_338 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_338 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_4 of { (HappyWrap133 [CAttr]
happy_var_4) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_2 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_4) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr [] Bool
True Bool
False Maybe CExpr
forall a. Maybe a
Nothing NodeInfo
at)}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_339 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_339 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_339 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339
happyReduction_339 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_339 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_4 of { (HappyWrap133 [CAttr]
happy_var_4) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 [CAttr]
happy_var_4 ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2) Bool
True Bool
False Maybe CExpr
forall a. Maybe a
Nothing NodeInfo
at)}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_340 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_340 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_340 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
84# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340
happyReduction_340 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_340 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (CDeclrR -> CDeclrR)
-> ((CDeclrR -> CDeclrR) -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_3 of { (HappyWrap134 [CAttr]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_5 of { (HappyWrap133 [CAttr]
happy_var_5) ->
( CToken
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF CToken
happy_var_1 ([CAttr]
happy_var_3 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_5) ((NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR))
-> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at CDeclrR
declr -> CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr CDeclrR
declr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2) Bool
True Bool
False Maybe CExpr
forall a. Maybe a
Nothing NodeInfo
at)}}}})
) (\CDeclrR -> CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ((CDeclrR -> CDeclrR) -> HappyAbsSyn
happyIn91 CDeclrR -> CDeclrR
r))
happyReduce_341 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_341 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_341 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
85# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341
happyReduction_341 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_341 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr [])})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
r))
happyReduce_342 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_342 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_342 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
85# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_342
happyReduction_342 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_342 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap133
happyOut133 HappyAbsSyn
happy_x_3 of { (HappyWrap133 [CAttr]
happy_var_3) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_3 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
r))
happyReduce_343 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_343 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_343 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
85# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_343
happyReduction_343 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_343 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_2 of { (HappyWrap88 CDeclrR
happy_var_2) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_2 [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
r))
happyReduce_344 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_344 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_344 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
85# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_344
happyReduction_344 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_344 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap66
happyOut66 HappyAbsSyn
happy_x_2 of { (HappyWrap66 Reversed [CTypeQual]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_3 of { (HappyWrap88 CDeclrR
happy_var_3) ->
( CToken -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 (Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CTypeQual]
happy_var_2))}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
r))
happyReduce_345 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_345 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_345 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
85# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_345
happyReduction_345 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_345 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
emptyDeclr [])}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
r))
happyReduce_346 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_346 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_346 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
85# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_346
happyReduction_346 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_346 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDeclrR -> (CDeclrR -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap88
happyOut88 HappyAbsSyn
happy_x_3 of { (HappyWrap88 CDeclrR
happy_var_3) ->
( CToken -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute CToken
happy_var_1 [CAttr]
happy_var_2 ((NodeInfo -> CDeclrR) -> P CDeclrR)
-> (NodeInfo -> CDeclrR) -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr CDeclrR
happy_var_3 [])}}})
) (\CDeclrR
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDeclrR -> HappyAbsSyn
happyIn92 CDeclrR
r))
happyReduce_347 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_347 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_347 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
86# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_347
happyReduction_347 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_347 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_2 of { (HappyWrap92 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn93
(CDeclrR
happy_var_2
)}
happyReduce_348 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_348 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_348 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
86# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_348
happyReduction_348 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_348 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_2 of { (HappyWrap93 CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn93
(CDeclrR
happy_var_2
)}
happyReduce_349 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_349 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_349 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
86# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_349
happyReduction_349 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_349 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_2 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn93
(CDeclrR -> CDeclrR
happy_var_2 CDeclrR
emptyDeclr
)}
happyReduce_350 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_350 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_350 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
86# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_350
happyReduction_350 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_350 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_2 of { (HappyWrap92 CDeclrR
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_4 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_4) ->
CDeclrR -> HappyAbsSyn
happyIn93
(CDeclrR -> CDeclrR
happy_var_4 CDeclrR
happy_var_2
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_351 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_351 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_351 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
86# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_351
happyReduction_351 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_351 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_3 of { (HappyWrap92 CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn93
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_352 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_352 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_352 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
86# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_352
happyReduction_352 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_352 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_3 of { (HappyWrap93 CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn93
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_3
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_353 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_353 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_353 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
86# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_353
happyReduction_353 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_353 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_3 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_3) ->
CDeclrR -> HappyAbsSyn
happyIn93
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_3 CDeclrR
emptyDeclr)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}
happyReduce_354 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_354 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_354 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
86# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_354
happyReduction_354 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_354 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_2 of { (HappyWrap134 [CAttr]
happy_var_2) ->
case HappyAbsSyn -> HappyWrap92
happyOut92 HappyAbsSyn
happy_x_3 of { (HappyWrap92 CDeclrR
happy_var_3) ->
case HappyAbsSyn -> HappyWrap89
happyOut89 HappyAbsSyn
happy_x_5 of { (HappyWrap89 CDeclrR -> CDeclrR
happy_var_5) ->
CDeclrR -> HappyAbsSyn
happyIn93
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 (CDeclrR -> CDeclrR
happy_var_5 CDeclrR
happy_var_3)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_355 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_355 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_355 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
86# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_355
happyReduction_355 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_355 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap93
happyOut93 HappyAbsSyn
happy_x_1 of { (HappyWrap93 CDeclrR
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
CDeclrR -> HappyAbsSyn
happyIn93
([CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
happy_var_2 CDeclrR
happy_var_1
)}}
happyReduce_356 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_356 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_356 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
87# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_356
happyReduction_356 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_356 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_1 of { (HappyWrap121 CExpr
happy_var_1) ->
( CExpr -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CInit
forall a. CExpression a -> a -> CInitializer a
CInitExpr CExpr
happy_var_1)})
) (\CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn94 CInit
r))
happyReduce_357 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_357 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_357 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
87# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_357
happyReduction_357 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_357 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_2 of { (HappyWrap96 Reversed CInitList
happy_var_2) ->
( CToken -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> NodeInfo -> CInit
forall a. CInitializerList a -> a -> CInitializer a
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
RList.reverse Reversed CInitList
happy_var_2))}})
) (\CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn94 CInit
r))
happyReduce_358 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_358 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_358 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
87# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_358
happyReduction_358 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_358 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CInit -> (CInit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_2 of { (HappyWrap96 Reversed CInitList
happy_var_2) ->
( CToken -> (NodeInfo -> CInit) -> P CInit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CInit) -> P CInit) -> (NodeInfo -> CInit) -> P CInit
forall a b. (a -> b) -> a -> b
$ CInitList -> NodeInfo -> CInit
forall a. CInitializerList a -> a -> CInitializer a
CInitList (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
RList.reverse Reversed CInitList
happy_var_2))}})
) (\CInit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CInit -> HappyAbsSyn
happyIn94 CInit
r))
happyReduce_359 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_359 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_359 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
88# HappyAbsSyn
happyReduction_359
happyReduction_359 :: HappyAbsSyn
happyReduction_359 = Maybe CInit -> HappyAbsSyn
happyIn95
(Maybe CInit
forall a. Maybe a
Nothing
)
happyReduce_360 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_360 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_360 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
88# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_360
happyReduction_360 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_360 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_2 of { (HappyWrap94 CInit
happy_var_2) ->
Maybe CInit -> HappyAbsSyn
happyIn95
(CInit -> Maybe CInit
forall a. a -> Maybe a
Just CInit
happy_var_2
)}
happyReduce_361 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_361 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_361 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
89# HappyAbsSyn
happyReduction_361
happyReduction_361 :: HappyAbsSyn
happyReduction_361 = Reversed CInitList -> HappyAbsSyn
happyIn96
(Reversed CInitList
forall a. Reversed [a]
RList.empty
)
happyReduce_362 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_362 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_362 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
89# HappyAbsSyn -> HappyAbsSyn
happyReduction_362
happyReduction_362 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_362 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_1 of { (HappyWrap94 CInit
happy_var_1) ->
Reversed CInitList -> HappyAbsSyn
happyIn96
(([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
RList.singleton ([],CInit
happy_var_1)
)}
happyReduce_363 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_363 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_363 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
89# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_363
happyReduction_363 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_363 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap97
happyOut97 HappyAbsSyn
happy_x_1 of { (HappyWrap97 [CDesignator]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_2 of { (HappyWrap94 CInit
happy_var_2) ->
Reversed CInitList -> HappyAbsSyn
happyIn96
(([CDesignator], CInit) -> Reversed CInitList
forall a. a -> Reversed [a]
RList.singleton ([CDesignator]
happy_var_1,CInit
happy_var_2)
)}}
happyReduce_364 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_364 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_364 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
89# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_364
happyReduction_364 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_364 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_1 of { (HappyWrap96 Reversed CInitList
happy_var_1) ->
case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_3 of { (HappyWrap94 CInit
happy_var_3) ->
Reversed CInitList -> HappyAbsSyn
happyIn96
(Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` ([],CInit
happy_var_3)
)}}
happyReduce_365 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_365 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_365 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
4# Int#
89# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_365
happyReduction_365 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_365 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_1 of { (HappyWrap96 Reversed CInitList
happy_var_1) ->
case HappyAbsSyn -> HappyWrap97
happyOut97 HappyAbsSyn
happy_x_3 of { (HappyWrap97 [CDesignator]
happy_var_3) ->
case HappyAbsSyn -> HappyWrap94
happyOut94 HappyAbsSyn
happy_x_4 of { (HappyWrap94 CInit
happy_var_4) ->
Reversed CInitList -> HappyAbsSyn
happyIn96
(Reversed CInitList
happy_var_1 Reversed CInitList -> ([CDesignator], CInit) -> Reversed CInitList
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` ([CDesignator]
happy_var_3,CInit
happy_var_4)
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}}}
happyReduce_366 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_366 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_366 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
90# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_366
happyReduction_366 :: p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_366 p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_1 of { (HappyWrap98 Reversed [CDesignator]
happy_var_1) ->
[CDesignator] -> HappyAbsSyn
happyIn97
(Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDesignator]
happy_var_1
)}
happyReduce_367 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_367 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_367 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
90# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_367
happyReduction_367 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_367 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P [CDesignator]
-> ([CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
( Ident -> (NodeInfo -> [CDesignator]) -> P [CDesignator]
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> [CDesignator]) -> P [CDesignator])
-> (NodeInfo -> [CDesignator]) -> P [CDesignator]
forall a b. (a -> b) -> a -> b
$ \NodeInfo
at -> [Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_1 NodeInfo
at])})
) (\[CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn ([CDesignator] -> HappyAbsSyn
happyIn97 [CDesignator]
r))
happyReduce_368 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_368 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_368 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
90# HappyAbsSyn -> HappyAbsSyn
happyReduction_368
happyReduction_368 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_368 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_1 of { (HappyWrap100 CDesignator
happy_var_1) ->
[CDesignator] -> HappyAbsSyn
happyIn97
([CDesignator
happy_var_1]
)}
happyReduce_369 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_369 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_369 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
91# HappyAbsSyn -> HappyAbsSyn
happyReduction_369
happyReduction_369 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_369 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_1 of { (HappyWrap99 CDesignator
happy_var_1) ->
Reversed [CDesignator] -> HappyAbsSyn
happyIn98
(CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
RList.singleton CDesignator
happy_var_1
)}
happyReduce_370 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_370 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_370 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
91# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_370
happyReduction_370 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_370 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap98
happyOut98 HappyAbsSyn
happy_x_1 of { (HappyWrap98 Reversed [CDesignator]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap99
happyOut99 HappyAbsSyn
happy_x_2 of { (HappyWrap99 CDesignator
happy_var_2) ->
Reversed [CDesignator] -> HappyAbsSyn
happyIn98
(Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CDesignator
happy_var_2
)}}
happyReduce_371 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_371 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_371 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371
happyReduction_371 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_371 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_2 of { (HappyWrap127 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> a -> CPartDesignator a
CArrDesig CExpr
happy_var_2)}})
) (\CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn99 CDesignator
r))
happyReduce_372 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_372 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_372 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
92# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_372
happyReduction_372 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_372 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 Ident
happy_var_2) ->
( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_2)}})
) (\CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn99 CDesignator
r))
happyReduce_373 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_373 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_373 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
92# HappyAbsSyn -> HappyAbsSyn
happyReduction_373
happyReduction_373 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_373 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap100
happyOut100 HappyAbsSyn
happy_x_1 of { (HappyWrap100 CDesignator
happy_var_1) ->
CDesignator -> HappyAbsSyn
happyIn99
(CDesignator
happy_var_1
)}
happyReduce_374 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_374 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_374 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
93# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_374
happyReduction_374 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_374 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CDesignator -> (CDesignator -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_2 of { (HappyWrap127 CExpr
happy_var_2) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_4 of { (HappyWrap127 CExpr
happy_var_4) ->
( CToken -> (NodeInfo -> CDesignator) -> P CDesignator
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CDesignator) -> P CDesignator)
-> (NodeInfo -> CDesignator) -> P CDesignator
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> CExpression a -> a -> CPartDesignator a
CRangeDesig CExpr
happy_var_2 CExpr
happy_var_4)}}})
) (\CDesignator
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CDesignator -> HappyAbsSyn
happyIn100 CDesignator
r))
happyReduce_375 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_375 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_375 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_375
happyReduction_375 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_375 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
( Ident -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CExpr
forall a. Ident -> a -> CExpression a
CVar Ident
happy_var_1)})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_376 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_376 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_376 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
94# HappyAbsSyn -> HappyAbsSyn
happyReduction_376
happyReduction_376 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_376 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap128
happyOut128 HappyAbsSyn
happy_x_1 of { (HappyWrap128 CConst
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn101
(CConst -> CExpr
forall a. CConstant a -> CExpression a
CConst CConst
happy_var_1
)}
happyReduce_377 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_377 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_377 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
94# HappyAbsSyn -> HappyAbsSyn
happyReduction_377
happyReduction_377 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_377 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap129
happyOut129 HappyAbsSyn
happy_x_1 of { (HappyWrap129 CStrLit
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn101
(CConst -> CExpr
forall a. CConstant a -> CExpression a
CConst (CStrLit -> CConst
forall a. CStringLiteral a -> CConstant a
liftStrLit CStrLit
happy_var_1)
)}
happyReduce_378 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_378 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_378 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
94# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_378
happyReduction_378 :: p -> HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_378 p
happy_x_3
HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_2 of { (HappyWrap123 CExpr
happy_var_2) ->
CExpr -> HappyAbsSyn
happyIn101
(CExpr
happy_var_2
)}
happyReduce_379 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_379 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_379 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379
happyReduction_379 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_379 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_5 of { (HappyWrap102 Reversed [(Maybe CDecl, CExpr)]
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [(Maybe CDecl, CExpr)] -> NodeInfo -> CExpr
forall a.
