{-# LANGUAGE Rank2Types, GADTs #-} {-# LANGUAGE CPP #-} #if defined(__GLASGOW_HASKELL__) && __GLASGOW_HASKELL__ >= 702 {-# LANGUAGE Trustworthy #-} #endif ------------------------------------------------------------------------------------------- -- | -- Copyright : 2008-2013 Edward Kmett -- License : BSD -- -- Maintainer : Edward Kmett <ekmett@gmail.com> -- Stability : experimental -- Portability : rank 2 types -- -- * Right Kan Extensions ------------------------------------------------------------------------------------------- module Data.Functor.Kan.Ran ( Ran(..) , toRan, fromRan , gran , composeRan, decomposeRan , adjointToRan, ranToAdjoint , composedAdjointToRan, ranToComposedAdjoint , repToRan, ranToRep , composedRepToRan, ranToComposedRep ) where import Data.Functor.Adjunction import Data.Functor.Composition import Data.Functor.Identity import Data.Functor.Rep -- | The right Kan extension of a 'Functor' h along a 'Functor' g. -- -- We can define a right Kan extension in several ways. The definition here is obtained by reading off -- the definition in of a right Kan extension in terms of an End, but we can derive an equivalent definition -- from the universal property. -- -- Given a 'Functor' @h : C -> D@ and a 'Functor' @g : C -> C'@, we want to extend @h@ /back/ along @g@ -- to give @Ran g h : C' -> C@, such that the natural transformation @'gran' :: Ran g h (g a) -> h a@ exists. -- -- In some sense this is trying to approximate the inverse of @g@ by using one of -- its adjoints, because if the adjoint and the inverse both exist, they match! -- -- > Hask -h-> Hask -- > | + -- > g / -- > | Ran g h -- > v / -- > Hask -' -- -- The Right Kan extension is unique (up to isomorphism) by taking this as its universal property. -- -- That is to say given any @K : C' -> C@ such that we have a natural transformation from @k.g@ to @h@ -- @(forall x. k (g x) -> h x)@ there exists a canonical natural transformation from @k@ to @Ran g h@. -- @(forall x. k x -> Ran g h x)@. -- -- We could literally read this off as a valid Rank-3 definition for 'Ran': -- -- @ -- data Ran' g h a = forall z. 'Functor' z => Ran' (forall x. z (g x) -> h x) (z a) -- @ -- -- This definition is isomorphic the simpler Rank-2 definition we use below as witnessed by the -- -- @ -- ranIso1 :: Ran g f x -> Ran' g f x -- ranIso1 (Ran e) = Ran' e id -- @ -- -- @ -- ranIso2 :: Ran' g f x -> Ran g f x -- ranIso2 (Ran' h z) = Ran $ \\k -> h (k \<$\> z) -- @ -- -- @ -- ranIso2 (ranIso1 (Ran e)) ≡ -- by definition -- ranIso2 (Ran' e id) ≡ -- by definition -- Ran $ \\k -> e (k \<$\> id) -- by definition -- Ran $ \\k -> e (k . id) -- f . id = f -- Ran $ \\k -> e k -- eta reduction -- Ran e -- @ -- -- The other direction is left as an exercise for the reader. newtype Ran g h a = Ran { runRan :: forall b. (a -> g b) -> h b } instance Functor (Ran g h) where fmap f m = Ran (\k -> runRan m (k . f)) {-# INLINE fmap #-} -- | The universal property of a right Kan extension. toRan :: Functor k => (forall a. k (g a) -> h a) -> k b -> Ran g h b toRan s t = Ran (s . flip fmap t) {-# INLINE toRan #-} -- | 'toRan' and 'fromRan' witness a higher kinded adjunction. from @(`'Compose'` g)@ to @'Ran' g@ -- -- @ -- 'toRan' . 'fromRan' ≡ 'id' -- 'fromRan' . 'toRan' ≡ 'id' -- @ fromRan :: (forall a. k a -> Ran g h a) -> k (g b) -> h b fromRan s = flip runRan id . s {-# INLINE fromRan #-} -- | -- @ -- 'composeRan' . 'decomposeRan' ≡ 'id' -- 'decomposeRan' . 'composeRan' ≡ 'id' -- @ composeRan :: Composition compose => Ran f (Ran g h) a -> Ran (compose f g) h a composeRan r = Ran (\f -> runRan (runRan r (decompose . f)) id) {-# INLINE composeRan #-} decomposeRan :: (Composition compose, Functor f) => Ran (compose f g) h a -> Ran f (Ran g h) a decomposeRan r = Ran (\f -> Ran (\g -> runRan r (compose . fmap g . f))) {-# INLINE decomposeRan #-} -- | -- -- @ -- 'adjointToRan' . 'ranToAdjoint' ≡ 'id' -- 'ranToAdjoint' . 'adjointToRan' ≡ 'id' -- @ adjointToRan :: Adjunction f g => f a -> Ran g Identity a adjointToRan f = Ran (\a -> Identity $ rightAdjunct a f) {-# INLINE adjointToRan #-} ranToAdjoint :: Adjunction f g => Ran g Identity a -> f a ranToAdjoint r = runIdentity (runRan r unit) {-# INLINE ranToAdjoint #-} -- | -- -- @ -- 'composedAdjointToRan' . 'ranToComposedAdjoint' ≡ 'id' -- 'ranToComposedAdjoint' . 'composedAdjointToRan' ≡ 'id' -- @ ranToComposedAdjoint :: Adjunction f g => Ran g h a -> h (f a) ranToComposedAdjoint r = runRan r unit {-# INLINE ranToComposedAdjoint #-} composedAdjointToRan :: (Adjunction f g, Functor h) => h (f a) -> Ran g h a composedAdjointToRan f = Ran (\a -> fmap (rightAdjunct a) f) {-# INLINE composedAdjointToRan #-} -- | This is the natural transformation that defines a Right Kan extension. gran :: Ran g h (g a) -> h a gran (Ran f) = f id {-# INLINE gran #-} repToRan :: Representable u => Rep u -> a -> Ran u Identity a repToRan e a = Ran $ \k -> Identity $ index (k a) e {-# INLINE repToRan #-} ranToRep :: Representable u => Ran u Identity a -> (Rep u, a) ranToRep (Ran f) = runIdentity $ f (\a -> tabulate $ \e -> (e, a)) {-# INLINE ranToRep #-} ranToComposedRep :: Representable u => Ran u h a -> h (Rep u, a) ranToComposedRep (Ran f) = f (\a -> tabulate $ \e -> (e, a)) {-# INLINE ranToComposedRep #-} composedRepToRan :: (Representable u, Functor h) => h (Rep u, a) -> Ran u h a composedRepToRan hfa = Ran $ \k -> fmap (\(e, a) -> index (k a) e) hfa {-# INLINE composedRepToRan #-}