{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE CPP #-}
module Data.Key (
Key
, Keyed(..)
, (<#$>)
, keyed
, Zip(..)
, ZipWithKey(..)
, Indexable(..)
, (!)
, Lookup(..)
, lookupDefault
, Adjustable(..)
, FoldableWithKey(..)
, foldrWithKey'
, foldlWithKey'
, foldrWithKeyM
, foldlWithKeyM
, traverseWithKey_
, forWithKey_
, mapWithKeyM_
, forWithKeyM_
, concatMapWithKey
, anyWithKey
, allWithKey
, findWithKey
, FoldableWithKey1(..)
, traverseWithKey1_
, forWithKey1_
, foldMapWithKeyDefault1
, TraversableWithKey(..)
, forWithKey
, forWithKeyM
, mapAccumWithKeyL
, mapAccumWithKeyR
, mapWithKeyDefault
, foldMapWithKeyDefault
, TraversableWithKey1(..)
, foldMapWithKey1Default
) where
import Control.Applicative
import Control.Comonad.Trans.Traced
import Control.Monad.Free
import Control.Comonad.Cofree
import Control.Monad.Trans.Identity
import Control.Monad.Trans.Reader
import qualified Data.Array as Array
import Data.Array (Array)
import Data.Functor.Identity
import Data.Functor.Bind
import Data.Functor.Compose
import Data.Functor.Product
import qualified Data.Functor.Sum as Functor
import Data.Foldable
import Data.Hashable
import Data.HashMap.Lazy (HashMap)
import qualified Data.HashMap.Lazy as HashMap
import Data.IntMap (IntMap)
import qualified Data.IntMap as IntMap
import Data.Ix hiding (index)
import Data.Map (Map)
import qualified Data.Map as Map
#ifdef MIN_VERSION_base_orphans
import Data.Orphans ()
#endif
import Data.Proxy
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NonEmpty
import Data.Maybe (fromJust, listToMaybe)
import qualified Data.Monoid as Monoid
import Data.Semigroup hiding (Product)
import Data.Semigroup.Foldable
import Data.Semigroup.Traversable
import Data.Sequence (Seq, ViewL(EmptyL), viewl, (|>))
import qualified Data.Sequence as Seq
import Data.Tagged
import Data.Traversable
import Data.Tree
import qualified Data.List as List
import Data.Void
import GHC.Generics
import Prelude hiding (lookup, zip, zipWith)
type family Key (f :: * -> *)
type instance Key (Cofree f) = Seq (Key f)
type instance Key (Free f) = Seq (Key f)
type instance Key Tree = Seq Int
type instance Key NonEmpty = Int
type instance Key U1 = Void
type instance Key V1 = Void
type instance Key Par1 = ()
type instance Key Proxy = Void
type instance Key (Tagged a) = ()
type instance Key (g :.: f) = (Key g, Key f)
type instance Key (f :*: g) = Either (Key f) (Key g)
type instance Key (f :+: g) = Either (Key f) (Key g)
type instance Key (Rec1 f) = Key f
type instance Key (M1 i c f) = Key f
type instance Key (K1 i c) = Void
class Functor f => Keyed f where
mapWithKey :: (Key f -> a -> b) -> f a -> f b
instance Keyed f => Keyed (Free f) where
mapWithKey f (Pure a) = Pure (f Seq.empty a)
mapWithKey f (Free as) = Free (mapWithKey (mapWithKey . fmap f . flip (|>)) as)
instance Keyed f => Keyed (Cofree f) where
mapWithKey f (a :< as) = f Seq.empty a :< mapWithKey (mapWithKey . fmap f . flip (|>)) as
instance Keyed Tree where
mapWithKey f (Node a as) = Node (f Seq.empty a) (mapWithKey (mapWithKey . fmap f . flip (|>)) as)
instance Keyed U1 where
mapWithKey _ U1 = U1
instance Keyed V1 where
mapWithKey _ v = v `seq` undefined
instance Keyed Par1 where
mapWithKey q = fmap (q ())
instance Keyed (K1 i c) where
mapWithKey _ (K1 c) = K1 c
instance Keyed (Tagged a) where
mapWithKey q (Tagged a) = Tagged (q () a)
instance Keyed Proxy where
mapWithKey _ Proxy = Proxy
instance Keyed f => Keyed (M1 i c f) where
mapWithKey q (M1 f) = M1 (mapWithKey q f)
instance Keyed f => Keyed (Rec1 f) where
mapWithKey q (Rec1 f) = Rec1 (mapWithKey q f)
instance (Keyed g, Keyed f) => Keyed (f :*: g) where
mapWithKey q (fa :*: ga) = mapWithKey (q . Left) fa :*: mapWithKey (q . Right) ga
instance (Keyed g, Keyed f) => Keyed (f :+: g) where
mapWithKey q (L1 fa) = L1 (mapWithKey (q . Left) fa)
mapWithKey q (R1 ga) = R1 (mapWithKey (q . Right) ga)
instance (Keyed g, Keyed f) => Keyed (g :.: f) where
mapWithKey q = inComp (mapWithKey (mapWithKey . fmap q . (,)))
#if 0
mapWithKey :: (Key (g :.: f) -> a -> b) -> (g :.: f) a -> (g :.: f) b
:: ((Key g, Key f) -> a -> b) -> (g :.: f) a -> (g :.: f) b
mapWithKey q
= \ (Comp1 gfa) -> Comp1 (mapWithKey (\ gk -> mapWithKey (\ fk a -> q (gk, fk) a)) gfa)
= inComp $ mapWithKey (\ gk -> mapWithKey (\ fk a -> q (gk, fk) a))
= inComp $ mapWithKey (\ gk -> mapWithKey (\ fk -> q (gk, fk)))
= inComp $ mapWithKey (\ gk -> mapWithKey (q . (gk,)))
= inComp $ mapWithKey (\ gk -> mapWithKey . (q .) $ (gk,))
= inComp $ mapWithKey (\ gk -> mapWithKey . (q .) $ (,) gk)
= inComp (mapWithKey (mapWithKey . fmap q . (,)))
q :: ((Key g, Key f) -> a -> b)
gfa :: g (f a)
gk :: Key g
fk :: Key f
#endif
class Functor f => Zip f where
zipWith :: (a -> b -> c) -> f a -> f b -> f c
zipWith f a b = uncurry f <$> zip a b
zip :: f a -> f b -> f (a, b)
zip = zipWith (,)
zap :: f (a -> b) -> f a -> f b
zap = zipWith id
#if __GLASGOW_HASKELL__ >= 708
{-# MINIMAL zipWith | zip #-}
#endif
instance Zip f => Zip (Cofree f) where
zipWith f (a :< as) (b :< bs) = f a b :< zipWith (zipWith f) as bs
instance Zip Tree where