CExpression a
-> [(Maybe (CDeclaration a), CExpression a)] -> a -> CExpression a
CGenericSelection CExpr
happy_var_3 (Reversed [(Maybe CDecl, CExpr)] -> [(Maybe CDecl, CExpr)]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [(Maybe CDecl, CExpr)]
happy_var_5))}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_380 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_380 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_380 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_380
happyReduction_380 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_380 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap14
happyOut14 HappyAbsSyn
happy_x_2 of { (HappyWrap14 CStat
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CStat -> NodeInfo -> CExpr
forall a. CStatement a -> a -> CExpression a
CStatExpr CStat
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_381 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_381 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_381 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381
happyReduction_381 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_381 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_5 of { (HappyWrap87 CDecl
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CExpression a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinVaArg CExpr
happy_var_3 CDecl
happy_var_5)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_382 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_382 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_382 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_382
happyReduction_382 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_382 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_5 of { (HappyWrap104 Reversed [CDesignator]
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> [CDesignator] -> NodeInfo -> CBuiltinThing NodeInfo
forall a.
CDeclaration a -> [CPartDesignator a] -> a -> CBuiltinThing a
CBuiltinOffsetOf CDecl
happy_var_3 (Reversed [CDesignator] -> [CDesignator]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDesignator]
happy_var_5))}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_383 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_383 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_383 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_383
happyReduction_383 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_383 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_5 of { (HappyWrap87 CDecl
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CDeclaration a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinTypesCompatible CDecl
happy_var_3 CDecl
happy_var_5)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_384 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_384 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_384 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_384
happyReduction_384 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_384 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_5 of { (HappyWrap87 CDecl
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> CDecl -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CExpression a -> CDeclaration a -> a -> CBuiltinThing a
CBuiltinConvertVector CExpr
happy_var_3 CDecl
happy_var_5)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_385 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_385 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_385 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
94# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_385
happyReduction_385 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_385 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_5 of { (HappyWrap121 CExpr
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBuiltinThing NodeInfo -> CExpr
forall a. CBuiltinThing a -> CExpression a
CBuiltinExpr (CBuiltinThing NodeInfo -> CExpr)
-> (NodeInfo -> CBuiltinThing NodeInfo) -> NodeInfo -> CExpr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CDecl -> CExpr -> NodeInfo -> CBuiltinThing NodeInfo
forall a. CDeclaration a -> CExpression a -> a -> CBuiltinThing a
CBuiltinBitCast CDecl
happy_var_3 CExpr
happy_var_5)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn101 CExpr
r))
happyReduce_386 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_386 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_386 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
95# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_386
happyReduction_386 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_386 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap102
happyOut102 HappyAbsSyn
happy_x_1 of { (HappyWrap102 Reversed [(Maybe CDecl, CExpr)]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_3 of { (HappyWrap103 (Maybe CDecl, CExpr)
happy_var_3) ->
Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn102
(Reversed [(Maybe CDecl, CExpr)]
happy_var_1 Reversed [(Maybe CDecl, CExpr)]
-> (Maybe CDecl, CExpr) -> Reversed [(Maybe CDecl, CExpr)]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` (Maybe CDecl, CExpr)
happy_var_3
)}}
happyReduce_387 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_387 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_387 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
95# HappyAbsSyn -> HappyAbsSyn
happyReduction_387
happyReduction_387 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_387 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap103
happyOut103 HappyAbsSyn
happy_x_1 of { (HappyWrap103 (Maybe CDecl, CExpr)
happy_var_1) ->
Reversed [(Maybe CDecl, CExpr)] -> HappyAbsSyn
happyIn102
((Maybe CDecl, CExpr) -> Reversed [(Maybe CDecl, CExpr)]
forall a. a -> Reversed [a]
RList.singleton (Maybe CDecl, CExpr)
happy_var_1
)}
happyReduce_388 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_388 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_388 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
96# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_388
happyReduction_388 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_388 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_1 of { (HappyWrap87 CDecl
happy_var_1) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
(Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn103
((CDecl -> Maybe CDecl
forall a. a -> Maybe a
Just CDecl
happy_var_1, CExpr
happy_var_3)
)}}
happyReduce_389 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_389 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_389 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
96# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p}. HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_389
happyReduction_389 :: HappyAbsSyn -> p -> p -> HappyAbsSyn
happyReduction_389 HappyAbsSyn
happy_x_3
p
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
(Maybe CDecl, CExpr) -> HappyAbsSyn
happyIn103
((Maybe CDecl
forall a. Maybe a
Nothing, CExpr
happy_var_3)
)}
happyReduce_390 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_390 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_390 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_390
happyReduction_390 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_390 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_1 of { (HappyWrap132 Ident
happy_var_1) ->
( Ident
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ CDesignator -> Reversed [CDesignator]
forall a. a -> Reversed [a]
RList.singleton (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_1)})
) (\Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn104 Reversed [CDesignator]
r))
happyReduce_391 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_391 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_391 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391
happyReduction_391 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_391 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 Reversed [CDesignator]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
( Ident
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_3 ((NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc`) (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> NodeInfo -> CDesignator
forall a. Ident -> a -> CPartDesignator a
CMemberDesig Ident
happy_var_3)}})
) (\Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn104 Reversed [CDesignator]
r))
happyReduce_392 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_392 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_392 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
97# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392
happyReduction_392 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_392 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Reversed [CDesignator])
-> (Reversed [CDesignator] -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap104
happyOut104 HappyAbsSyn
happy_x_1 of { (HappyWrap104 Reversed [CDesignator]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
( CExpr
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_3 ((NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator]))
-> (NodeInfo -> Reversed [CDesignator])
-> P (Reversed [CDesignator])
forall a b. (a -> b) -> a -> b
$ (Reversed [CDesignator]
happy_var_1 Reversed [CDesignator] -> CDesignator -> Reversed [CDesignator]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc`) (CDesignator -> Reversed [CDesignator])
-> (NodeInfo -> CDesignator) -> NodeInfo -> Reversed [CDesignator]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CExpr -> NodeInfo -> CDesignator
forall a. CExpression a -> a -> CPartDesignator a
CArrDesig CExpr
happy_var_3)}})
) (\Reversed [CDesignator]
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Reversed [CDesignator] -> HappyAbsSyn
happyIn104 Reversed [CDesignator]
r))
happyReduce_393 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_393 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_393 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
98# HappyAbsSyn -> HappyAbsSyn
happyReduction_393
happyReduction_393 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_393 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap101
happyOut101 HappyAbsSyn
happy_x_1 of { (HappyWrap101 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn105
(CExpr
happy_var_1
)}
happyReduce_394 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_394 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_394 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394
happyReduction_394 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_394 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> CExpression a -> a -> CExpression a
CIndex CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_395 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_395 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_395 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_395
happyReduction_395 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_395 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> NodeInfo -> CExpr
forall a. CExpression a -> [CExpression a] -> a -> CExpression a
CCall CExpr
happy_var_1 [])})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_396 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_396 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_396 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_396
happyReduction_396 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_396 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_3 of { (HappyWrap106 Reversed [CExpr]
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> [CExpr] -> NodeInfo -> CExpr
forall a. CExpression a -> [CExpression a] -> a -> CExpression a
CCall CExpr
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CExpr]
happy_var_3))}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_397 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_397 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_397 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_397
happyReduction_397 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_397 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> NodeInfo -> CExpr
forall a. CExpression a -> Ident -> Bool -> a -> CExpression a
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
False)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_398 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_398 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_398 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_398
happyReduction_398 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_398 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_3 of { (HappyWrap132 Ident
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Ident -> Bool -> NodeInfo -> CExpr
forall a. CExpression a -> Ident -> Bool -> a -> CExpression a
CMember CExpr
happy_var_1 Ident
happy_var_3 Bool
True)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_399 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_399 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_399 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_399
happyReduction_399 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_399 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPostIncOp CExpr
happy_var_1)})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_400 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_400 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_400 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_400
happyReduction_400 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_400 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPostDecOp CExpr
happy_var_1)})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_401 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_401 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_401 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
6# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_401
happyReduction_401 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_401 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 CDecl
happy_var_2) ->
case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_5 of { (HappyWrap96 Reversed CInitList
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> NodeInfo -> CExpr
forall a.
CDeclaration a -> CInitializerList a -> a -> CExpression a
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
RList.reverse Reversed CInitList
happy_var_5))}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_402 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_402 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_402 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
7# Int#
98# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_402
happyReduction_402 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_402 (HappyAbsSyn
happy_x_7 `HappyStk`
HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 CDecl
happy_var_2) ->
case HappyAbsSyn -> HappyWrap96
happyOut96 HappyAbsSyn
happy_x_5 of { (HappyWrap96 Reversed CInitList
happy_var_5) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CInitList -> NodeInfo -> CExpr
forall a.
