kan-extensions-4.2: Kan extensions, Kan lifts, various forms of the Yoneda lemma, and (co)density (co)monads

Copyright(C) 2011-2013 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
PortabilityMPTCs, fundeps
Safe HaskellTrustworthy
LanguageHaskell98

Data.Functor.Yoneda

Contents

Description

The covariant form of the Yoneda lemma states that f is naturally isomorphic to Yoneda f.

This is described in a rather intuitive fashion by Dan Piponi in

http://blog.sigfpe.com/2006/11/yoneda-lemma.html

Synopsis

Documentation

newtype Yoneda f a Source

Yoneda f a can be viewed as the partial application of fmap to its second argument.

Constructors

Yoneda 

Fields

runYoneda :: forall b. (a -> b) -> f b
 

Instances

ComonadTrans Yoneda 
MonadTrans Yoneda 
(Functor f, MonadFree f m) => MonadFree f (Yoneda m) 
Alternative f => Alternative (Yoneda f) 
Monad m => Monad (Yoneda m) 
Functor (Yoneda f) 
MonadFix m => MonadFix (Yoneda m) 
MonadPlus m => MonadPlus (Yoneda m) 
Applicative f => Applicative (Yoneda f) 
Foldable f => Foldable (Yoneda f) 
Traversable f => Traversable (Yoneda f) 
Distributive f => Distributive (Yoneda f) 
Representable g => Representable (Yoneda g) 
Comonad w => Comonad (Yoneda w) 
Plus f => Plus (Yoneda f) 
Alt f => Alt (Yoneda f) 
Traversable1 f => Traversable1 (Yoneda f) 
Foldable1 f => Foldable1 (Yoneda f) 
Apply f => Apply (Yoneda f) 
Bind m => Bind (Yoneda m) 
Extend w => Extend (Yoneda w) 
Adjunction f g => Adjunction (Yoneda f) (Yoneda g) 
Eq (f a) => Eq (Yoneda f a) 
Ord (f a) => Ord (Yoneda f a) 
(Functor f, Read (f a)) => Read (Yoneda f a) 
Show (f a) => Show (Yoneda f a) 
type Rep (Yoneda g) = Rep g 

liftYoneda :: Functor f => f a -> Yoneda f a Source

The natural isomorphism between f and Yoneda f given by the Yoneda lemma is witnessed by liftYoneda and lowerYoneda

liftYoneda . lowerYonedaid
lowerYoneda . liftYonedaid
lowerYoneda (liftYoneda fa) =         -- definition
lowerYoneda (Yoneda (f -> fmap f a)) -- definition
(f -> fmap f fa) id                  -- beta reduction
fmap id fa                            -- functor law
fa
lift = liftYoneda

lowerYoneda :: Yoneda f a -> f a Source

maxF :: (Functor f, Ord (f a)) => Yoneda f a -> Yoneda f a -> Yoneda f a Source

minF :: (Functor f, Ord (f a)) => Yoneda f a -> Yoneda f a -> Yoneda f a Source

maxM :: (Monad m, Ord (m a)) => Yoneda m a -> Yoneda m a -> Yoneda m a Source

minM :: (Monad m, Ord (m a)) => Yoneda m a -> Yoneda m a -> Yoneda m a Source

as a right Kan extension

yonedaToRan :: Yoneda f a -> Ran Identity f a Source

Yoneda f can be viewed as the right Kan extension of f along the Identity functor.

yonedaToRan . ranToYonedaid
ranToYoneda . yonedaToRanid

as a right Kan lift

yonedaToRift :: Yoneda f a -> Rift Identity f a Source

Yoneda f can be viewed as the right Kan lift of f along the Identity functor.

yonedaToRift . riftToYonedaid
riftToYoneda . yonedaToRiftid