zipWith f (Node a as) (Node b bs) = Node (f a b) (zipWith (zipWith f) as bs)
instance Zip Proxy where
zipWith = liftA2
instance Zip (Tagged a) where
zipWith = liftA2
instance Zip U1 where
zipWith = liftA2
instance Zip V1 where
zipWith _ v = v `seq` undefined
instance Zip Par1 where
zipWith = liftA2
instance (Zip f, Zip g) => Zip (f :*: g) where
zipWith h (fa :*: ga) (fa' :*: ga') =
zipWith h fa fa' :*: zipWith h ga ga'
instance (Zip f, Zip g) => Zip (g :.: f) where
zipWith = inComp2 . zipWith . zipWith
instance Zip f => Zip (Rec1 f) where
zipWith f (Rec1 a) (Rec1 b) = Rec1 (zipWith f a b)
instance Zip f => Zip (M1 i c f) where
zipWith f (M1 a) (M1 b) = M1 (zipWith f a b)
(<--) :: (b -> b') -> (a' -> a) -> ((a -> b) -> (a' -> b'))
(h <-- f) g = h . g . f
inComp :: (g (f a) -> g' (f' a')) -> ((g :.: f) a -> (g' :.: f') a')
inComp = Comp1 <-- unComp1
inComp2 :: ( g (f a) -> g' (f' a') -> g'' (f'' a''))
-> ((g :.: f) a -> (g' :.: f') a' -> (g'' :.: f'') a'')
inComp2 = inComp <-- unComp1
class (Keyed f, Zip f) => ZipWithKey f where
zipWithKey :: (Key f -> a -> b -> c) -> f a -> f b -> f c
zipWithKey f = zap . mapWithKey f
zapWithKey :: f (Key f -> a -> b) -> f a -> f b
zapWithKey = zipWithKey (\k f -> f k)
instance ZipWithKey f => ZipWithKey (Cofree f) where
zipWithKey f (a :< as) (b :< bs) = f Seq.empty a b :< zipWithKey (zipWithKey . fmap f . flip (|>)) as bs
instance ZipWithKey Tree where
zipWithKey f (Node a as) (Node b bs) = f Seq.empty a b `Node` zipWithKey (zipWithKey . fmap f . flip (|>)) as bs
instance ZipWithKey (Tagged a) where
zipWithKey f = zipWith (f ())
instance ZipWithKey Proxy where
zipWithKey _ _ _ = Proxy
instance ZipWithKey U1 where
zipWithKey _ _ _ = U1
instance ZipWithKey V1 where
zipWithKey _ u v = u `seq` v `seq` undefined
instance ZipWithKey Par1 where
zipWithKey f (Par1 a) (Par1 b) = Par1 (f () a b)
instance ZipWithKey f => ZipWithKey (Rec1 f) where
zipWithKey f (Rec1 a) (Rec1 b) = Rec1 (zipWithKey f a b)
instance ZipWithKey f => ZipWithKey (M1 i c f) where
zipWithKey f (M1 a) (M1 b) = M1 (zipWithKey f a b)
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (f :*: g) where
zipWithKey f (as :*: bs) (cs :*: ds) = zipWithKey (f . Left) as cs :*: zipWithKey (f . Right) bs ds
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (g :.: f) where
zipWithKey f (Comp1 xs) (Comp1 ys) = Comp1 $ zipWithKey (\a -> zipWithKey (\b -> f (a,b))) xs ys
infixl 4 <#$>
(<#$>) :: Keyed f => (Key f -> a -> b) -> f a -> f b
(<#$>) = mapWithKey
{-# INLINE (<#$>) #-}
keyed :: Keyed f => f a -> f (Key f, a)
keyed = mapWithKey (,)
{-# INLINE keyed #-}
class Lookup f => Indexable f where
index :: f a -> Key f -> a
instance Indexable f => Indexable (Cofree f) where
index (a :< as) key = case viewl key of
EmptyL -> a
k Seq.:< ks -> index (index as k) ks
instance Indexable (Tagged a) where
index (Tagged a) () = a
instance Indexable Proxy where
index Proxy = absurd
instance Indexable Tree where
index (Node a as) key = case viewl key of
EmptyL -> a
k Seq.:< ks -> index (index as k) ks
instance Indexable U1 where
index U1 = absurd
instance Indexable Par1 where
index (Par1 a) () = a
instance Indexable f => Indexable (Rec1 f) where
index (Rec1 f) a = index f a
instance Indexable f => Indexable (M1 i c f) where
index (M1 f) a = index f a
instance Indexable (K1 i c) where
index _ = absurd
instance (Indexable g, Indexable f) =>
Indexable (f :*: g) where
index (fa :*: _) (Left fk) = fa ! fk
index (_ :*: ga) (Right gk) = ga ! gk
instance (Indexable g, Indexable f) =>
Indexable (g :.: f) where
index (Comp1 gfa) (gk,fk) = gfa ! gk ! fk
(!) :: Indexable f => f a -> Key f -> a
(!) = index
class Lookup f where
lookup :: Key f -> f a -> Maybe a
instance Lookup f => Lookup (Cofree f) where
lookup key (a :< as) = case viewl key of
EmptyL -> Just a
k Seq.:< ks -> lookup k as >>= lookup ks
instance Lookup (Tagged a) where
lookup () (Tagged a) = Just a
instance Lookup Proxy where
lookup _ _ = Nothing
instance Lookup Tree where
lookup key (Node a as) = case viewl key of
EmptyL -> Just a
k Seq.:< ks -> lookup k as >>= lookup ks
instance Lookup f => Lookup (Free f) where
lookup key (Pure a)
| Seq.null key = Just a
| otherwise = Nothing
lookup key (Free as) = case viewl key of
k Seq.:< ks -> lookup k as >>= lookup ks
_ -> Nothing
instance Lookup U1 where
lookup _ _ = Nothing
instance Lookup Par1 where
lookup = lookupDefault
instance Lookup f => Lookup (Rec1 f) where
lookup k (Rec1 f) = lookup k f
instance Lookup f => Lookup (M1 i c f) where
lookup k (M1 f) = lookup k f
instance Lookup (K1 i c) where
lookup _ _ = Nothing
instance (Indexable g, Indexable f) => Lookup (f :*: g) where
lookup = lookupDefault
instance (Indexable g, Indexable f) => Lookup (g :.: f) where
lookup = lookupDefault
lookupDefault :: Indexable f => Key f -> f a -> Maybe a
lookupDefault k t = Just (index t k)
class Functor f => Adjustable f where
adjust :: (a -> a) -> Key f -> f a -> f a
replace :: Key f -> a -> f a -> f a
replace k v = adjust (const v) k
instance Adjustable f => Adjustable (Free f) where
adjust f key as@(Pure a)