CDeclaration a -> CInitializerList a -> a -> CExpression a
CCompoundLit CDecl
happy_var_2 (Reversed CInitList -> CInitList
forall a. Reversed [a] -> [a]
RList.reverse Reversed CInitList
happy_var_5))}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn105 CExpr
r))
happyReduce_403 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_403 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_403 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
99# HappyAbsSyn -> HappyAbsSyn
happyReduction_403
happyReduction_403 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_403 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_1 of { (HappyWrap121 CExpr
happy_var_1) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn106
(CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
RList.singleton CExpr
happy_var_1
)}
happyReduce_404 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_404 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_404 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
99# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_404
happyReduction_404 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_404 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap106
happyOut106 HappyAbsSyn
happy_x_1 of { (HappyWrap106 Reversed [CExpr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn106
(Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CExpr
happy_var_3
)}}
happyReduce_405 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_405 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_405 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
100# HappyAbsSyn -> HappyAbsSyn
happyReduction_405
happyReduction_405 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_405 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap105
happyOut105 HappyAbsSyn
happy_x_1 of { (HappyWrap105 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn107
(CExpr
happy_var_1
)}
happyReduce_406 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_406 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_406 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_406
happyReduction_406 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_406 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_2 of { (HappyWrap107 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPreIncOp CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_407 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_407 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_407 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407
happyReduction_407 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_407 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_2 of { (HappyWrap107 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary CUnaryOp
CPreDecOp CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_408 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_408 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_408 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
100# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_408
happyReduction_408 :: HappyAbsSyn -> p -> HappyAbsSyn
happyReduction_408 HappyAbsSyn
happy_x_2
p
happy_x_1
= case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_2 of { (HappyWrap109 CExpr
happy_var_2) ->
CExpr -> HappyAbsSyn
happyIn107
(CExpr
happy_var_2
)}
happyReduce_409 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_409 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_409 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_409
happyReduction_409 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_409 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap108
happyOut108 HappyAbsSyn
happy_x_1 of { (HappyWrap108 Located CUnaryOp
happy_var_1) ->
case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_2 of { (HappyWrap109 CExpr
happy_var_2) ->
( Located CUnaryOp -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Located CUnaryOp
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CUnaryOp -> CExpr -> NodeInfo -> CExpr
forall a. CUnaryOp -> CExpression a -> a -> CExpression a
CUnary (Located CUnaryOp -> CUnaryOp
forall a. Located a -> a
unL Located CUnaryOp
happy_var_1) CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_410 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_410 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_410 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_410
happyReduction_410 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_410 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_2 of { (HappyWrap107 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CSizeofExpr CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_411 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_411 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_411 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_411
happyReduction_411 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_411 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CExpr
forall a. CDeclaration a -> a -> CExpression a
CSizeofType CDecl
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_412 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_412 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_412 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_412
happyReduction_412 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_412 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_2 of { (HappyWrap107 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CAlignofExpr CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_413 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_413 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_413 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_413
happyReduction_413 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_413 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_3 of { (HappyWrap87 CDecl
happy_var_3) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> NodeInfo -> CExpr
forall a. CDeclaration a -> a -> CExpression a
CAlignofType CDecl
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_414 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_414 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_414 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_414
happyReduction_414 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_414 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_2 of { (HappyWrap107 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CComplexReal CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_415 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_415 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_415 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_415
happyReduction_415 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_415 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_2 of { (HappyWrap107 CExpr
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> NodeInfo -> CExpr
forall a. CExpression a -> a -> CExpression a
CComplexImag CExpr
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_416 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_416 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_416 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
100# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_416
happyReduction_416 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_416 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap132
happyOut132 HappyAbsSyn
happy_x_2 of { (HappyWrap132 Ident
happy_var_2) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ Ident -> NodeInfo -> CExpr
forall a. Ident -> a -> CExpression a
CLabAddrExpr Ident
happy_var_2)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn107 CExpr
r))
happyReduce_417 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_417 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_417 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
101# HappyAbsSyn -> HappyAbsSyn
happyReduction_417
happyReduction_417 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_417 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn108
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CAdrOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_418 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_418 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_418 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
101# HappyAbsSyn -> HappyAbsSyn
happyReduction_418
happyReduction_418 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_418 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn108
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CIndOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_419 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_419 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_419 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
101# HappyAbsSyn -> HappyAbsSyn
happyReduction_419
happyReduction_419 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_419 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn108
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CPlusOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_420 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_420 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_420 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
101# HappyAbsSyn -> HappyAbsSyn
happyReduction_420
happyReduction_420 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_420 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn108
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CMinOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_421 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_421 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_421 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
101# HappyAbsSyn -> HappyAbsSyn
happyReduction_421
happyReduction_421 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_421 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn108
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CCompOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_422 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_422 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_422 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
101# HappyAbsSyn -> HappyAbsSyn
happyReduction_422
happyReduction_422 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_422 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CUnaryOp -> HappyAbsSyn
happyIn108
(CUnaryOp -> Position -> Located CUnaryOp
forall a. a -> Position -> Located a
L CUnaryOp
CNegOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_423 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_423 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_423 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
102# HappyAbsSyn -> HappyAbsSyn
happyReduction_423
happyReduction_423 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_423 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_1 of { (HappyWrap107 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn109
(CExpr
happy_var_1
)}
happyReduce_424 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_424 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_424 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
102# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_424
happyReduction_424 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_424 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap87
happyOut87 HappyAbsSyn
happy_x_2 of { (HappyWrap87 CDecl
happy_var_2) ->
case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_4 of { (HappyWrap109 CExpr
happy_var_4) ->
( CToken -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CDecl -> CExpr -> NodeInfo -> CExpr
forall a. CDeclaration a -> CExpression a -> a -> CExpression a
CCast CDecl
happy_var_2 CExpr
happy_var_4)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn109 CExpr
r))
happyReduce_425 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_425 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_425 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
103# HappyAbsSyn -> HappyAbsSyn
happyReduction_425
happyReduction_425 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_425 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_1 of { (HappyWrap109 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn110
(CExpr
happy_var_1
)}
happyReduce_426 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_426 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_426 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_426
happyReduction_426 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_426 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_3 of { (HappyWrap109 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CMulOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))
happyReduce_427 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_427 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_427 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_427
happyReduction_427 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_427 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_3 of { (HappyWrap109 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CDivOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))
happyReduce_428 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_428 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_428 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
103# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_428
happyReduction_428 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_428 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap109
happyOut109 HappyAbsSyn
happy_x_3 of { (HappyWrap109 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CRmdOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn110 CExpr
r))
happyReduce_429 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_429 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_429 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
104# HappyAbsSyn -> HappyAbsSyn
happyReduction_429
happyReduction_429 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_429 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_1 of { (HappyWrap110 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn111
(CExpr
happy_var_1
)}
happyReduce_430 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_430 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_430 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_430
happyReduction_430 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_430 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_1 of { (HappyWrap111 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CAddOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn111 CExpr
r))
happyReduce_431 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_431 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_431 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
104# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_431
happyReduction_431 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_431 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_1 of { (HappyWrap111 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap110
happyOut110 HappyAbsSyn
happy_x_3 of { (HappyWrap110 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CSubOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn111 CExpr
r))
happyReduce_432 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_432 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_432 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
105# HappyAbsSyn -> HappyAbsSyn
happyReduction_432
happyReduction_432 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_432 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_1 of { (HappyWrap111 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn112
(CExpr
happy_var_1
)}
happyReduce_433 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_433 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_433 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_433
happyReduction_433 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_433 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_3 of { (HappyWrap111 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CShlOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))
happyReduce_434 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_434 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_434 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
105# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_434
happyReduction_434 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_434 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap111
happyOut111 HappyAbsSyn
happy_x_3 of { (HappyWrap111 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CShrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn112 CExpr
r))
happyReduce_435 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_435 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_435 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
106# HappyAbsSyn -> HappyAbsSyn
happyReduction_435
happyReduction_435 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_435 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_1 of { (HappyWrap112 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn113
(CExpr
happy_var_1
)}
happyReduce_436 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_436 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_436 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_436
happyReduction_436 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_436 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLeOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))
happyReduce_437 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_437 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_437 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_437
happyReduction_437 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_437 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CGrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))
happyReduce_438 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_438 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_438 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_438
happyReduction_438 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_438 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))
happyReduce_439 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_439 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_439 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
106# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_439
happyReduction_439 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_439 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap112
happyOut112 HappyAbsSyn
happy_x_3 of { (HappyWrap112 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CGeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn113 CExpr
r))
happyReduce_440 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_440 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_440 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
107# HappyAbsSyn -> HappyAbsSyn
happyReduction_440
happyReduction_440 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_440 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_1 of { (HappyWrap113 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn114
(CExpr
happy_var_1
)}
happyReduce_441 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_441 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_441 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
107# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_441
happyReduction_441 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_441 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_1 of { (HappyWrap114 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_3 of { (HappyWrap113 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CEqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn114 CExpr
r))
happyReduce_442 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_442 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_442 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
107# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_442
happyReduction_442 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_442 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_1 of { (HappyWrap114 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap113
happyOut113 HappyAbsSyn
happy_x_3 of { (HappyWrap113 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CNeqOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn114 CExpr
r))
happyReduce_443 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_443 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_443 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
108# HappyAbsSyn -> HappyAbsSyn
happyReduction_443
happyReduction_443 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_443 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_1 of { (HappyWrap114 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn115
(CExpr
happy_var_1
)}
happyReduce_444 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_444 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_444 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
108# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_444
happyReduction_444 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_444 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_1 of { (HappyWrap115 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap114
happyOut114 HappyAbsSyn
happy_x_3 of { (HappyWrap114 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CAndOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn115 CExpr
r))
happyReduce_445 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_445 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_445 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
109# HappyAbsSyn -> HappyAbsSyn
happyReduction_445
happyReduction_445 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_445 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_1 of { (HappyWrap115 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn116
(CExpr
happy_var_1
)}
happyReduce_446 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_446 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_446 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
109# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_446
happyReduction_446 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_446 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_1 of { (HappyWrap116 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap115
happyOut115 HappyAbsSyn
happy_x_3 of { (HappyWrap115 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CXorOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn116 CExpr
r))
happyReduce_447 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_447 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_447 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
110# HappyAbsSyn -> HappyAbsSyn
happyReduction_447
happyReduction_447 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_447 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_1 of { (HappyWrap116 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn117
(CExpr
happy_var_1
)}
happyReduce_448 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_448 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_448 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
110# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_448
happyReduction_448 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_448 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_1 of { (HappyWrap117 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap116
happyOut116 HappyAbsSyn
happy_x_3 of { (HappyWrap116 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
COrOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn117 CExpr
r))
happyReduce_449 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_449 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_449 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
111# HappyAbsSyn -> HappyAbsSyn
happyReduction_449
happyReduction_449 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_449 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_1 of { (HappyWrap117 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn118
(CExpr
happy_var_1
)}
happyReduce_450 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_450 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_450 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
111# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_450
happyReduction_450 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_450 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap117
happyOut117 HappyAbsSyn
happy_x_3 of { (HappyWrap117 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLndOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn118 CExpr
r))
happyReduce_451 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_451 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_451 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
112# HappyAbsSyn -> HappyAbsSyn
happyReduction_451
happyReduction_451 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_451 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_1 of { (HappyWrap118 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn119
(CExpr
happy_var_1
)}
happyReduce_452 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_452 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_452 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
112# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_452
happyReduction_452 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_452 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap118
happyOut118 HappyAbsSyn
happy_x_3 of { (HappyWrap118 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CBinaryOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CBinaryOp -> CExpression a -> CExpression a -> a -> CExpression a
CBinary CBinaryOp
CLorOp CExpr
happy_var_1 CExpr
happy_var_3)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn119 CExpr
r))
happyReduce_453 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_453 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_453 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
113# HappyAbsSyn -> HappyAbsSyn
happyReduction_453
happyReduction_453 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_453 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn120
(CExpr
happy_var_1
)}
happyReduce_454 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_454 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_454 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
5# Int#
113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_454
happyReduction_454 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_454 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_3 of { (HappyWrap123 CExpr
happy_var_3) ->
case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_5 of { (HappyWrap120 CExpr
happy_var_5) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CExpression a
-> Maybe (CExpression a) -> CExpression a -> a -> CExpression a
CCond CExpr
happy_var_1 (CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_3) CExpr
happy_var_5)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn120 CExpr
r))
happyReduce_455 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_455 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_455 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
113# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_455
happyReduction_455 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_455 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap119
happyOut119 HappyAbsSyn
happy_x_1 of { (HappyWrap119 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_4 of { (HappyWrap120 CExpr
happy_var_4) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CExpr -> Maybe CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CExpression a
-> Maybe (CExpression a) -> CExpression a -> a -> CExpression a
CCond CExpr
happy_var_1 Maybe CExpr
forall a. Maybe a
Nothing CExpr
happy_var_4)}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn120 CExpr
r))
happyReduce_456 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_456 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_456 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
114# HappyAbsSyn -> HappyAbsSyn
happyReduction_456
happyReduction_456 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_456 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn121
(CExpr
happy_var_1
)}
happyReduce_457 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_457 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_457 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
114# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_457
happyReduction_457 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_457 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap107
happyOut107 HappyAbsSyn
happy_x_1 of { (HappyWrap107 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap122
happyOut122 HappyAbsSyn
happy_x_2 of { (HappyWrap122 Located CAssignOp
happy_var_2) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
( CExpr -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CExpr
happy_var_1 ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ CAssignOp -> CExpr -> CExpr -> NodeInfo -> CExpr
forall a.
