{-# OPTIONS -w #-}
module Lambdabot.Plugin.Haskell.Free.FreeTheorem where
import Lambdabot.Plugin.Haskell.Free.Type
import Lambdabot.Plugin.Haskell.Free.Expr
import Lambdabot.Plugin.Haskell.Free.Theorem
import Lambdabot.Plugin.Haskell.Free.Parse
import Lambdabot.Plugin.Haskell.Free.Util
import Control.Monad
import Control.Monad.State
import Control.Monad.Identity
import Data.Char
import qualified Data.Map as M
newtype MyState
= MyState {
myVSupply :: Int
}
type MyMon a = StateT MyState Identity a
type TyEnv = [(TyVar,Var,TyVar,TyVar)]
makeVar :: String -> MyMon String
makeVar v
= do
vn <- gets myVSupply
modify (\s -> s { myVSupply = vn+1 })
return (v ++ "_" ++ show vn)
extractTypes :: TyEnv -> Type -> (Type,Type)
extractTypes env (TyVar v)
= head [ (TyVar t1,TyVar t2) | (v',_,t1,t2) <- env, v == v' ]
extractTypes env (TyForall v t)
= let (t1,t2) = extractTypes ((v,undefined,v,v):env) t
in (TyForall v t1, TyForall v t2)
extractTypes env (TyArr t1 t2)
= let (t1a,t1b) = extractTypes env t1
(t2a,t2b) = extractTypes env t2
in (TyArr t1a t2a, TyArr t1b t2b)
extractTypes env (TyTuple ts)
= let ts12 = map (extractTypes env) ts
in (TyTuple (map fst ts12), TyTuple (map snd ts12))
extractTypes env (TyCons c ts)
= let ts12 = map (extractTypes env) ts
in (TyCons c (map fst ts12), TyCons c (map snd ts12))
freeTheoremStr :: (Monad m) => (String -> m String) -> String -> m String
freeTheoremStr tf s
= case parse (do
v <- getToken >>= \v -> case v of
Just (QVarId v) -> return v
_ -> fail "Try `free <ident>` or `free <ident> :: <type>`"
(mplus (do match OpColonColon
t <- parseType
return $ Left (v,t))
(return (Right v)))) (lexer s) of
ParseSuccess (Left (v,t)) [] -> return (run' v t)
ParseSuccess (Right v) [] -> do tStr <- tf s
case parse parseType (lexer tStr) of
ParseSuccess t [] -> return (run' v t)
ParseSuccess _ _ -> return $ "Extra stuff at end of line in retrieved type " ++ show tStr
ParseError msg -> return msg
ParseSuccess _ _ -> return "Extra stuff at end of line"
ParseError msg -> return msg
where
run' v t = renderStyle defstyle (pretty (freeTheorem v t))
defstyle = Style {
mode = PageMode,
lineLength = 78,
ribbonsPerLine = 1.5
}
freeTheorem :: String -> Type -> Theorem
freeTheorem name t
= runIdentity $ do
(th,_) <- runStateT (freeTheorem' [] v0 v0 t) initState
let th' = theoremSimplify th
return . fst $ runState (insertRn name name >> rename th') initRnSt
where
v0 = EVar name
initState = MyState { myVSupply = 1 }
data RnSt = RnSt { gamma :: M.Map Var Var
, unique :: [Var]
, uniquelist :: [Var]
, uniquefn :: [Var]
}
deriving Show
initRnSt
= RnSt M.empty suggestionsVal suggestionsList suggestionsFun
where
suggestionsVal = map (:[]) "xyzuvabcstdeilmnorw"
++ [ 'x' : show i | i <- [1..] ]
suggestionsList = map (:"s") "xyzuvabcstdeilmnorw"
++ [ "xs" ++ show i | i <- [1..] ]
suggestionsFun = map (:[]) "fghkpq"
++ [ 'f' : show i | i <- [1..] ]
type RN a = State RnSt a
freshName :: RN Var
freshName = do
s <- get
let ns = unique s
fresh = head ns
put $ s { unique = tail ns }
case M.lookup fresh (gamma s) of
Nothing -> return fresh
_ -> freshName
freshFunctionName :: RN Var
freshFunctionName = do
s <- get
let ns = uniquefn s
fresh = head ns
put $ s { uniquefn = tail ns }
case M.lookup fresh (gamma s) of
Nothing -> return fresh
_ -> freshFunctionName
freshListName :: RN Var
freshListName = do
s <- get
let ns = uniquelist s
fresh = head ns
put $ s { uniquelist = tail ns }
case M.lookup fresh (gamma s) of
Nothing -> return fresh
_ -> freshListName