| Seq.null key = Pure $ f a
| otherwise = as
adjust f key aas@(Free as) = case viewl key of
k Seq.:< ks -> Free $ adjust (adjust f ks) k as
_ -> aas
instance Adjustable f => Adjustable (Cofree f) where
adjust f key (a :< as) = case viewl key of
k Seq.:< ks -> a :< adjust (adjust f ks) k as
_ -> f a :< as
instance Adjustable Tree where
adjust f key (Node a as) = case viewl key of
k Seq.:< ks -> a `Node` adjust (adjust f ks) k as
_ -> f a `Node` as
instance Adjustable (Tagged a) where
adjust f _ (Tagged a) = Tagged (f a)
replace _ a _ = Tagged a
instance Adjustable Proxy where
adjust _ _ _ = Proxy
replace _ _ _ = Proxy
instance Adjustable U1 where
adjust _ _ _ = U1
replace _ _ _ = U1
instance Adjustable Par1 where
adjust h () = fmap h
replace _ a _ = Par1 a
instance Adjustable f => Adjustable (Rec1 f) where
adjust f k (Rec1 a) = Rec1 (adjust f k a)
replace k a (Rec1 b) = Rec1 (replace k a b)
instance Adjustable f => Adjustable (M1 i c f) where
adjust f k (M1 a) = M1 (adjust f k a)
replace k a (M1 b) = M1 (replace k a b)
instance Adjustable (K1 i c) where
adjust _ _ x = x
replace _ _ x = x
instance (Adjustable f, Adjustable g) => Adjustable (f :+: g) where
adjust h (Left a) (L1 fa) = L1 (adjust h a fa)
adjust h (Right b) (R1 fb) = R1 (adjust h b fb)
adjust _ _ x = x
replace (Left a) v (L1 fa) = L1 (replace a v fa)
replace (Right b) v (R1 fb) = R1 (replace b v fb)
replace _ _ x = x
instance (Adjustable f, Adjustable g) => Adjustable (f :*: g) where
adjust h (Left fk) (fa :*: ga) = adjust h fk fa :*: ga
adjust h (Right gk) (fa :*: ga) = fa :*: adjust h gk ga
replace (Left fk) a (fa :*: ga) = replace fk a fa :*: ga
replace (Right gk) a (fa :*: ga) = fa :*: replace gk a ga
instance (Adjustable f, Adjustable g) => Adjustable (g :.: f) where
adjust h (gk,fk) = inComp (adjust (adjust h fk) gk)
replace (gk,fk) a = inComp (adjust (replace fk a) gk)
class Foldable t => FoldableWithKey t where
toKeyedList :: t a -> [(Key t, a)]
toKeyedList = foldrWithKey (\k v t -> (k,v):t) []
foldMapWithKey :: Monoid m => (Key t -> a -> m) -> t a -> m
foldMapWithKey f = foldrWithKey (\k v -> mappend (f k v)) mempty
foldrWithKey :: (Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey f z t = appEndo (foldMapWithKey (\k v -> Endo (f k v)) t) z
foldlWithKey :: (b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey f z t = appEndo (getDual (foldMapWithKey (\k a -> Dual (Endo (\b -> f b k a))) t)) z
#if __GLASGOW_HASKELL__ >= 708
{-# MINIMAL foldMapWithKey | foldrWithKey #-}
#endif
instance FoldableWithKey f => FoldableWithKey (Free f) where
foldMapWithKey f (Pure a) = f Seq.empty a
foldMapWithKey f (Free as) = foldMapWithKey (foldMapWithKey . fmap f . flip (|>)) as
instance FoldableWithKey f => FoldableWithKey (Cofree f) where
foldMapWithKey f (a :< as) = f Seq.empty a `mappend` foldMapWithKey (foldMapWithKey . fmap f . flip (|>)) as
instance FoldableWithKey (Tagged a) where
foldMapWithKey f (Tagged a) = f () a
instance FoldableWithKey Proxy where
foldMapWithKey _ _ = mempty
instance FoldableWithKey Tree where
foldMapWithKey f (Node a as) = f Seq.empty a `mappend` foldMapWithKey (foldMapWithKey . fmap f . flip (|>)) as
instance FoldableWithKey Par1 where
foldMapWithKey f (Par1 a) = f () a
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (f :*: g) where
foldMapWithKey f (a :*: b) = foldMapWithKey (f . Left) a `mappend` foldMapWithKey (f . Right) b
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (f :+: g) where
foldMapWithKey f (L1 a) = foldMapWithKey (f . Left) a
foldMapWithKey f (R1 a) = foldMapWithKey (f . Right) a
instance FoldableWithKey U1 where
foldMapWithKey _ _ = mempty
instance FoldableWithKey V1 where
foldMapWithKey _ v = v `seq` undefined
instance FoldableWithKey (K1 i c) where
foldMapWithKey _ _ = mempty
instance FoldableWithKey f => FoldableWithKey (M1 i c f) where
foldMapWithKey f (M1 a) = foldMapWithKey f a
instance FoldableWithKey f => FoldableWithKey (Rec1 f) where
foldMapWithKey f (Rec1 a) = foldMapWithKey f a
foldrWithKey' :: FoldableWithKey t => (Key t -> a -> b -> b) -> b -> t a -> b
foldrWithKey' f z0 xs = foldlWithKey f' id xs z0
where f' k key x z = k $! f key x z
{-# INLINE foldrWithKey' #-}
foldlWithKey' :: FoldableWithKey t => (b -> Key t -> a -> b) -> b -> t a -> b
foldlWithKey' f z0 xs = foldrWithKey f' id xs z0
where f' key x k z = k $! f z key x
{-# INLINE foldlWithKey' #-}
foldrWithKeyM :: (FoldableWithKey t, Monad m) => (Key t -> a -> b -> m b) -> b -> t a -> m b
foldrWithKeyM f z0 xs = foldlWithKey f' return xs z0
where f' k key x z = f key x z >>= k
{-# INLINE foldrWithKeyM #-}
foldlWithKeyM :: (FoldableWithKey t, Monad m) => (b -> Key t -> a -> m b) -> b -> t a -> m b
foldlWithKeyM f z0 xs = foldrWithKey f' return xs z0
where f' key x k z = f z key x >>= k
{-# INLINE foldlWithKeyM #-}
traverseWithKey_ :: (FoldableWithKey t, Applicative f) => (Key t -> a -> f b) -> t a -> f ()
traverseWithKey_ f = foldrWithKey (fmap (*>) . f) (pure ())
{-# INLINE traverseWithKey_ #-}
forWithKey_ :: (FoldableWithKey t, Applicative f) => t a -> (Key t -> a -> f b) -> f ()
forWithKey_ = flip traverseWithKey_