CAssignOp -> CExpression a -> CExpression a -> a -> CExpression a
CAssign (Located CAssignOp -> CAssignOp
forall a. Located a -> a
unL Located CAssignOp
happy_var_2) CExpr
happy_var_1 CExpr
happy_var_3)}}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn121 CExpr
r))
happyReduce_458 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_458 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_458 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_458
happyReduction_458 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_458 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAssignOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_459 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_459 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_459 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_459
happyReduction_459 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_459 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CMulAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_460 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_460 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_460 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_460
happyReduction_460 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_460 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CDivAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_461 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_461 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_461 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_461
happyReduction_461 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_461 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CRmdAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_462 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_462 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_462 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_462
happyReduction_462 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_462 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAddAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_463 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_463 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_463 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_463
happyReduction_463 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_463 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CSubAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_464 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_464 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_464 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_464
happyReduction_464 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_464 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShlAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_465 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_465 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_465 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_465
happyReduction_465 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_465 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CShrAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_466 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_466 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_466 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_466
happyReduction_466 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_466 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CAndAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_467 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_467 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_467 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_467
happyReduction_467 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_467 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
CXorAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_468 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_468 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_468 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
115# HappyAbsSyn -> HappyAbsSyn
happyReduction_468
happyReduction_468 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_468 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Located CAssignOp -> HappyAbsSyn
happyIn122
(CAssignOp -> Position -> Located CAssignOp
forall a. a -> Position -> Located a
L CAssignOp
COrAssOp (CToken -> Position
forall a. Pos a => a -> Position
posOf CToken
happy_var_1)
)}
happyReduce_469 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_469 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_469 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
116# HappyAbsSyn -> HappyAbsSyn
happyReduction_469
happyReduction_469 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_469 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_1 of { (HappyWrap121 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn123
(CExpr
happy_var_1
)}
happyReduce_470 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_470 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_470 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
116# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_470
happyReduction_470 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_470 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CExpr -> (CExpr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_1 of { (HappyWrap121 CExpr
happy_var_1) ->
case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_3 of { (HappyWrap124 Reversed [CExpr]
happy_var_3) ->
( let es :: [CExpr]
es = Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CExpr]
happy_var_3 in [CExpr] -> (NodeInfo -> CExpr) -> P CExpr
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo [CExpr]
es ((NodeInfo -> CExpr) -> P CExpr) -> (NodeInfo -> CExpr) -> P CExpr
forall a b. (a -> b) -> a -> b
$ [CExpr] -> NodeInfo -> CExpr
forall a. [CExpression a] -> a -> CExpression a
CComma (CExpr
happy_var_1CExpr -> [CExpr] -> [CExpr]
forall a. a -> [a] -> [a]
:[CExpr]
es))}})
) (\CExpr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CExpr -> HappyAbsSyn
happyIn123 CExpr
r))
happyReduce_471 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_471 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_471 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
117# HappyAbsSyn -> HappyAbsSyn
happyReduction_471
happyReduction_471 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_471 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_1 of { (HappyWrap121 CExpr
happy_var_1) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn124
(CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
RList.singleton CExpr
happy_var_1
)}
happyReduce_472 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_472 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_472 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
117# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_472
happyReduction_472 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_472 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap124
happyOut124 HappyAbsSyn
happy_x_1 of { (HappyWrap124 Reversed [CExpr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_3 of { (HappyWrap121 CExpr
happy_var_3) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn124
(Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CExpr
happy_var_3
)}}
happyReduce_473 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_473 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_473 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
118# HappyAbsSyn
happyReduction_473
happyReduction_473 :: HappyAbsSyn
happyReduction_473 = Maybe CExpr -> HappyAbsSyn
happyIn125
(Maybe CExpr
forall a. Maybe a
Nothing
)
happyReduce_474 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_474 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_474 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
118# HappyAbsSyn -> HappyAbsSyn
happyReduction_474
happyReduction_474 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_474 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
happy_x_1 of { (HappyWrap123 CExpr
happy_var_1) ->
Maybe CExpr -> HappyAbsSyn
happyIn125
(CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_1
)}
happyReduce_475 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_475 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_475 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
119# HappyAbsSyn
happyReduction_475
happyReduction_475 :: HappyAbsSyn
happyReduction_475 = Maybe CExpr -> HappyAbsSyn
happyIn126
(Maybe CExpr
forall a. Maybe a
Nothing
)
happyReduce_476 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_476 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_476 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
119# HappyAbsSyn -> HappyAbsSyn
happyReduction_476
happyReduction_476 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_476 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap121
happyOut121 HappyAbsSyn
happy_x_1 of { (HappyWrap121 CExpr
happy_var_1) ->
Maybe CExpr -> HappyAbsSyn
happyIn126
(CExpr -> Maybe CExpr
forall a. a -> Maybe a
Just CExpr
happy_var_1
)}
happyReduce_477 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_477 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_477 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
120# HappyAbsSyn -> HappyAbsSyn
happyReduction_477
happyReduction_477 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_477 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap120
happyOut120 HappyAbsSyn
happy_x_1 of { (HappyWrap120 CExpr
happy_var_1) ->
CExpr -> HappyAbsSyn
happyIn127
(CExpr
happy_var_1
)}
happyReduce_478 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_478 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_478 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_478
happyReduction_478 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_478 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokILit PosLength
_ CInteger
i -> CInteger -> NodeInfo -> CConst
forall a. CInteger -> a -> CConstant a
CIntConst CInteger
i)})
) (\CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn128 CConst
r))
happyReduce_479 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_479 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_479 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_479
happyReduction_479 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_479 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokCLit PosLength
_ CChar
c -> CChar -> NodeInfo -> CConst
forall a. CChar -> a -> CConstant a
CCharConst CChar
c)})
) (\CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn128 CConst
r))
happyReduce_480 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_480 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_480 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
121# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_480
happyReduction_480 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_480 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CConst -> (CConst -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CConst) -> P CConst
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CConst) -> P CConst)
-> (NodeInfo -> CConst) -> P CConst
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokFLit PosLength
_ CFloat
f -> CFloat -> NodeInfo -> CConst
forall a. CFloat -> a -> CConstant a
CFloatConst CFloat
f)})
) (\CConst
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CConst -> HappyAbsSyn
happyIn128 CConst
r))
happyReduce_481 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_481 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_481 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
122# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_481
happyReduction_481 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_481 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStrLit -> (CStrLit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> CStrLit) -> P CStrLit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStrLit) -> P CStrLit)
-> (NodeInfo -> CStrLit) -> P CStrLit
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit PosLength
_ CString
s -> CString -> NodeInfo -> CStrLit
forall a. CString -> a -> CStringLiteral a
CStrLit CString
s)})
) (\CStrLit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStrLit -> HappyAbsSyn
happyIn129 CStrLit
r))
happyReduce_482 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_482 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_482 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
2# Int#
122# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_482
happyReduction_482 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_482 (HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P CStrLit -> (CStrLit -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
case HappyAbsSyn -> HappyWrap130
happyOut130 HappyAbsSyn
happy_x_2 of { (HappyWrap130 Reversed [CString]
happy_var_2) ->
( CToken -> (NodeInfo -> CStrLit) -> P CStrLit
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> CStrLit) -> P CStrLit)
-> (NodeInfo -> CStrLit) -> P CStrLit
forall a b. (a -> b) -> a -> b
$ case CToken
happy_var_1 of CTokSLit PosLength
_ CString
s -> CString -> NodeInfo -> CStrLit
forall a. CString -> a -> CStringLiteral a
CStrLit ([CString] -> CString
concatCStrings (CString
s CString -> [CString] -> [CString]
forall a. a -> [a] -> [a]
: Reversed [CString] -> [CString]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CString]
happy_var_2)))}})
) (\CStrLit
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (CStrLit -> HappyAbsSyn
happyIn129 CStrLit
r))
happyReduce_483 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_483 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_483 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
123# HappyAbsSyn -> HappyAbsSyn
happyReduction_483
happyReduction_483 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_483 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
Reversed [CString] -> HappyAbsSyn
happyIn130
(case CToken
happy_var_1 of CTokSLit PosLength
_ CString
s -> CString -> Reversed [CString]
forall a. a -> Reversed [a]
RList.singleton CString
s
)}
happyReduce_484 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_484 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_484 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
123# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_484
happyReduction_484 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_484 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap130
happyOut130 HappyAbsSyn
happy_x_1 of { (HappyWrap130 Reversed [CString]
happy_var_1) ->
case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_2 of { CToken
happy_var_2 ->
Reversed [CString] -> HappyAbsSyn
happyIn130
(case CToken
happy_var_2 of CTokSLit PosLength
_ CString
s -> Reversed [CString]
happy_var_1 Reversed [CString] -> CString -> Reversed [CString]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CString
s
)}}
happyReduce_485 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_485 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_485 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