insertRn :: Var -> Var -> RN ()
insertRn old new = modify $ \s ->
let gamma' = M.insert old new (gamma s) in s { gamma = gamma' }
lookupRn :: Var -> RN Var
lookupRn old = do
m <- gets gamma
return $ case M.lookup old m of
Nothing -> old
Just new -> new
rename :: Theorem -> RN Theorem
rename (ThImplies th1 th2) = do
th1' <- rename th1
th2' <- rename th2
return $ ThImplies th1' th2'
rename (ThEqual e1 e2) = do
e1' <- rnExp e1
e2' <- rnExp e2
return $ ThEqual e1' e2'
rename (ThAnd th1 th2) = do
th1' <- rename th1
th2' <- rename th2
return $ ThAnd th1' th2'
rename (ThForall v ty th) = do
v' <- case ty of
TyArr _ _ -> freshFunctionName
TyCons "[]" _ -> freshListName
_ -> freshName
insertRn v v'
ty' <- rnTy ty
th' <- rename th
return $ ThForall v' ty' th'
rnExp :: Expr -> RN Expr
rnExp e@(EBuiltin _) = return e
rnExp (EVar v) = EVar `fmap` lookupRn v
rnExp (EVarOp f n v) = EVarOp f n `fmap` lookupRn v
rnExp (EApp e1 e2) = do
e1' <- rnExp e1
e2' <- rnExp e2
return (EApp e1' e2')
rnExp (ETyApp e ty) = do
e' <- rnExp e
ty' <- rnTy ty
return (ETyApp e' ty')
rnTy :: Type -> RN Type
rnTy ty = return ty
freeTheorem' :: TyEnv -> Expr -> Expr -> Type -> MyMon Theorem
freeTheorem' env e1 e2 t'@(TyForall v t)
= do
mv <- makeVar "f"
t1 <- makeVar v
t2 <- makeVar v
let tymv = TyArr (TyVar t1) (TyVar t2)
pt <- freeTheorem' ((v,mv,t1,t2):env) (ETyApp e1 (TyVar t1))
(ETyApp e2 (TyVar t2)) t
return (ThForall mv tymv pt)
freeTheorem' env e1 e2 t'@(TyArr t1 t2)
= do
mv1 <- makeVar "v1"
mv2 <- makeVar "v2"
let (tmv1,tmv2) = extractTypes env t1
p1 <- freeTheorem' env (EVar mv1) (EVar mv2) t1
p2 <- freeTheorem' env (EApp e1 (EVar mv1)) (EApp e2 (EVar mv2)) t2
return (ThForall mv1 tmv1 (ThForall mv2 tmv2 (ThImplies p1 p2)))
freeTheorem' env e1 e2 t'@(TyTuple [])
= do
return (ThEqual e1 e2)
freeTheorem' env e1 e2 t'@(TyTuple ts)
= do
let len = length ts
fts <- mapM (\t -> do
let (t1,t2) = extractTypes env t
f <- makeVar "f"
x <- makeVar "x"
y <- makeVar "y"
th <- freeTheorem' env (EVar x) (EVar y) t
let eq = ThEqual (EApp (EVar f) (EVar x)) (EVar y)
return ((f,TyArr t1 t2),
ThForall x t1 (
ThForall y t2 (
ThImplies th eq
)
)
)
) ts
let thf = ThEqual (EApp (foldl (\e ((f,_),_) -> EApp e (EVar f))
(EBuiltin $ BMapTuple len) fts) e1) e2
return (foldr (\((f,t),e1) e2 -> ThForall f t (ThImplies e1 e2))
thf fts)
freeTheorem' env e1 e2 t'@(TyVar v)
= do
let f = head [ f | (v',f,_,_) <- env, v' == v ]
return (ThEqual (EApp (EVar f) e1) e2)
freeTheorem' env e1 e2 t'@(TyCons _ [])
= do
return (ThEqual e1 e2)
freeTheorem' env e1 e2 t'@(TyCons c [t])
= do
f <- makeVar "f"
x <- makeVar "x"
y <- makeVar "y"
let (t1,t2) = extractTypes env t
p1 <- freeTheorem' env (EVar x) (EVar y) t
let p2 = ThEqual (EApp (EVar f) (EVar x)) (EVar y)
let p3 = ThEqual (EApp (EApp (EBuiltin (BMap c)) (EVar f)) e1) e2
return (ThForall f (TyArr t1 t2) (
ThImplies (ThForall x t1 (ThForall y t2 (ThImplies p1 p2)))
p3))
freeTheorem' env e1 e2 t'@(TyCons c@"Either" ts@[_,_])
= do
fts <- mapM (\t -> do
let (t1,t2) = extractTypes env t
f <- makeVar "f"
x <- makeVar "x"
y <- makeVar "y"
th <- freeTheorem' env (EVar x) (EVar y) t
let eq = ThEqual (EApp (EVar f) (EVar x)) (EVar y)
return ((f,TyArr t1 t2),
ThForall x t1 (
ThForall y t2 (
ThImplies th eq
)
)
)
) ts
let thf = ThEqual (EApp (foldl (\e ((f,_),_) -> EApp e (EVar f))
(EBuiltin $ BMap c) fts) e1) e2
return (foldr (\((f,t),e1) e2 -> ThForall f t (ThImplies e1 e2))
thf fts)
freeTheorem' env e1 e2 t'@_ = fail "Sorry, this type is too difficult for me."