{-# INLINE forWithKey_ #-}
mapWithKeyM_ :: (FoldableWithKey t, Monad m) => (Key t -> a -> m b) -> t a -> m ()
mapWithKeyM_ f = foldrWithKey (fmap (>>) . f) (return ())
{-# INLINE mapWithKeyM_ #-}
forWithKeyM_ :: (FoldableWithKey t, Monad m) => t a -> (Key t -> a -> m b) -> m ()
forWithKeyM_ = flip mapWithKeyM_
{-# INLINE forWithKeyM_ #-}
concatMapWithKey :: FoldableWithKey t => (Key t -> a -> [b]) -> t a -> [b]
concatMapWithKey = foldMapWithKey
{-# INLINE concatMapWithKey #-}
anyWithKey :: FoldableWithKey t => (Key t -> a -> Bool) -> t a -> Bool
anyWithKey p = getAny . foldMapWithKey (fmap Any . p)
{-# INLINE anyWithKey #-}
allWithKey :: FoldableWithKey t => (Key t -> a -> Bool) -> t a -> Bool
allWithKey p = getAll . foldMapWithKey (fmap All . p)
{-# INLINE allWithKey #-}
findWithKey :: FoldableWithKey t => (Key t -> a -> Bool) -> t a -> Maybe a
findWithKey p = Monoid.getFirst . foldMapWithKey (\k x -> Monoid.First (if p k x then Just x else Nothing) )
{-# INLINE findWithKey #-}
class (Foldable1 t, FoldableWithKey t) => FoldableWithKey1 t where
foldMapWithKey1 :: Semigroup m => (Key t -> a -> m) -> t a -> m
instance FoldableWithKey1 f => FoldableWithKey1 (Cofree f) where
foldMapWithKey1 f (a :< as) = f Seq.empty a <> foldMapWithKey1 (foldMapWithKey1 . fmap f . flip (|>)) as
instance FoldableWithKey1 Tree where
foldMapWithKey1 f (Node a []) = f Seq.empty a
foldMapWithKey1 f (Node a (x:xs)) = f Seq.empty a <> foldMapWithKey1 (foldMapWithKey1 . fmap f . flip (|>)) (x:|xs)
instance FoldableWithKey1 f => FoldableWithKey1 (Free f) where
foldMapWithKey1 f (Pure a) = f Seq.empty a
foldMapWithKey1 f (Free as) = foldMapWithKey1 (foldMapWithKey1 . fmap f . flip (|>)) as
instance FoldableWithKey1 (Tagged a) where
foldMapWithKey1 f (Tagged a) = f () a
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (f :*: g) where
foldMapWithKey1 f (a :*: b) = foldMapWithKey1 (f . Left) a <> foldMapWithKey1 (f . Right) b
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (f :+: g) where
foldMapWithKey1 f (L1 a) = foldMapWithKey1 (f . Left) a
foldMapWithKey1 f (R1 a) = foldMapWithKey1 (f . Right) a
instance FoldableWithKey1 V1 where
foldMapWithKey1 _ v = v `seq` undefined
instance FoldableWithKey1 Par1 where
foldMapWithKey1 f (Par1 a) = f () a
instance FoldableWithKey1 f => FoldableWithKey1 (M1 i c f) where
foldMapWithKey1 f (M1 a) = foldMapWithKey1 f a
instance FoldableWithKey1 f => FoldableWithKey1 (Rec1 f) where
foldMapWithKey1 f (Rec1 a) = foldMapWithKey1 f a
newtype Act f a = Act { getAct :: f a }
instance Apply f => Semigroup (Act f a) where
Act a <> Act b = Act (a .> b)
instance Functor f => Functor (Act f) where
fmap f (Act a) = Act (f <$> a)
b <$ Act a = Act (b <$ a)
traverseWithKey1_ :: (FoldableWithKey1 t, Apply f) => (Key t -> a -> f b) -> t a -> f ()
traverseWithKey1_ f = (<$) () . getAct . foldMapWithKey1 (fmap Act . f)
{-# INLINE traverseWithKey1_ #-}
forWithKey1_ :: (FoldableWithKey1 t, Apply f) => t a -> (Key t -> a -> f b) -> f ()
forWithKey1_ = flip traverseWithKey1_
{-# INLINE forWithKey1_ #-}
foldMapWithKeyDefault1 :: (FoldableWithKey1 t, Monoid m) => (Key t -> a -> m) -> t a -> m
foldMapWithKeyDefault1 f = unwrapMonoid . foldMapWithKey (fmap WrapMonoid . f)
{-# INLINE foldMapWithKeyDefault1 #-}
class (Keyed t, FoldableWithKey t, Traversable t) => TraversableWithKey t where
traverseWithKey :: Applicative f => (Key t -> a -> f b) -> t a -> f (t b)
mapWithKeyM :: Monad m => (Key t -> a -> m b) -> t a -> m (t b)
mapWithKeyM f = unwrapMonad . traverseWithKey (fmap WrapMonad . f)
instance TraversableWithKey (Tagged a) where
traverseWithKey f (Tagged a) = Tagged <$> f () a
instance TraversableWithKey Proxy where
traverseWithKey _ _ = pure Proxy
instance TraversableWithKey f => TraversableWithKey (Cofree f) where
traverseWithKey f (a :< as) = (:<) <$> f Seq.empty a <*> traverseWithKey (traverseWithKey . fmap f . flip (|>)) as
instance TraversableWithKey Tree where
traverseWithKey f (Node a as) = Node <$> f Seq.empty a <*> traverseWithKey (traverseWithKey . fmap f . flip (|>)) as
instance TraversableWithKey f => TraversableWithKey (Free f) where
traverseWithKey f (Pure a) = Pure <$> f Seq.empty a
traverseWithKey f (Free as) = Free <$> traverseWithKey (traverseWithKey . fmap f . flip (|>)) as
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (f :*: g) where
traverseWithKey f (a :*: b) = (:*:) <$> traverseWithKey (f . Left) a <*> traverseWithKey (f . Right) b
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (f :+: g) where
traverseWithKey f (L1 as) = L1 <$> traverseWithKey (f . Left) as
traverseWithKey f (R1 bs) = R1 <$> traverseWithKey (f . Right) bs
instance TraversableWithKey Par1 where
traverseWithKey f (Par1 a) = Par1 <$> f () a
instance TraversableWithKey U1 where
traverseWithKey _ U1 = pure U1
instance TraversableWithKey V1 where
traverseWithKey _ v = v `seq` undefined
instance TraversableWithKey (K1 i c) where
traverseWithKey _ (K1 p) = pure (K1 p)
instance TraversableWithKey f => TraversableWithKey (Rec1 f) where
traverseWithKey f (Rec1 a) = Rec1 <$> traverseWithKey f a