124# HappyAbsSyn -> HappyAbsSyn
happyReduction_485
happyReduction_485 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_485 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokClangC PosLength
_ (ClangCVersionTok ClangCVersion
happy_var_1)) ->
ClangCVersion -> HappyAbsSyn
happyIn131
(ClangCVersion
happy_var_1
)}
happyReduce_486 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_486 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_486 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
125# HappyAbsSyn -> HappyAbsSyn
happyReduction_486
happyReduction_486 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_486 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
Ident -> HappyAbsSyn
happyIn132
(Ident
happy_var_1
)}
happyReduce_487 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_487 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_487 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
125# HappyAbsSyn -> HappyAbsSyn
happyReduction_487
happyReduction_487 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_487 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokTyIdent PosLength
_ Ident
happy_var_1) ->
Ident -> HappyAbsSyn
happyIn132
(Ident
happy_var_1
)}
happyReduce_488 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_488 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_488 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
126# HappyAbsSyn
happyReduction_488
happyReduction_488 :: HappyAbsSyn
happyReduction_488 = [CAttr] -> HappyAbsSyn
happyIn133
([]
)
happyReduce_489 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_489 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_489 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
126# HappyAbsSyn -> HappyAbsSyn
happyReduction_489
happyReduction_489 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_489 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
[CAttr] -> HappyAbsSyn
happyIn133
([CAttr]
happy_var_1
)}
happyReduce_490 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_490 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_490 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
127# HappyAbsSyn -> HappyAbsSyn
happyReduction_490
happyReduction_490 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_490 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_1 of { (HappyWrap135 [CAttr]
happy_var_1) ->
[CAttr] -> HappyAbsSyn
happyIn134
([CAttr]
happy_var_1
)}
happyReduce_491 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_491 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_491 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_2 Int#
127# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_491
happyReduction_491 :: HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
happyReduction_491 HappyAbsSyn
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap134
happyOut134 HappyAbsSyn
happy_x_1 of { (HappyWrap134 [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap135
happyOut135 HappyAbsSyn
happy_x_2 of { (HappyWrap135 [CAttr]
happy_var_2) ->
[CAttr] -> HappyAbsSyn
happyIn134
([CAttr]
happy_var_1 [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
happy_var_2
)}}
happyReduce_492 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_492 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_492 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
6# Int#
128# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_492
happyReduction_492 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_492 (HappyAbsSyn
happy_x_6 `HappyStk`
HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap136
happyOut136 HappyAbsSyn
happy_x_4 of { (HappyWrap136 Reversed [CAttr]
happy_var_4) ->
[CAttr] -> HappyAbsSyn
happyIn135
(Reversed [CAttr] -> [CAttr]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CAttr]
happy_var_4
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_493 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_493 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_493 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
129# HappyAbsSyn -> HappyAbsSyn
happyReduction_493
happyReduction_493 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_493 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
happy_x_1 of { (HappyWrap137 Maybe CAttr
happy_var_1) ->
Reversed [CAttr] -> HappyAbsSyn
happyIn136
(case Maybe CAttr
happy_var_1 of Maybe CAttr
Nothing -> Reversed [CAttr]
forall a. Reversed [a]
RList.empty; Just CAttr
attr -> CAttr -> Reversed [CAttr]
forall a. a -> Reversed [a]
RList.singleton CAttr
attr
)}
happyReduce_494 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_494 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_494 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
129# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_494
happyReduction_494 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_494 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap136
happyOut136 HappyAbsSyn
happy_x_1 of { (HappyWrap136 Reversed [CAttr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap137
happyOut137 HappyAbsSyn
happy_x_3 of { (HappyWrap137 Maybe CAttr
happy_var_3) ->
Reversed [CAttr] -> HappyAbsSyn
happyIn136
(((Reversed [CAttr] -> Reversed [CAttr])
-> (CAttr -> Reversed [CAttr] -> Reversed [CAttr])
-> Maybe CAttr
-> Reversed [CAttr]
-> Reversed [CAttr]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Reversed [CAttr] -> Reversed [CAttr]
forall a. a -> a
id ((Reversed [CAttr] -> CAttr -> Reversed [CAttr])
-> CAttr -> Reversed [CAttr] -> Reversed [CAttr]
forall a b c. (a -> b -> c) -> b -> a -> c
flip Reversed [CAttr] -> CAttr -> Reversed [CAttr]
forall a. Reversed [a] -> a -> Reversed [a]
RList.snoc) Maybe CAttr
happy_var_3) Reversed [CAttr]
happy_var_1
)}}
happyReduce_495 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_495 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_495 = Int#
-> HappyAbsSyn
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_0 Int#
130# HappyAbsSyn
happyReduction_495
happyReduction_495 :: HappyAbsSyn
happyReduction_495 = Maybe CAttr -> HappyAbsSyn
happyIn137
(Maybe CAttr
forall a. Maybe a
Nothing
)
happyReduce_496 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_496 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_496 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
130# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_496
happyReduction_496 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_496 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall a. a -> Maybe a
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 [])})
) (\Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn137 Maybe CAttr
r))
happyReduce_497 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_497 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_497 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
1# Int#
130# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_497
happyReduction_497 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_497 (HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { CToken
happy_var_1 ->
( CToken -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo CToken
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall a. a -> Maybe a
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr (String -> Ident
internalIdent String
"const") [])})
) (\Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn137 Maybe CAttr
r))
happyReduce_498 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_498 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_498 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
4# Int#
130# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_498
happyReduction_498 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_498 (HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
case HappyAbsSyn -> HappyWrap138
happyOut138 HappyAbsSyn
happy_x_3 of { (HappyWrap138 Reversed [CExpr]
happy_var_3) ->
( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall a. a -> Maybe a
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 (Reversed [CExpr] -> [CExpr]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CExpr]
happy_var_3))}})
) (\Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn137 Maybe CAttr
r))
happyReduce_499 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_499 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_499 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyMonadReduce Int#
3# Int#
130# HappyStk HappyAbsSyn -> CToken -> P HappyAbsSyn
forall {p}. HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_499
happyReduction_499 :: HappyStk HappyAbsSyn -> p -> P HappyAbsSyn
happyReduction_499 (HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest) p
tk
= P (Maybe CAttr) -> (Maybe CAttr -> P HappyAbsSyn) -> P HappyAbsSyn
forall a b. P a -> (a -> P b) -> P b
happyThen ((case HappyAbsSyn -> CToken
happyOutTok HappyAbsSyn
happy_x_1 of { (CTokIdent PosLength
_ Ident
happy_var_1) ->
( Ident -> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo Ident
happy_var_1 ((NodeInfo -> Maybe CAttr) -> P (Maybe CAttr))
-> (NodeInfo -> Maybe CAttr) -> P (Maybe CAttr)
forall a b. (a -> b) -> a -> b
$ CAttr -> Maybe CAttr
forall a. a -> Maybe a
Just (CAttr -> Maybe CAttr)
-> (NodeInfo -> CAttr) -> NodeInfo -> Maybe CAttr
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ident -> [CExpr] -> NodeInfo -> CAttr
forall a. Ident -> [CExpression a] -> a -> CAttribute a
CAttr Ident
happy_var_1 [])})
) (\Maybe CAttr
r -> HappyAbsSyn -> P HappyAbsSyn
forall a. a -> P a
happyReturn (Maybe CAttr -> HappyAbsSyn
happyIn137 Maybe CAttr
r))
happyReduce_500 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_500 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_500 = Int#
-> (HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_1 Int#
131# HappyAbsSyn -> HappyAbsSyn
happyReduction_500
happyReduction_500 :: HappyAbsSyn -> HappyAbsSyn
happyReduction_500 HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_1 of { (HappyWrap127 CExpr
happy_var_1) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn138
(CExpr -> Reversed [CExpr]
forall a. a -> Reversed [a]
RList.singleton CExpr
happy_var_1
)}
happyReduce_501 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_501 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_501 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
131# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p} {p}. p -> p -> p -> HappyAbsSyn
happyReduction_501
happyReduction_501 :: p -> p -> p -> HappyAbsSyn
happyReduction_501 p
happy_x_3
p
happy_x_2
p
happy_x_1
= Reversed [CExpr] -> HappyAbsSyn
happyIn138
([CExpr] -> Reversed [CExpr]
forall a. a -> Reversed a
Reversed []
)
happyReduce_502 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_502 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_502 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
131# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p} {p} {p}. p -> p -> p -> HappyAbsSyn
happyReduction_502
happyReduction_502 :: p -> p -> p -> HappyAbsSyn
happyReduction_502 p
happy_x_3
p
happy_x_2
p
happy_x_1
= Reversed [CExpr] -> HappyAbsSyn
happyIn138
([CExpr] -> Reversed [CExpr]
forall a. a -> Reversed a
Reversed []
)
happyReduce_503 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_503 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_503 = Int#
-> (HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happySpecReduce_3 Int#
131# HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn -> HappyAbsSyn
forall {p}. HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_503
happyReduction_503 :: HappyAbsSyn -> p -> HappyAbsSyn -> HappyAbsSyn
happyReduction_503 HappyAbsSyn
happy_x_3
p
happy_x_2
HappyAbsSyn
happy_x_1
= case HappyAbsSyn -> HappyWrap138
happyOut138 HappyAbsSyn
happy_x_1 of { (HappyWrap138 Reversed [CExpr]
happy_var_1) ->
case HappyAbsSyn -> HappyWrap127
happyOut127 HappyAbsSyn
happy_x_3 of { (HappyWrap127 CExpr
happy_var_3) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn138
(Reversed [CExpr]
happy_var_1 Reversed [CExpr] -> CExpr -> Reversed [CExpr]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CExpr
happy_var_3
)}}
happyReduce_504 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_504 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_504 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
131# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_504
happyReduction_504 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_504 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap138
happyOut138 HappyAbsSyn
happy_x_1 of { (HappyWrap138 Reversed [CExpr]
happy_var_1) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn138
(Reversed [CExpr]
happy_var_1
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyReduce_505 :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduce_505 :: Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce_505 = Int#
-> Int#
-> (HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn)
-> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyReduce Int#
5# Int#
131# HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_505
happyReduction_505 :: HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
happyReduction_505 (HappyAbsSyn
happy_x_5 `HappyStk`
HappyAbsSyn
happy_x_4 `HappyStk`
HappyAbsSyn
happy_x_3 `HappyStk`
HappyAbsSyn
happy_x_2 `HappyStk`
HappyAbsSyn
happy_x_1 `HappyStk`
HappyStk HappyAbsSyn
happyRest)
= case HappyAbsSyn -> HappyWrap138
happyOut138 HappyAbsSyn
happy_x_1 of { (HappyWrap138 Reversed [CExpr]
happy_var_1) ->
Reversed [CExpr] -> HappyAbsSyn
happyIn138
(Reversed [CExpr]
happy_var_1
) HappyAbsSyn -> HappyStk HappyAbsSyn -> HappyStk HappyAbsSyn
forall a. a -> HappyStk a -> HappyStk a
`HappyStk` HappyStk HappyAbsSyn
happyRest}
happyNewToken :: Int# -> Happy_IntList -> HappyStk HappyAbsSyn -> P HappyAbsSyn
happyNewToken Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk
= (CToken -> P HappyAbsSyn) -> P HappyAbsSyn
forall a. (CToken -> P a) -> P a
lexC(\CToken
tk ->
let cont :: Int# -> P HappyAbsSyn
cont Int#
i = Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
i CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk in
case CToken
tk of {
CToken
CTokEof -> Int#
-> CToken
-> Int#
-> Happy_IntList
-> HappyStk HappyAbsSyn
-> P HappyAbsSyn
happyDoAction Int#
127# CToken
tk Int#
action Happy_IntList
sts HappyStk HappyAbsSyn
stk;
CTokLParen PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
1#;
CTokRParen PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
2#;
CTokLBracket PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
3#;
CTokRBracket PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
4#;
CTokArrow PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
5#;
CTokDot PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
6#;
CTokExclam PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
7#;
CTokTilde PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
8#;
CTokInc PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
9#;
CTokDec PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
10#;
CTokPlus PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
11#;
CTokMinus PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
12#;
CTokStar PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
