{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE FlexibleContexts #-}
module Lambdabot.Plugin.Haskell.Pl.Transform (
transform,
) where
import Lambdabot.Plugin.Haskell.Pl.Common
import qualified Data.Map as M
import Data.Graph (stronglyConnComp, flattenSCC, flattenSCCs)
import Control.Monad.State
occursP :: String -> Pattern -> Bool
occursP v (PVar v') = v == v'
occursP v (PTuple p1 p2) = v `occursP` p1 || v `occursP` p2
occursP v (PCons p1 p2) = v `occursP` p1 || v `occursP` p2
freeIn :: String -> Expr -> Int
freeIn v (Var _ v') = fromEnum $ v == v'
freeIn v (Lambda pat e) = if v `occursP` pat then 0 else freeIn v e
freeIn v (App e1 e2) = freeIn v e1 + freeIn v e2
freeIn v (Let ds e') = if v `elem` map declName ds then 0
else freeIn v e' + sum [freeIn v e | Define _ e <- ds]
isFreeIn :: String -> Expr -> Bool
isFreeIn v e = freeIn v e > 0
tuple :: [Expr] -> Expr
tuple es = foldr1 (\x y -> Var Inf "," `App` x `App` y) es
tupleP :: [String] -> Pattern
tupleP vs = foldr1 PTuple $ PVar `map` vs
dependsOn :: [Decl] -> Decl -> [Decl]
dependsOn ds d = [d' | d' <- ds, declName d' `isFreeIn` declExpr d]
unLet :: Expr -> Expr
unLet (App e1 e2) = App (unLet e1) (unLet e2)
unLet (Let [] e) = unLet e
unLet (Let ds e) = unLet $
(Lambda (tupleP $ declName `map` dsYes) (Let dsNo e)) `App`
(fix' `App` (Lambda (tupleP $ declName `map` dsYes)
(tuple $ declExpr `map` dsYes)))
where
comps = stronglyConnComp [(d',d',dependsOn ds d') | d' <- ds]
dsYes = flattenSCC $ head comps
dsNo = flattenSCCs $ tail comps
unLet (Lambda v e) = Lambda v (unLet e)
unLet (Var f x) = Var f x
type Env = M.Map String String
alphaRename :: Expr -> Expr
alphaRename e = alpha e `evalState` M.empty where
alpha :: Expr -> State Env Expr
alpha (Var f v) = do fm <- get; return $ Var f $ maybe v id (M.lookup v fm)
alpha (App e1 e2) = liftM2 App (alpha e1) (alpha e2)
alpha (Let _ _) = assert False undefined
alpha (Lambda v e') = inEnv $ liftM2 Lambda (alphaPat v) (alpha e')
inEnv :: State s a -> State s a
inEnv f = state $ \s -> (fst $ runState f s, s)
alphaPat (PVar v) = do
fm <- get
let v' = "$" ++ show (M.size fm)
put $ M.insert v v' fm
return $ PVar v'
alphaPat (PTuple p1 p2) = liftM2 PTuple (alphaPat p1) (alphaPat p2)
alphaPat (PCons p1 p2) = liftM2 PCons (alphaPat p1) (alphaPat p2)
transform :: Expr -> Expr
transform = transform' . alphaRename . unLet
transform' :: Expr -> Expr
transform' (Let {}) = assert False undefined
transform' (Var f v) = Var f v
transform' (App e1 e2) = App (transform' e1) (transform' e2)
transform' (Lambda (PTuple p1 p2) e)
= transform' $ Lambda (PVar "z") $
(Lambda p1 $ Lambda p2 $ e) `App` f `App` s where
f = Var Pref "fst" `App` Var Pref "z"
s = Var Pref "snd" `App` Var Pref "z"
transform' (Lambda (PCons p1 p2) e)
= transform' $ Lambda (PVar "z") $
(Lambda p1 $ Lambda p2 $ e) `App` f `App` s where
f = Var Pref "head" `App` Var Pref "z"
s = Var Pref "tail" `App` Var Pref "z"
transform' (Lambda (PVar v) e) = transform' $ getRidOfV e where
getRidOfV (Var f v') | v == v' = id'
| otherwise = const' `App` Var f v'
getRidOfV l@(Lambda pat _) = assert (not $ v `occursP` pat) $
getRidOfV $ transform' l
getRidOfV (Let {}) = assert False bt
getRidOfV e'@(App e1 e2)
| fr1 && fr2 = scomb `App` getRidOfV e1 `App` getRidOfV e2
| fr1 = flip' `App` getRidOfV e1 `App` e2
| Var _ v' <- e2, v' == v = e1
| fr2 = comp `App` e1 `App` getRidOfV e2
| True = const' `App` e'
where
fr1 = v `isFreeIn` e1
fr2 = v `isFreeIn` e2