instance TraversableWithKey f => TraversableWithKey (M1 i c f) where
traverseWithKey f (M1 a) = M1 <$> traverseWithKey f a
forWithKey :: (TraversableWithKey t, Applicative f) => t a -> (Key t -> a -> f b) -> f (t b)
forWithKey = flip traverseWithKey
{-# INLINE forWithKey #-}
forWithKeyM :: (TraversableWithKey t, Monad m) => t a -> (Key t -> a -> m b) -> m (t b)
forWithKeyM = flip mapWithKeyM
{-# INLINE forWithKeyM #-}
newtype StateL s a = StateL { runStateL :: s -> (s, a) }
instance Functor (StateL s) where
fmap f (StateL k) = StateL $ \ s ->
let (s', v) = k s in (s', f v)
instance Applicative (StateL s) where
pure x = StateL (\ s -> (s, x))
StateL kf <*> StateL kv = StateL $ \ s ->
let (s', f) = kf s
(s'', v) = kv s'
in (s'', f v)
mapAccumWithKeyL :: TraversableWithKey t => (Key t -> a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumWithKeyL f s t = runStateL (traverseWithKey (\k b -> StateL (\a -> f k a b)) t) s
{-# INLINE mapAccumWithKeyL #-}
newtype StateR s a = StateR { runStateR :: s -> (s, a) }
instance Functor (StateR s) where
fmap f (StateR k) = StateR $ \ s ->
let (s', v) = k s in (s', f v)
instance Applicative (StateR s) where
pure x = StateR (\ s -> (s, x))
StateR kf <*> StateR kv = StateR $ \ s ->
let (s', v) = kv s
(s'', f) = kf s'
in (s'', f v)
mapAccumWithKeyR :: TraversableWithKey t => (Key t -> a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumWithKeyR f s t = runStateR (traverseWithKey (\k b -> StateR (\a -> f k a b)) t) s
{-# INLINE mapAccumWithKeyR #-}
mapWithKeyDefault :: TraversableWithKey t => (Key t -> a -> b) -> t a -> t b
mapWithKeyDefault f = runIdentity . traverseWithKey (fmap Identity . f)
{-# INLINE mapWithKeyDefault #-}
foldMapWithKeyDefault :: (TraversableWithKey t, Monoid m) => (Key t -> a -> m) -> t a -> m
foldMapWithKeyDefault f = getConst . traverseWithKey (fmap Const . f)
{-# INLINE foldMapWithKeyDefault #-}
class (Traversable1 t, FoldableWithKey1 t, TraversableWithKey t) => TraversableWithKey1 t where
traverseWithKey1 :: Apply f => (Key t -> a -> f b) -> t a -> f (t b)
instance TraversableWithKey1 (Tagged a) where
traverseWithKey1 f (Tagged a) = Tagged <$> f () a
instance TraversableWithKey1 f => TraversableWithKey1 (Cofree f) where
traverseWithKey1 f (a :< as) = (:<) <$> f Seq.empty a <.> traverseWithKey1 (traverseWithKey1 . fmap f . flip (|>)) as
instance TraversableWithKey1 Tree where
traverseWithKey1 f (Node a []) = (`Node`[]) <$> f Seq.empty a
traverseWithKey1 f (Node a (x:xs)) = (\b (y:|ys) -> Node b (y:ys)) <$> f Seq.empty a <.> traverseWithKey1 (traverseWithKey1 . fmap f . flip (|>)) (x:|xs)
instance TraversableWithKey1 f => TraversableWithKey1 (Free f) where
traverseWithKey1 f (Pure a) = Pure <$> f Seq.empty a
traverseWithKey1 f (Free as) = Free <$> traverseWithKey1 (traverseWithKey1 . fmap f . flip (|>)) as
instance TraversableWithKey1 Par1 where
traverseWithKey1 f (Par1 a) = Par1 <$> f () a
instance TraversableWithKey1 f => TraversableWithKey1 (Rec1 f) where
traverseWithKey1 f (Rec1 a) = Rec1 <$> traverseWithKey1 f a
instance TraversableWithKey1 f => TraversableWithKey1 (M1 i c f) where
traverseWithKey1 f (M1 a) = M1 <$> traverseWithKey1 f a
instance TraversableWithKey1 V1 where
traverseWithKey1 _ v = v `seq` undefined
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (f :*: g) where
traverseWithKey1 f (a :*: b) = (:*:) <$> traverseWithKey1 (f . Left) a <.> traverseWithKey1 (f . Right) b
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (f :+: g) where
traverseWithKey1 f (L1 as) = L1 <$> traverseWithKey1 (f . Left) as
traverseWithKey1 f (R1 bs) = R1 <$> traverseWithKey1 (f . Right) bs
foldMapWithKey1Default :: (TraversableWithKey1 t, Semigroup m) => (Key t -> a -> m) -> t a -> m
foldMapWithKey1Default f = getConst . traverseWithKey1 (\k -> Const . f k)
{-# INLINE foldMapWithKey1Default #-}
type instance Key Identity = ()
instance Indexable Identity where
index (Identity a) _ = a
instance Lookup Identity where
lookup _ (Identity a) = Just a
instance Adjustable Identity where
adjust f _ (Identity a) = Identity (f a)
replace _ b _ = Identity b
instance Zip Identity where
zipWith f (Identity a) (Identity b) = Identity (f a b)
instance ZipWithKey Identity where
zipWithKey f (Identity a) (Identity b) = Identity (f () a b)
instance Keyed Identity where
mapWithKey f = Identity . f () . runIdentity
instance FoldableWithKey Identity where
foldrWithKey f z (Identity a) = f () a z
instance FoldableWithKey1 Identity where
foldMapWithKey1 f (Identity a) = f () a
instance TraversableWithKey Identity where
traverseWithKey f (Identity a) = Identity <$> f () a
instance TraversableWithKey1 Identity where
traverseWithKey1 f (Identity a) = Identity <$> f () a
type instance Key (IdentityT m) = Key m
instance Indexable m => Indexable (IdentityT m) where
index (IdentityT m) i = index m i
instance Lookup m => Lookup (IdentityT m) where
lookup i (IdentityT m) = lookup i m
instance Zip m => Zip (IdentityT m) where
zipWith f (IdentityT m) (IdentityT n) = IdentityT (zipWith f m n)
instance ZipWithKey m => ZipWithKey (IdentityT m) where