13#;
CTokSlash PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
14#;
CTokPercent PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
15#;
CTokAmper PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
16#;
CTokShiftL PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
17#;
CTokShiftR PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
18#;
CTokLess PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
19#;
CTokLessEq PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
20#;
CTokHigh PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
21#;
CTokHighEq PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
22#;
CTokEqual PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
23#;
CTokUnequal PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
24#;
CTokHat PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
25#;
CTokBar PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
26#;
CTokAnd PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
27#;
CTokOr PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
28#;
CTokQuest PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
29#;
CTokColon PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
30#;
CTokAssign PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
31#;
CTokPlusAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
32#;
CTokMinusAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
33#;
CTokStarAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
34#;
CTokSlashAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
35#;
CTokPercAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
36#;
CTokAmpAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
37#;
CTokHatAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
38#;
CTokBarAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
39#;
CTokSLAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
40#;
CTokSRAss PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
41#;
CTokComma PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
42#;
CTokSemic PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
43#;
CTokLBrace PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
44#;
CTokRBrace PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
45#;
CTokEllipsis PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
46#;
CTokAlignof PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
47#;
CTokAlignas PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
48#;
CTokAtomic PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
49#;
CTokAsm PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
50#;
CTokAuto PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
51#;
CTokBreak PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
52#;
CTokBool PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
53#;
CTokCase PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
54#;
CTokChar PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
55#;
CTokConst PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
56#;
CTokContinue PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
57#;
CTokComplex PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
58#;
CTokDefault PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
59#;
CTokDo PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
60#;
CTokDouble PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
61#;
CTokElse PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
62#;
CTokEnum PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
63#;
CTokExtern PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
64#;
CTokFloat PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
65#;
CTokFloatN Int
32 Bool
False PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
66#;
CTokFloatN Int
32 Bool
True PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
67#;
CTokFloatN Int
64 Bool
False PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
68#;
CTokFloatN Int
64 Bool
True PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
69#;
CTokFloatN Int
128 Bool
False PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
70#;
CTokFloatN Int
128 Bool
True PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
71#;
CTokFloatN Int
128 Bool
False PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
72#;
CTokFor PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
73#;
CTokGeneric PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
74#;
CTokGoto PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
75#;
CTokIf PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
76#;
CTokInline PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
77#;
CTokInt PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
78#;
CTokInt128 PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
79#;
CTokInt128 PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
80#;
CTokLong PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
81#;
CTokLabel PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
82#;
CTokNoreturn PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
83#;
CTokNullable PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
84#;
CTokNonnull PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
85#;
CTokRegister PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
86#;
CTokRestrict PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
87#;
CTokReturn PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
88#;
CTokShort PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
89#;
CTokSigned PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
90#;
CTokSizeof PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
91#;
CTokStatic PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
92#;
CTokStaticAssert PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
93#;
CTokStruct PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
94#;
CTokSwitch PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
95#;
CTokTypedef PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
96#;
CTokTypeof PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
97#;
CTokThread PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
98#;
CTokUnion PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
99#;
CTokUInt128 PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
100#;
CTokUInt128 PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
101#;
CTokUnsigned PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
102#;
CTokVoid PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
103#;
CTokVolatile PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
104#;
CTokWhile PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
105#;
CTokCLit PosLength
_ CChar
_ -> Int# -> P HappyAbsSyn
cont Int#
106#;
CTokILit PosLength
_ CInteger
_ -> Int# -> P HappyAbsSyn
cont Int#
107#;
CTokFLit PosLength
_ CFloat
_ -> Int# -> P HappyAbsSyn
cont Int#
108#;
CTokSLit PosLength
_ CString
_ -> Int# -> P HappyAbsSyn
cont Int#
109#;
CTokIdent PosLength
_ Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont Int#
110#;
CTokTyIdent PosLength
_ Ident
happy_dollar_dollar -> Int# -> P HappyAbsSyn
cont Int#
111#;
CTokGnuC GnuCTok
GnuCAttrTok PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
112#;
CTokGnuC GnuCTok
GnuCExtTok PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
113#;
CTokGnuC GnuCTok
GnuCComplexReal PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
114#;
CTokGnuC GnuCTok
GnuCComplexImag PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
115#;
CTokGnuC GnuCTok
GnuCVaArg PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
116#;
CTokGnuC GnuCTok
GnuCOffsetof PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
117#;
CTokGnuC GnuCTok
GnuCTyCompat PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
118#;
CTokClangC PosLength
_ ClangCTok
ClangBuiltinConvertVector -> Int# -> P HappyAbsSyn
cont Int#
119#;
CTokClangC PosLength
_ (ClangCVersionTok ClangCVersion
happy_dollar_dollar) -> Int# -> P HappyAbsSyn
cont Int#
120#;
CTokClangC PosLength
_ ClangCTok
ClangCBitCast -> Int# -> P HappyAbsSyn
cont Int#
121#;
CTokClKernel PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
122#;
CTokClRdOnly PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
123#;
CTokClWrOnly PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
124#;
CTokClGlobal PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
125#;
CTokClLocal PosLength
_ -> Int# -> P HappyAbsSyn
cont Int#
126#;
CToken
_ -> (CToken, [String]) -> P HappyAbsSyn
forall a. (CToken, [String]) -> P a
happyError' (CToken
tk, [])
})
happyError_ :: [String] -> Int# -> CToken -> P a
happyError_ [String]
explist Int#
127# CToken
tk = (CToken, [String]) -> P a
forall a. (CToken, [String]) -> P a
happyError' (CToken
tk, [String]
explist)
happyError_ [String]
explist Int#
_ CToken
tk = (CToken, [String]) -> P a
forall a. (CToken, [String]) -> P a
happyError' (CToken
tk, [String]
explist)
happyThen :: () => P a -> (a -> P b) -> P b
happyThen :: forall a b. P a -> (a -> P b) -> P b
happyThen = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
(>>=)
happyReturn :: () => a -> P a
happyReturn :: forall a. a -> P a
happyReturn = (a -> P a
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return)
happyParse :: () => Happy_GHC_Exts.Int# -> P (HappyAbsSyn )
happyNewToken :: () => Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyDoAction :: () => Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn )
happyReduceArr :: () => Happy_Data_Array.Array Prelude.Int (Happy_GHC_Exts.Int# -> CToken -> Happy_GHC_Exts.Int# -> Happy_IntList -> HappyStk (HappyAbsSyn ) -> P (HappyAbsSyn ))
happyThen1 :: () => P a -> (a -> P b) -> P b
happyThen1 :: forall a b. P a -> (a -> P b) -> P b
happyThen1 = P a -> (a -> P b) -> P b
forall a b. P a -> (a -> P b) -> P b
happyThen
happyReturn1 :: () => a -> P a
happyReturn1 :: forall a. a -> P a
happyReturn1 = a -> P a
forall a. a -> P a
happyReturn
happyError' :: () => ((CToken), [Prelude.String]) -> P a
happyError' :: forall a. (CToken, [String]) -> P a
happyError' (CToken, [String])
tk = (\(CToken
tokens, [String]
explist) -> P a
forall a. P a
happyError) (CToken, [String])
tk
translation_unit :: P CTranslUnit
translation_unit = P CTranslUnit
happySomeParser where
happySomeParser :: P CTranslUnit
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CTranslUnit) -> P CTranslUnit
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
0#) (\HappyAbsSyn
x -> CTranslUnit -> P CTranslUnit
forall a. a -> P a
happyReturn (let {(HappyWrap7 CTranslUnit
x') = HappyAbsSyn -> HappyWrap7
happyOut7 HappyAbsSyn
x} in CTranslUnit
x'))
external_declaration :: P CExtDecl
external_declaration = P CExtDecl
happySomeParser where
happySomeParser :: P CExtDecl
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CExtDecl) -> P CExtDecl
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
1#) (\HappyAbsSyn
x -> CExtDecl -> P CExtDecl
forall a. a -> P a
happyReturn (let {(HappyWrap9 CExtDecl
x') = HappyAbsSyn -> HappyWrap9
happyOut9 HappyAbsSyn
x} in CExtDecl
x'))
statement :: P CStat
statement = P CStat
happySomeParser where
happySomeParser :: P CStat
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CStat) -> P CStat
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
2#) (\HappyAbsSyn
x -> CStat -> P CStat
forall a. a -> P a
happyReturn (let {(HappyWrap12 CStat
x') = HappyAbsSyn -> HappyWrap12
happyOut12 HappyAbsSyn
x} in CStat
x'))
expression :: P CExpr
expression = P CExpr
happySomeParser where
happySomeParser :: P CExpr
happySomeParser = P HappyAbsSyn -> (HappyAbsSyn -> P CExpr) -> P CExpr
forall a b. P a -> (a -> P b) -> P b
happyThen (Int# -> P HappyAbsSyn
happyParse Int#
3#) (\HappyAbsSyn
x -> CExpr -> P CExpr
forall a. a -> P a
happyReturn (let {(HappyWrap123 CExpr
x') = HappyAbsSyn -> HappyWrap123
happyOut123 HappyAbsSyn
x} in CExpr
x'))
happySeq :: a -> b -> b
happySeq = a -> b -> b
forall a b. a -> b -> b
happyDontSeq
reverseList :: [a] -> Reversed [a]
reverseList :: forall a. [a] -> Reversed [a]
reverseList = [a] -> Reversed [a]
forall a. a -> Reversed a
Reversed ([a] -> Reversed [a]) -> ([a] -> [a]) -> [a] -> Reversed [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [a] -> [a]
forall a. [a] -> [a]
List.reverse
data Located a = L !a !Position
unL :: Located a -> a
unL :: forall a. Located a -> a
unL (L a
a Position
pos) = a
a
instance Pos (Located a) where
posOf :: Located a -> Position
posOf (L a
_ Position
pos) = Position
pos
{-# INLINE withNodeInfo #-}
withNodeInfo :: Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo :: forall node a. Pos node => node -> (NodeInfo -> a) -> P a
withNodeInfo node
node NodeInfo -> a
mkAttrNode = do
Name
name <- P Name
getNewName
CToken
lastTok <- P CToken
getSavedToken
let firstPos :: Position
firstPos = node -> Position
forall a. Pos a => a -> Position
posOf node
node
let attrs :: NodeInfo
attrs = Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
firstPos (CToken -> PosLength
posLenOfTok (CToken -> PosLength) -> CToken -> PosLength
forall a b. (a -> b) -> a -> b
$! CToken
lastTok) Name
name
NodeInfo
attrs NodeInfo -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (NodeInfo -> a
mkAttrNode NodeInfo
attrs)
{-# INLINE withLength #-}
withLength :: NodeInfo -> (NodeInfo -> a) -> P a
withLength :: forall a. NodeInfo -> (NodeInfo -> a) -> P a
withLength NodeInfo
nodeinfo NodeInfo -> a
mkAttrNode = do
CToken
lastTok <- P CToken
getSavedToken
let firstPos :: Position
firstPos = NodeInfo -> Position
posOfNode NodeInfo
nodeinfo
let attrs :: NodeInfo
attrs = Position -> PosLength -> Name -> NodeInfo
mkNodeInfo' Position
firstPos (CToken -> PosLength
posLenOfTok (CToken -> PosLength) -> CToken -> PosLength
forall a b. (a -> b) -> a -> b
$! CToken
lastTok)
(Name -> (Name -> Name) -> Maybe Name -> Name
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (String -> Name
forall a. HasCallStack => String -> a
error String
"nameOfNode") Name -> Name
forall a. a -> a
id (NodeInfo -> Maybe Name
nameOfNode NodeInfo
nodeinfo))
NodeInfo
attrs NodeInfo -> P a -> P a
forall a b. a -> b -> b
`seq` a -> P a
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (NodeInfo -> a
mkAttrNode NodeInfo
attrs)
data CDeclrR = CDeclrR (Maybe Ident) (Reversed [CDerivedDeclr]) (Maybe CStrLit) [CAttr] NodeInfo
reverseDeclr :: CDeclrR -> CDeclr
reverseDeclr :: CDeclrR -> CDeclr
reverseDeclr (CDeclrR Maybe Ident
ide Reversed [CDerivedDeclarator NodeInfo]
reversedDDs Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at)
= Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
ide (Reversed [CDerivedDeclarator NodeInfo]
-> [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> [a]
RList.reverse Reversed [CDerivedDeclarator NodeInfo]
reversedDDs) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at
instance CNode (CDeclrR) where
nodeInfo :: CDeclrR -> NodeInfo
nodeInfo (CDeclrR Maybe Ident
_ Reversed [CDerivedDeclarator NodeInfo]
_ Maybe CStrLit
_ [CAttr]
_ NodeInfo
n) = NodeInfo
n
instance Pos (CDeclrR) where
posOf :: CDeclrR -> Position
posOf (CDeclrR Maybe Ident
_ Reversed [CDerivedDeclarator NodeInfo]
_ Maybe CStrLit
_ [CAttr]
_ NodeInfo
n) = NodeInfo -> Position
forall a. Pos a => a -> Position
posOf NodeInfo
n
{-# INLINE withAttribute #-}
withAttribute :: Pos node => node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute :: forall node.
