-- | -- Module: Data.Geo.Jord.Ellipsoid -- Copyright: (c) 2020 Cedric Liegeois -- License: BSD3 -- Maintainer: Cedric Liegeois <ofmooseandmen@yahoo.fr> -- Stability: experimental -- Portability: portable -- -- Types and functions for working with ellipsoids (including spheres). -- -- see "Data.Geo.Jord.Ellipsoids" for supported ellipsoids. -- module Data.Geo.Jord.Ellipsoid ( Ellipsoid , equatorialRadius , polarRadius , eccentricity , flattening , ellispoid , sphere , toSphere , isSphere , meanRadius ) where import Data.Geo.Jord.Length -- | Parameters of an ellispoid describing the surface of a celestial body. -- An ellispoid is a circle if its 'equatorialRadius' and 'polarRadius' are -- equal (both its 'eccentricity' and 'flattening' are 0); it is used to represent -- a celestial body as a sphere. data Ellipsoid = Ellipsoid { equatorialRadius :: !Length -- ^ equatorial radius or semi-major axis (a). , polarRadius :: !Length -- ^ polar radius or semi-minor axis (b). , eccentricity :: !Double -- ^ eccentricity , flattening :: !Double -- ^ flattening } deriving (Eq, Show) -- | @ellispoid eqr invf@: ellipsoid with equatorial radius @eqr@ and inverse flattening @invf@. ellispoid :: Length -> Double -> Ellipsoid ellispoid eqr invf = Ellipsoid eqr (metres b) e f where a = toMetres eqr f = 1.0 / invf b = a * (1.0 - f) e = sqrt (1.0 - (b * b) / (a * a)) -- | @sphere r@: ellipsoid with equatorial & polar radius radius @r@. -- The returned ellipsoid is a sphere. sphere :: Length -> Ellipsoid sphere r = Ellipsoid r r 0.0 0.0 -- | @toSphere e@: sphere from mean radius of ellipsoid @e@. toSphere :: Ellipsoid -> Ellipsoid toSphere = sphere . meanRadius -- | @isSphere e@ returns True if ellipsoid @e@ is a sphere. isSphere :: Ellipsoid -> Bool isSphere e = eccentricity e == 0.0 -- | @meanRadius e@ computes the mean radius of ellipsoid @e@. meanRadius :: Ellipsoid -> Length meanRadius e = metres ((2.0 * a + b) / 3.0) where a = toMetres . equatorialRadius $ e b = toMetres . polarRadius $ e