zipWithKey f (IdentityT m) (IdentityT n) = IdentityT (zipWithKey f m n)
instance Keyed m => Keyed (IdentityT m) where
mapWithKey f = IdentityT . mapWithKey f . runIdentityT
instance FoldableWithKey m => FoldableWithKey (IdentityT m) where
foldrWithKey f z (IdentityT m) = foldrWithKey f z m
instance FoldableWithKey1 m => FoldableWithKey1 (IdentityT m) where
foldMapWithKey1 f (IdentityT m) = foldMapWithKey1 f m
instance TraversableWithKey m => TraversableWithKey (IdentityT m) where
traverseWithKey f (IdentityT a) = IdentityT <$> traverseWithKey f a
instance TraversableWithKey1 m => TraversableWithKey1 (IdentityT m) where
traverseWithKey1 f (IdentityT a) = IdentityT <$> traverseWithKey1 f a
type instance Key ((->)a) = a
instance Keyed ((->)a) where
mapWithKey = (<*>)
instance Zip ((->)a) where
zipWith f g h a = f (g a) (h a)
instance ZipWithKey ((->)a) where
zipWithKey f g h a = f a (g a) (h a)
instance Indexable ((->)a) where
index = id
instance Lookup ((->)a) where
lookup i f = Just (f i)
type instance Key (ReaderT e m) = (e, Key m)
instance Zip m => Zip (ReaderT e m) where
zipWith f (ReaderT m) (ReaderT n) = ReaderT $ \a ->
zipWith f (m a) (n a)
instance ZipWithKey m => ZipWithKey (ReaderT e m) where
zipWithKey f (ReaderT m) (ReaderT n) = ReaderT $ \a ->
zipWithKey (f . (,) a) (m a) (n a)
instance Keyed m => Keyed (ReaderT e m) where
mapWithKey f (ReaderT m) = ReaderT $ \k -> mapWithKey (f . (,) k) (m k)
instance Indexable m => Indexable (ReaderT e m) where
index (ReaderT f) (e,k) = index (f e) k
instance Lookup m => Lookup (ReaderT e m) where
lookup (e,k) (ReaderT f) = lookup k (f e)
type instance Key (TracedT s w) = (s, Key w)
instance Zip w => Zip (TracedT s w) where
zipWith f (TracedT u) (TracedT v) = TracedT $
zipWith (\a b s -> f (a s) (b s)) u v
instance ZipWithKey w => ZipWithKey (TracedT s w) where
zipWithKey f (TracedT u) (TracedT v) = TracedT $
zipWithKey (\k a b s -> f (s, k) (a s) (b s)) u v
instance Keyed w => Keyed (TracedT s w) where
mapWithKey f = TracedT . mapWithKey (\k' g k -> f (k, k') (g k)) . runTracedT
instance Indexable w => Indexable (TracedT s w) where
index (TracedT w) (e,k) = index w k e
instance Lookup w => Lookup (TracedT s w) where
lookup (e,k) (TracedT w) = ($ e) <$> lookup k w
type instance Key IntMap = Int
instance Zip IntMap where
zipWith = IntMap.intersectionWith
instance ZipWithKey IntMap where
zipWithKey = IntMap.intersectionWithKey
instance Keyed IntMap where
mapWithKey = IntMap.mapWithKey
instance FoldableWithKey IntMap where
#if MIN_VERSION_containers(0,5,0)
foldrWithKey = IntMap.foldrWithKey
#else
foldrWithKey = IntMap.foldWithKey
#endif
instance TraversableWithKey IntMap where
traverseWithKey f = fmap IntMap.fromDistinctAscList . traverse (\(k, v) -> (,) k <$> f k v) . IntMap.toAscList
instance Indexable IntMap where
index = (IntMap.!)
instance Lookup IntMap where
lookup = IntMap.lookup
instance Adjustable IntMap where
adjust = IntMap.adjust
type instance Key (Compose f g) = (Key f, Key g)
instance (Zip f, Zip g) => Zip (Compose f g) where
zipWith f (Compose a) (Compose b) = Compose $ zipWith (zipWith f) a b
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (Compose f g) where
zipWithKey f (Compose a) (Compose b) = Compose $
zipWithKey (zipWithKey . fmap f . (,)) a b
instance (Keyed f, Keyed g) => Keyed (Compose f g) where
mapWithKey f = Compose . mapWithKey (\k -> mapWithKey (f . (,) k)) . getCompose
instance (Indexable f, Indexable g) => Indexable (Compose f g) where
index (Compose fg) (i,j) = index (index fg i) j
instance (Lookup f, Lookup g) => Lookup (Compose f g) where
lookup (i,j) (Compose fg) = lookup i fg >>= lookup j
instance (FoldableWithKey f, FoldableWithKey m) => FoldableWithKey (Compose f m) where
foldMapWithKey f = foldMapWithKey (\k -> foldMapWithKey (f . (,) k)) . getCompose
instance (FoldableWithKey1 f, FoldableWithKey1 m) => FoldableWithKey1 (Compose f m) where
foldMapWithKey1 f = foldMapWithKey1 (\k -> foldMapWithKey1 (f . (,) k)) . getCompose
instance (TraversableWithKey f, TraversableWithKey m) => TraversableWithKey (Compose f m) where
traverseWithKey f = fmap Compose . traverseWithKey (\k -> traverseWithKey (f . (,) k)) . getCompose
instance (TraversableWithKey1 f, TraversableWithKey1 m) => TraversableWithKey1 (Compose f m) where
traverseWithKey1 f = fmap Compose . traverseWithKey1 (\k -> traverseWithKey1 (f . (,) k)) . getCompose
type instance Key [] = Int
instance Zip [] where
zip = List.zip
zipWith = List.zipWith
instance ZipWithKey [] where
zipWithKey f = go 0 where
go _ [] _ = []
go _ _ [] = []
go n (x:xs) (y:ys) = n' `seq` f n x y : go n' xs ys
where n' = n + 1
instance Keyed [] where
mapWithKey f xs0 = go xs0 0 where
go [] _ = []
go (x:xs) n = f n x : (go xs $! (n + 1))
instance FoldableWithKey [] where
foldrWithKey f z0 xs0 = go z0 xs0 0 where
go z [] _ = z
go z (x:xs) n = f n x (go z xs $! (n + 1))
instance TraversableWithKey [] where
traverseWithKey f xs0 = go xs0 0 where
go [] _ = pure []
go (x:xs) n = (:) <$> f n x <*> (go xs $! (n + 1))
instance Indexable [] where
index = (!!)