Pos node =>
node -> [CAttr] -> (NodeInfo -> CDeclrR) -> P CDeclrR
withAttribute node
node [CAttr]
cattrs NodeInfo -> CDeclrR
mkDeclrNode = do
Name
name <- P Name
getNewName
let attrs :: NodeInfo
attrs = Position -> Name -> NodeInfo
mkNodeInfo (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
let newDeclr :: CDeclrR
newDeclr = [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
cattrs (CDeclrR -> CDeclrR) -> CDeclrR -> CDeclrR
forall a b. (a -> b) -> a -> b
$ NodeInfo -> CDeclrR
mkDeclrNode NodeInfo
attrs
NodeInfo
attrs NodeInfo -> P CDeclrR -> P CDeclrR
forall a b. a -> b -> b
`seq` CDeclrR
newDeclr CDeclrR -> P CDeclrR -> P CDeclrR
forall a b. a -> b -> b
`seq` CDeclrR -> P CDeclrR
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclrR
newDeclr
{-# INLINE withAttributePF #-}
withAttributePF :: Pos node => node -> [CAttr] -> (NodeInfo -> CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
withAttributePF :: forall node.
Pos node =>
node
-> [CAttr]
-> (NodeInfo -> CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR)
withAttributePF node
node [CAttr]
cattrs NodeInfo -> CDeclrR -> CDeclrR
mkDeclrCtor = do
Name
name <- P Name
getNewName
let attrs :: NodeInfo
attrs = Position -> Name -> NodeInfo
mkNodeInfo (node -> Position
forall a. Pos a => a -> Position
posOf node
node) Name
name
let newDeclr :: CDeclrR -> CDeclrR
newDeclr = [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
cattrs (CDeclrR -> CDeclrR) -> (CDeclrR -> CDeclrR) -> CDeclrR -> CDeclrR
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NodeInfo -> CDeclrR -> CDeclrR
mkDeclrCtor NodeInfo
attrs
NodeInfo
attrs NodeInfo -> P (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. a -> b -> b
`seq` CDeclrR -> CDeclrR
newDeclr (CDeclrR -> CDeclrR)
-> P (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a b. a -> b -> b
`seq` (CDeclrR -> CDeclrR) -> P (CDeclrR -> CDeclrR)
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return CDeclrR -> CDeclrR
newDeclr
appendObjAttrs :: [CAttr] -> CDeclr -> CDeclr
appendObjAttrs :: [CAttr] -> CDeclr -> CDeclr
appendObjAttrs [CAttr]
newAttrs (CDeclr Maybe Ident
ident [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname [CAttr]
cAttrs NodeInfo
at)
= Maybe Ident
-> [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclr
forall a.
Maybe Ident
-> [CDerivedDeclarator a]
-> Maybe (CStringLiteral a)
-> [CAttribute a]
-> a
-> CDeclarator a
CDeclr Maybe Ident
ident [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname ([CAttr]
cAttrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
appendObjAttrsR :: [CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR :: [CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR [CAttr]
newAttrs (CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname [CAttr]
cAttrs NodeInfo
at)
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
asmname ([CAttr]
cAttrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
setAsmName :: Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName :: Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName Maybe CStrLit
mAsmName (CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
oldName [CAttr]
cattrs NodeInfo
at) =
case Maybe CStrLit
-> Maybe CStrLit -> Either (CStrLit, CStrLit) (Maybe CStrLit)
forall {b}. Maybe b -> Maybe b -> Either (b, b) (Maybe b)
combineName Maybe CStrLit
mAsmName Maybe CStrLit
oldName of
Left (CStrLit
n1,CStrLit
n2) -> Position -> [String] -> P CDeclrR
forall a. Position -> [String] -> P a
failP (CStrLit -> Position
forall a. Pos a => a -> Position
posOf CStrLit
n2) [String
"Duplicate assembler name: ",CStrLit -> String
forall {a}. CStringLiteral a -> String
showName CStrLit
n1,CStrLit -> String
forall {a}. CStringLiteral a -> String
showName CStrLit
n2]
Right Maybe CStrLit
newName -> CDeclrR -> P CDeclrR
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return (CDeclrR -> P CDeclrR) -> CDeclrR -> P CDeclrR
forall a b. (a -> b) -> a -> b
$ Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
indirections Maybe CStrLit
newName [CAttr]
cattrs NodeInfo
at
where
combineName :: Maybe b -> Maybe b -> Either (b, b) (Maybe b)
combineName Maybe b
Nothing Maybe b
Nothing = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
forall a. Maybe a
Nothing
combineName Maybe b
Nothing oldname :: Maybe b
oldname@(Just b
_) = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
oldname
combineName newname :: Maybe b
newname@(Just b
_) Maybe b
Nothing = Maybe b -> Either (b, b) (Maybe b)
forall a b. b -> Either a b
Right Maybe b
newname
combineName (Just b
n1) (Just b
n2) = (b, b) -> Either (b, b) (Maybe b)
forall a b. a -> Either a b
Left (b
n1,b
n2)
showName :: CStringLiteral a -> String
showName (CStrLit CString
cstr a
_) = CString -> String
forall a. Show a => a -> String
show CString
cstr
withAsmNameAttrs :: (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs :: (Maybe CStrLit, [CAttr]) -> CDeclrR -> P CDeclrR
withAsmNameAttrs (Maybe CStrLit
mAsmName, [CAttr]
newAttrs) CDeclrR
declr = Maybe CStrLit -> CDeclrR -> P CDeclrR
setAsmName Maybe CStrLit
mAsmName ([CAttr] -> CDeclrR -> CDeclrR
appendObjAttrsR [CAttr]
newAttrs CDeclrR
declr)
appendDeclrAttrs :: [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs :: [CAttr] -> CDeclrR -> CDeclrR
appendDeclrAttrs [CAttr]
newAttrs (CDeclrR Maybe Ident
ident (Reversed []) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at)
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
RList.empty Maybe CStrLit
asmname ([CAttr]
cattrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
appendDeclrAttrs [CAttr]
newAttrs (CDeclrR Maybe Ident
ident (Reversed (CDerivedDeclarator NodeInfo
x:[CDerivedDeclarator NodeInfo]
xs)) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at)
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident ([CDerivedDeclarator NodeInfo]
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. a -> Reversed a
Reversed (CDerivedDeclarator NodeInfo -> CDerivedDeclarator NodeInfo
appendAttrs CDerivedDeclarator NodeInfo
x CDerivedDeclarator NodeInfo
-> [CDerivedDeclarator NodeInfo] -> [CDerivedDeclarator NodeInfo]
forall a. a -> [a] -> [a]
: [CDerivedDeclarator NodeInfo]
xs)) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
at where
appendAttrs :: CDerivedDeclarator NodeInfo -> CDerivedDeclarator NodeInfo
appendAttrs (CPtrDeclr [CTypeQual]
typeQuals NodeInfo
at) = [CTypeQual] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a. [CTypeQualifier a] -> a -> CDerivedDeclarator a
CPtrDeclr ([CTypeQual]
typeQuals [CTypeQual] -> [CTypeQual] -> [CTypeQual]
forall a. [a] -> [a] -> [a]
++ (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
newAttrs) NodeInfo
at
appendAttrs (CArrDeclr [CTypeQual]
typeQuals CArraySize NodeInfo
arraySize NodeInfo
at) = [CTypeQual]
-> CArraySize NodeInfo -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
[CTypeQualifier a] -> CArraySize a -> a -> CDerivedDeclarator a
CArrDeclr ([CTypeQual]
typeQuals [CTypeQual] -> [CTypeQual] -> [CTypeQual]
forall a. [a] -> [a] -> [a]
++ (CAttr -> CTypeQual) -> [CAttr] -> [CTypeQual]
forall a b. (a -> b) -> [a] -> [b]
map CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual [CAttr]
newAttrs) CArraySize NodeInfo
arraySize NodeInfo
at
appendAttrs (CFunDeclr Either [Ident] ([CDecl], Bool)
parameters [CAttr]
cattrs NodeInfo
at) = Either [Ident] ([CDecl], Bool)
-> [CAttr] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
Either [Ident] ([CDeclaration a], Bool)
-> [CAttribute a] -> a -> CDerivedDeclarator a
CFunDeclr Either [Ident] ([CDecl], Bool)
parameters ([CAttr]
cattrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
newAttrs) NodeInfo
at
ptrDeclr :: CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr :: CDeclrR -> [CTypeQual] -> NodeInfo -> CDeclrR
ptrDeclr (CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat) [CTypeQual]
tyquals NodeInfo
at
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` [CTypeQual] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a. [CTypeQualifier a] -> a -> CDerivedDeclarator a
CPtrDeclr [CTypeQual]
tyquals NodeInfo
at) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat
funDeclr :: CDeclrR -> (Either [Ident] ([CDecl],Bool)) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr :: CDeclrR
-> Either [Ident] ([CDecl], Bool) -> [CAttr] -> NodeInfo -> CDeclrR
funDeclr (CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Maybe CStrLit
asmname [CAttr]
dcattrs NodeInfo
dat) Either [Ident] ([CDecl], Bool)
params [CAttr]
cattrs NodeInfo
at
= Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` Either [Ident] ([CDecl], Bool)
-> [CAttr] -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
Either [Ident] ([CDeclaration a], Bool)
-> [CAttribute a] -> a -> CDerivedDeclarator a
CFunDeclr Either [Ident] ([CDecl], Bool)
params [CAttr]
cattrs NodeInfo
at) Maybe CStrLit
asmname [CAttr]
dcattrs NodeInfo
dat
arrDeclr :: CDeclrR -> [CTypeQual] -> Bool -> Bool -> Maybe CExpr -> NodeInfo -> CDeclrR
arrDeclr :: CDeclrR
-> [CTypeQual]
-> Bool
-> Bool
-> Maybe CExpr
-> NodeInfo
-> CDeclrR
arrDeclr (CDeclrR Maybe Ident
ident Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat) [CTypeQual]
tyquals Bool
var_sized Bool
static_size Maybe CExpr
size_expr_opt NodeInfo
at
= CArraySize NodeInfo
arr_sz CArraySize NodeInfo -> CDeclrR -> CDeclrR
forall a b. a -> b -> b
`seq` ( Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
ident (Reversed [CDerivedDeclarator NodeInfo]
derivedDeclrs Reversed [CDerivedDeclarator NodeInfo]
-> CDerivedDeclarator NodeInfo
-> Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` [CTypeQual]
-> CArraySize NodeInfo -> NodeInfo -> CDerivedDeclarator NodeInfo
forall a.
[CTypeQualifier a] -> CArraySize a -> a -> CDerivedDeclarator a
CArrDeclr [CTypeQual]
tyquals CArraySize NodeInfo
arr_sz NodeInfo
at) Maybe CStrLit
asmname [CAttr]
cattrs NodeInfo
dat )
where
arr_sz :: CArraySize NodeInfo
arr_sz = case Maybe CExpr
size_expr_opt of
Just CExpr
e -> Bool -> CExpr -> CArraySize NodeInfo
forall a. Bool -> CExpression a -> CArraySize a
CArrSize Bool
static_size CExpr
e
Maybe CExpr
Nothing -> Bool -> CArraySize NodeInfo
forall a. Bool -> CArraySize a
CNoArrSize Bool
var_sized
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals :: Reversed [CTypeQual] -> [CDeclSpec]
liftTypeQuals = (CTypeQual -> CDeclSpec) -> [CTypeQual] -> [CDeclSpec]
forall a b. (a -> b) -> [a] -> [b]
map CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual ([CTypeQual] -> [CDeclSpec])
-> (Reversed [CTypeQual] -> [CTypeQual])
-> Reversed [CTypeQual]
-> [CDeclSpec]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Reversed [CTypeQual] -> [CTypeQual]
forall a. Reversed [a] -> [a]
RList.reverse
liftCAttrs :: [CAttr] -> [CDeclSpec]
liftCAttrs :: [CAttr] -> [CDeclSpec]
liftCAttrs = (CAttr -> CDeclSpec) -> [CAttr] -> [CDeclSpec]
forall a b. (a -> b) -> [a] -> [b]
map (CTypeQual -> CDeclSpec
forall a. CTypeQualifier a -> CDeclarationSpecifier a
CTypeQual (CTypeQual -> CDeclSpec)
-> (CAttr -> CTypeQual) -> CAttr -> CDeclSpec
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CAttr -> CTypeQual
forall a. CAttribute a -> CTypeQualifier a
CAttrQual)
addTrailingAttrs :: Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs :: Reversed [CDeclSpec] -> [CAttr] -> Reversed [CDeclSpec]
addTrailingAttrs Reversed [CDeclSpec]
declspecs [CAttr]
new_attrs =
case Reversed [CDeclSpec] -> (Reversed [CDeclSpec], CDeclSpec)
forall a. Reversed [a] -> (Reversed [a], a)
RList.viewr Reversed [CDeclSpec]
declspecs of
(Reversed [CDeclSpec]
specs_init, CTypeSpec (CSUType (CStruct CStructTag
tag Maybe Ident
name (Just [CDecl]
def) [CAttr]
def_attrs NodeInfo
su_node) NodeInfo
node))
-> (Reversed [CDeclSpec]
specs_init Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CStructUnion -> NodeInfo -> CTypeSpec
forall a. CStructureUnion a -> a -> CTypeSpecifier a
CSUType (CStructTag
-> Maybe Ident
-> Maybe [CDecl]
-> [CAttr]
-> NodeInfo
-> CStructUnion
forall a.
CStructTag
-> Maybe Ident
-> Maybe [CDeclaration a]
-> [CAttribute a]
-> a
-> CStructureUnion a
CStruct CStructTag
tag Maybe Ident
name ([CDecl] -> Maybe [CDecl]
forall a. a -> Maybe a
Just [CDecl]
def) ([CAttr]
def_attrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
new_attrs) NodeInfo
su_node) NodeInfo
node))
(Reversed [CDeclSpec]
specs_init, CTypeSpec (CEnumType (CEnum Maybe Ident
name (Just [(Ident, Maybe CExpr)]
def) [CAttr]
def_attrs NodeInfo
e_node) NodeInfo
node))
-> (Reversed [CDeclSpec]
specs_init Reversed [CDeclSpec] -> CDeclSpec -> Reversed [CDeclSpec]
forall a. Reversed [a] -> a -> Reversed [a]
`RList.snoc` CTypeSpec -> CDeclSpec
forall a. CTypeSpecifier a -> CDeclarationSpecifier a
CTypeSpec (CEnum -> NodeInfo -> CTypeSpec
forall a. CEnumeration a -> a -> CTypeSpecifier a
CEnumType (Maybe Ident
-> Maybe [(Ident, Maybe CExpr)] -> [CAttr] -> NodeInfo -> CEnum
forall a.
Maybe Ident
-> Maybe [(Ident, Maybe (CExpression a))]
-> [CAttribute a]
-> a
-> CEnumeration a
CEnum Maybe Ident
name ([(Ident, Maybe CExpr)] -> Maybe [(Ident, Maybe CExpr)]
forall a. a -> Maybe a
Just [(Ident, Maybe CExpr)]
def) ([CAttr]
def_attrs [CAttr] -> [CAttr] -> [CAttr]
forall a. [a] -> [a] -> [a]
++ [CAttr]
new_attrs) NodeInfo
e_node) NodeInfo
node))
(Reversed [CDeclSpec], CDeclSpec)
_ -> Reversed [CDeclSpec]
declspecs Reversed [CDeclSpec] -> [CDeclSpec] -> Reversed [CDeclSpec]
forall a. Reversed [a] -> [a] -> Reversed [a]
`RList.rappend` ([CAttr] -> [CDeclSpec]
liftCAttrs [CAttr]
new_attrs)
instance Pos a => Pos [a] where
posOf :: [a] -> Position
posOf (a
x:[a]
_) = a -> Position
forall a. Pos a => a -> Position
posOf a
x
instance Pos a => Pos (Reversed a) where
posOf :: Reversed a -> Position
posOf (Reversed a
x) = a -> Position
forall a. Pos a => a -> Position
posOf a
x
emptyDeclr :: CDeclrR
emptyDeclr :: CDeclrR
emptyDeclr = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR Maybe Ident
forall a. Maybe a
Nothing Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
RList.empty Maybe CStrLit
forall a. Maybe a
Nothing [] NodeInfo
undefNode
mkVarDeclr :: Ident -> NodeInfo -> CDeclrR
mkVarDeclr :: Ident -> NodeInfo -> CDeclrR
mkVarDeclr Ident
ident = Maybe Ident
-> Reversed [CDerivedDeclarator NodeInfo]
-> Maybe CStrLit
-> [CAttr]
-> NodeInfo
-> CDeclrR
CDeclrR (Ident -> Maybe Ident
forall a. a -> Maybe a
Just Ident
ident) Reversed [CDerivedDeclarator NodeInfo]
forall a. Reversed [a]
RList.empty Maybe CStrLit
forall a. Maybe a
Nothing []
doDeclIdent :: [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent :: [CDeclSpec] -> CDeclrR -> P ()
doDeclIdent [CDeclSpec]
declspecs (CDeclrR Maybe Ident
mIdent Reversed [CDerivedDeclarator NodeInfo]
_ Maybe CStrLit
_ [CAttr]
_ NodeInfo
_) =
case Maybe Ident
mIdent of
Maybe Ident
Nothing -> () -> P ()
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Just Ident
ident | (CDeclSpec -> Bool) -> [CDeclSpec] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any CDeclSpec -> Bool
forall {a}. CDeclarationSpecifier a -> Bool
iypedef [CDeclSpec]
declspecs -> Ident -> P ()
addTypedef Ident
ident
| Bool
otherwise -> Ident -> P ()
shadowTypedef Ident
ident
where iypedef :: CDeclarationSpecifier a -> Bool
iypedef (CStorageSpec (CTypedef a
_)) = Bool
True
iypedef CDeclarationSpecifier a
_ = Bool
False
doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent :: CDeclr -> P ()
doFuncParamDeclIdent (CDeclr Maybe Ident
_ (CFunDeclr Either [Ident] ([CDecl], Bool)
params [CAttr]
_ NodeInfo
_ : [CDerivedDeclarator NodeInfo]
_) Maybe CStrLit
_ [CAttr]
_ NodeInfo
_) =
[P ()] -> P ()
forall (t :: * -> *) (m :: * -> *) a.
(Foldable t, Monad m) =>
t (m a) -> m ()
sequence_
[ case CDeclr -> Maybe Ident
getCDeclrIdent CDeclr
declr of
Maybe Ident
Nothing -> () -> P ()
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Just Ident
ident -> Ident -> P ()
shadowTypedef Ident
ident
| CDecl [CDeclSpec]
_ [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle NodeInfo
_ <- ([Ident] -> [CDecl])
-> (([CDecl], Bool) -> [CDecl])
-> Either [Ident] ([CDecl], Bool)
-> [CDecl]
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either ([CDecl] -> [Ident] -> [CDecl]
forall a b. a -> b -> a
const []) ([CDecl], Bool) -> [CDecl]
forall a b. (a, b) -> a
fst Either [Ident] ([CDecl], Bool)
params
, (Just CDeclr
declr, Maybe CInit
_, Maybe CExpr
_) <- [(Maybe CDeclr, Maybe CInit, Maybe CExpr)]
dle ]
doFuncParamDeclIdent CDeclr
_ = () -> P ()
forall a. a -> P a
forall (m :: * -> *) a. Monad m => a -> m a
return ()
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent :: CDeclr -> Maybe Ident
getCDeclrIdent (CDeclr Maybe Ident
mIdent [CDerivedDeclarator NodeInfo]
_ Maybe CStrLit
_ [CAttr]
_ NodeInfo
_) = Maybe Ident
mIdent
happyError :: P a
happyError :: forall a. P a
happyError = P a
forall a. P a
parseError
parseC :: InputStream -> Position -> Either ParseError CTranslUnit
parseC :: InputStream -> Position -> Either ParseError CTranslUnit
parseC InputStream
input Position
initialPosition =
((CTranslUnit, [Name]) -> CTranslUnit)
-> Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit
forall a b. (a -> b) -> Either ParseError a -> Either ParseError b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (CTranslUnit, [Name]) -> CTranslUnit
forall a b. (a, b) -> a
fst (Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit)
-> Either ParseError (CTranslUnit, [Name])
-> Either ParseError CTranslUnit
forall a b. (a -> b) -> a -> b
$ P CTranslUnit
-> InputStream
-> Position
-> [Ident]
-> [Name]
-> Either ParseError (CTranslUnit, [Name])
forall a.
P a
-> InputStream
-> Position
-> [Ident]
-> [Name]
-> Either ParseError (a, [Name])
execParser P CTranslUnit
translUnitP InputStream
input Position
initialPosition [Ident]
builtinTypeNames (Int -> [Name]
namesStartingFrom Int
0)
translUnitP :: P CTranslUnit
translUnitP :: P CTranslUnit
translUnitP = P CTranslUnit
translation_unit
extDeclP :: P CExtDecl
extDeclP :: P CExtDecl
extDeclP = P CExtDecl
external_declaration
statementP :: P CStat
statementP :: P CStat
statementP = P CStat
statement
expressionP :: P CExpr
expressionP :: P CExpr
expressionP = P CExpr
expression
{-# LINE 1 "templates/GenericTemplate.hs" #-}
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Prelude.Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Prelude.Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Prelude.Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList
infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)
happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
(happyTcHack j (happyTcHack st)) (happyReturn1 ans)
happyDoAction i tk st
=
case action of
0# ->
happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Prelude.Int)) i tk st
-1# ->
happyAccept i tk st
n | LT(n,(0# :: Happy_GHC_Exts.Int#)) ->
(happyReduceArr Happy_Data_Array.! rule) i tk st
where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
n ->
happyShift new_state i tk st
where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
where off = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
off_i = (off Happy_GHC_Exts.+# i)
check = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
then EQ(indexShortOffAddr happyCheck off_i, i)
else Prelude.False
action
| check = indexShortOffAddr happyTable off_i
| Prelude.otherwise = indexShortOffAddr happyDefActions st
indexShortOffAddr (HappyA# arr) off =
Happy_GHC_Exts.narrow16Int# i
where
i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
low = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
off' = off Happy_GHC_Exts.*# 2#
{-# INLINE happyLt #-}
happyLt x y = LT(x,y)
readArrayBit arr bit =
Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `Prelude.mod` 16)
where unbox_int (Happy_GHC_Exts.I# x) = x
data HappyAddr = HappyA# Happy_GHC_Exts.Addr#
happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)
happyShift new_state i tk st sts stk =
happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)
happySpecReduce_0 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
= happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)
happySpecReduce_1 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
= let r = fn v1 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_2 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
= let r = fn v1 v2 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happySpecReduce_3 i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
= let r = fn v1 v2 v3 in
happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))
happyReduce k i fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
= case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
sts1@((HappyCons (st1@(action)) (_))) ->
let r = fn stk in
happyDoSeq r (happyGoto nt j tk st1 sts1 r)
happyMonadReduce k nt fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk in
happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))
happyMonad2Reduce k nt fn 0# tk st sts stk
= happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
case happyDrop k (HappyCons (st) (sts)) of
sts1@((HappyCons (st1@(action)) (_))) ->
let drop_stk = happyDropStk k stk
off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
in
happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))
happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t
happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs
happyGoto nt j tk st =
happyDoAction j tk new_state
where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
off_i = (off Happy_GHC_Exts.+# nt)
new_state = indexShortOffAddr happyTable off_i
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
happyError_ explist i tk
happyFail explist i tk (action) sts stk =
happyDoAction 0# tk action sts ((Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)
notHappyAtAll :: a
notHappyAtAll = Prelude.error "Internal Happy error\n"
happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}
happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq a b = a `Prelude.seq` b
happyDontSeq a b = b
{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}
{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}