instance Lookup [] where
lookup = fmap listToMaybe . drop
instance Adjustable [] where
adjust f 0 (x:xs) = f x : xs
adjust _ _ [] = []
adjust f n (x:xs) = n' `seq` x : adjust f n' xs where n' = n - 1
type instance Key ZipList = Int
instance Zip ZipList where
zip (ZipList xs) (ZipList ys) = ZipList (zip xs ys)
zipWith f (ZipList xs) (ZipList ys) = ZipList (zipWith f xs ys)
instance ZipWithKey ZipList where
zipWithKey f (ZipList xs) (ZipList ys) = ZipList (zipWithKey f xs ys)
instance Keyed ZipList where
mapWithKey f = ZipList . mapWithKey f . getZipList
instance FoldableWithKey ZipList where
foldrWithKey f z = foldrWithKey f z . getZipList
instance TraversableWithKey ZipList where
traverseWithKey f = fmap ZipList . traverseWithKey f . getZipList
instance Indexable ZipList where
index (ZipList xs) i = index xs i
instance Lookup ZipList where
lookup i = lookup i . getZipList
instance Adjustable ZipList where
adjust f i = ZipList . adjust f i . getZipList
instance Zip NonEmpty where
zipWith = NonEmpty.zipWith
instance ZipWithKey NonEmpty where
zipWithKey f (a:|as) (b:|bs) = f 0 a b :| zipWithKey (f . (+1)) as bs
instance Keyed NonEmpty where
mapWithKey f (a:|as) = f 0 a :| mapWithKey (f . (+1)) as
instance FoldableWithKey NonEmpty where
foldrWithKey f z (x:|xs) = f 0 x (foldrWithKey (f . (+1)) z xs)
instance TraversableWithKey NonEmpty where
traverseWithKey f (x :| xs) = (:|) <$> f 0 x <*> traverseWithKey (f . (+1)) xs
instance Indexable NonEmpty where
index (x:|_) 0 = x
index (_:|xs) i = xs !! (i - 1)
instance Lookup NonEmpty where
lookup 0 (x:|_) = Just x
lookup n (_:|xs) = lookup (n - 1) xs
instance Adjustable NonEmpty where
adjust f 0 (x:|xs) = f x :| xs
adjust f n (x:|xs) = x :| adjust f (n - 1) xs
instance FoldableWithKey1 NonEmpty where
foldMapWithKey1 f (x:|[]) = f 0 x
foldMapWithKey1 f (x:|(y:ys)) = f 0 x <> foldMapWithKey1 (f . (+1)) (y:|ys)
instance TraversableWithKey1 NonEmpty where
traverseWithKey1 f (x:|[]) = (:|[]) <$> f 0 x
traverseWithKey1 f (x:|(y:ys)) = (\w (z:|zs) -> w :| (z:zs)) <$> f 0 x <.> traverseWithKey1 (f . (+1)) (y :| ys)
type instance Key Seq = Int
instance Indexable Seq where
index = Seq.index
instance Lookup Seq where
lookup i s = case viewl (Seq.drop i s) of
EmptyL -> Nothing
a Seq.:< _ -> Just a
instance Zip Seq where
zip = Seq.zip
zipWith = Seq.zipWith
instance ZipWithKey Seq where
zipWithKey f a b = Seq.zipWith id (Seq.mapWithIndex f a) b
instance Adjustable Seq where
adjust = Seq.adjust
instance Keyed Seq where
mapWithKey = Seq.mapWithIndex
instance FoldableWithKey Seq where
foldrWithKey = Seq.foldrWithIndex
instance TraversableWithKey Seq where
traverseWithKey f = fmap Seq.fromList . traverseWithKey f . toList
type instance Key (Map k) = k
instance Ord k => Zip (Map k) where
zipWith = Map.intersectionWith
instance Ord k => ZipWithKey (Map k) where
zipWithKey = Map.intersectionWithKey
instance Keyed (Map k) where
mapWithKey = Map.mapWithKey
instance Ord k => Indexable (Map k) where
index = (Map.!)
instance Ord k => Lookup (Map k) where
lookup = Map.lookup
instance FoldableWithKey (Map k) where
foldrWithKey = Map.foldrWithKey
instance TraversableWithKey (Map k) where
traverseWithKey f = fmap Map.fromDistinctAscList . traverse (\(k, v) -> (,) k <$> f k v) . Map.toAscList
instance Ord k => Adjustable (Map k) where
adjust = Map.adjust
type instance Key (Array i) = i
instance Ix i => Keyed (Array i) where
mapWithKey f arr = Array.listArray (Array.bounds arr) $ map (uncurry f) $ Array.assocs arr
instance Ix i => Indexable (Array i) where
index = (Array.!)
instance Ix i => Lookup (Array i) where
lookup i arr
| inRange (Array.bounds arr) i = Just (arr Array.! i)
| otherwise = Nothing
instance Ix i => FoldableWithKey (Array i) where
foldrWithKey f z = Prelude.foldr (uncurry f) z . Array.assocs
instance Ix i => TraversableWithKey (Array i) where
traverseWithKey f arr = Array.listArray (Array.bounds arr) <$> traverse (uncurry f) (Array.assocs arr)
instance Ix i => Adjustable (Array i) where
adjust f i arr = arr Array.// [(i, f (arr Array.! i))]
replace i b arr = arr Array.// [(i, b)]
type instance Key (Functor.Sum f g) = Either (Key f) (Key g)
instance (Keyed f, Keyed g) => Keyed (Functor.Sum f g) where
mapWithKey f (Functor.InL a) = Functor.InL (mapWithKey (f . Left) a)
mapWithKey f (Functor.InR b) = Functor.InR (mapWithKey (f . Right) b)
instance (Indexable f, Indexable g) => Indexable (Functor.Sum f g) where
index (Functor.InL a) (Left x) = index a x
index (Functor.InL _) (Right _) = error "InL indexed with a Right key"
index (Functor.InR b) (Right y) = index b y
index (Functor.InR _) (Left _) = error "InR indexed with a Left key"
instance (Lookup f, Lookup g) => Lookup (Functor.Sum f g) where
lookup (Left x) (Functor.InL a) = lookup x a
lookup (Right y) (Functor.InR b) = lookup y b
lookup _ _ = Nothing
instance (Adjustable f, Adjustable g) => Adjustable (Functor.Sum f g) where
adjust f (Left x) (Functor.InL a) = Functor.InL (adjust f x a)
adjust f (Right y) (Functor.InR b) = Functor.InR (adjust f y b)
adjust _ _ x = x
replace (Left x) v (Functor.InL a) = Functor.InL (replace x v a)
replace (Right y) v (Functor.InR b) = Functor.InR (replace y v b)
replace _ _ x = x
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (Functor.Sum f g) where
foldMapWithKey f (Functor.InL a) = foldMapWithKey (f . Left) a
foldMapWithKey f (Functor.InR b) = foldMapWithKey (f . Right) b
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (Functor.Sum f g) where
foldMapWithKey1 f (Functor.InL a) = foldMapWithKey1 (f . Left) a
foldMapWithKey1 f (Functor.InR b) = foldMapWithKey1 (f . Right) b
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (Functor.Sum f g) where
traverseWithKey f (Functor.InL a) = Functor.InL <$> traverseWithKey (f . Left) a
traverseWithKey f (Functor.InR b) = Functor.InR <$> traverseWithKey (f . Right) b
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (Functor.Sum f g) where
traverseWithKey1 f (Functor.InL a) = Functor.InL <$> traverseWithKey1 (f . Left) a
traverseWithKey1 f (Functor.InR b) = Functor.InR <$> traverseWithKey1 (f . Right) b
type instance Key (Product f g) = Either (Key f) (Key g)
instance (Keyed f, Keyed g) => Keyed (Product f g) where
mapWithKey f (Pair a b) = Pair (mapWithKey (f . Left) a) (mapWithKey (f . Right) b)
instance (Indexable f, Indexable g) => Indexable (Product f g) where
index (Pair a _) (Left i) = index a i
index (Pair _ b) (Right j) = index b j
instance (Lookup f, Lookup g) => Lookup (Product f g) where
lookup (Left i) (Pair a _) = lookup i a
lookup (Right j) (Pair _ b) = lookup j b
instance (Zip f, Zip g) => Zip (Product f g) where
zipWith f (Pair a b) (Pair c d) = Pair (zipWith f a c) (zipWith f b d)
instance (ZipWithKey f, ZipWithKey g) => ZipWithKey (Product f g) where
zipWithKey f (Pair a b) (Pair c d) = Pair (zipWithKey (f . Left) a c) (zipWithKey (f . Right) b d)
instance (FoldableWithKey f, FoldableWithKey g) => FoldableWithKey (Product f g) where
foldMapWithKey f (Pair a b) = foldMapWithKey (f . Left) a `mappend` foldMapWithKey (f . Right) b
instance (FoldableWithKey1 f, FoldableWithKey1 g) => FoldableWithKey1 (Product f g) where
foldMapWithKey1 f (Pair a b) = foldMapWithKey1 (f . Left) a <> foldMapWithKey1 (f . Right) b
instance (TraversableWithKey f, TraversableWithKey g) => TraversableWithKey (Product f g) where
traverseWithKey f (Pair a b) = Pair <$> traverseWithKey (f . Left) a <*> traverseWithKey (f . Right) b
instance (TraversableWithKey1 f, TraversableWithKey1 g) => TraversableWithKey1 (Product f g) where
traverseWithKey1 f (Pair a b) = Pair <$> traverseWithKey1 (f . Left) a <.> traverseWithKey1 (f . Right) b
instance (Adjustable f, Adjustable g) => Adjustable (Product f g) where
adjust f (Left i) (Pair a b) = Pair (adjust f i a) b
adjust f (Right j) (Pair a b) = Pair a (adjust f j b)
replace (Left i) v (Pair a b) = Pair (replace i v a) b
replace (Right j) v (Pair a b) = Pair a (replace j v b)
type instance Key ((,) k) = k
instance Keyed ((,) k) where
mapWithKey f (k, a) = (k, f k a)
instance FoldableWithKey ((,) k) where
foldMapWithKey = uncurry
instance FoldableWithKey1 ((,) k) where
foldMapWithKey1 = uncurry
instance TraversableWithKey ((,) k) where
traverseWithKey f (k, a) = (,) k <$> f k a
instance TraversableWithKey1 ((,) k) where
traverseWithKey1 f (k, a) = (,) k <$> f k a
type instance Key (HashMap k) = k
instance Keyed (HashMap k) where
mapWithKey = HashMap.mapWithKey
instance (Eq k, Hashable k) => Indexable (HashMap k) where
index = (HashMap.!)
instance (Eq k, Hashable k) => Lookup (HashMap k) where
lookup = HashMap.lookup
instance (Eq k, Hashable k) => Zip (HashMap k) where
zipWith = HashMap.intersectionWith
instance (Eq k, Hashable k) => ZipWithKey (HashMap k) where
zipWithKey f a b = HashMap.foldlWithKey' go HashMap.empty a
where
go m k v = case lookup k b of
Just w -> HashMap.insert k (f k v w) m
_ -> m
instance FoldableWithKey (HashMap k) where
foldrWithKey = HashMap.foldrWithKey
instance TraversableWithKey (HashMap k) where
traverseWithKey = HashMap.traverseWithKey
type instance Key Maybe = ()
instance Keyed Maybe where
mapWithKey f = fmap (f ())
instance Indexable Maybe where
index = const . fromJust
instance Lookup Maybe where
lookup _ mb = mb
instance Zip Maybe where
zipWith f (Just a) (Just b) = Just (f a b)
zipWith _ _ _ = error "zipWith: Nothing"
instance ZipWithKey Maybe where
zipWithKey f = zipWith (f ())
instance FoldableWithKey Maybe where
foldMapWithKey f = foldMap (f ())
instance TraversableWithKey Maybe where
traverseWithKey f = traverse (f ())