-- |

-- Module:      Data.Geo.Jord.Kinematics

-- Copyright:   (c) 2018 Cedric Liegeois

-- License:     BSD3

-- Maintainer:  Cedric Liegeois <ofmooseandmen@yahoo.fr>

-- Stability:   experimental

-- Portability: portable

--

-- Types and functions for working with kinematics calculations assuming a __spherical__ earth model.

--

-- All functions are implemented using the vector-based approached described in

-- <http://www.navlab.net/Publications/A_Nonsingular_Horizontal_Position_Representation.pdf Gade, K. (2010). A Non-singular Horizontal Position Representation>

-- and in <https://calhoun.nps.edu/bitstream/handle/10945/29516/sometacticalalgo00shud.pdf Shudde, Rex H. (1986). Some tactical algorithms for spherical geometry>

--

module Data.Geo.Jord.Kinematics
    (
    -- * The 'Track' type.

      Track(..)
    -- * The 'Course' type.

    , Course
    -- * The 'Cpa' type.

    , Cpa
    , cpaTime
    , cpaDistance
    , cpaPosition1
    , cpaPosition2
    -- * The 'Intercept' type.

    , Intercept
    , interceptTime
    , interceptDistance
    , interceptPosition
    , interceptorBearing
    , interceptorSpeed
    -- * Calculations

    , course
    , position
    , position84
    , cpa
    , cpa84
    , intercept
    , intercept84
    , interceptBySpeed
    , interceptBySpeed84
    , interceptByTime
    , interceptByTime84
    ) where

import Control.Applicative
import Data.Geo.Jord.Angle
import Data.Geo.Jord.AngularPosition
import Data.Geo.Jord.Duration
import Data.Geo.Jord.Earth
import Data.Geo.Jord.Geodetics
import Data.Geo.Jord.LatLong
import Data.Geo.Jord.Length
import Data.Geo.Jord.NVector
import Data.Geo.Jord.Quantity
import Data.Geo.Jord.Speed
import Data.Geo.Jord.Transformation
import Data.Geo.Jord.Vector3d

-- | 'Track' represents the state of a vehicle by its current position, bearing and speed.

data Track a = Track
    { trackPos :: a -- ^ position of the track.

    , trackBearing :: Angle -- ^ bearing of the track.

    , trackSpeed :: Speed -- ^ speed of the track.

    } deriving (Eq, Show)

-- | 'GreatCircle' from track.

instance (NTransform a, Show a) => IsGreatCircle (Track a) where
    greatCircleE t = greatCircleE (trackPos t, trackBearing t)

-- | 'Course' represents the cardinal direction in which the vehicle is to be steered.

newtype Course =
    Course Vector3d
    deriving (Eq, Show)

instance IsVector3d Course where
    vec (Course v) = v

-- | Time to, and distance at, closest point of approach (CPA) as well as position of both tracks at CPA.

data Cpa a = Cpa
    { cpaTime :: Duration -- ^ time to CPA.

    , cpaDistance :: Length -- ^ distance at CPA.

    , cpaPosition1 :: a -- ^ position of track 1 at CPA.

    , cpaPosition2 :: a -- ^ position of track 2 at CPA.

    } deriving (Eq, Show)

-- | Time, distance and position of intercept as well as speed and initial bearing of interceptor.

data Intercept a = Intercept
    { interceptTime :: Duration -- ^ time to intercept.

    , interceptDistance :: Length -- ^ distance at intercept.

    , interceptPosition :: a -- ^ position of intercept.

    , interceptorBearing :: Angle -- ^ initial bearing of interceptor.

    , interceptorSpeed :: Speed -- ^ speed of interceptor.

    } deriving (Eq, Show)

-- | @course p b@ computes the course of a vehicle currently at position @p@ and following bearing @b@.

course :: (NTransform a) => a -> Angle -> Course
course p b = Course (Vector3d (vz (head r)) (vz (r !! 1)) (vz (r !! 2)))
  where
    ll = nvectorToLatLong . pos . toNVector $ p
    lat = latitude ll
    lon = longitude ll
    r = mdot (mdot (rz (negate' lon)) (ry lat)) (rx b)

-- | @position t d r@ computes the position of a track @t@ after duration @d@ has elapsed and using the earth radius @r@.

--

-- @

--     let p0 = latLongHeight (readLatLong "531914N0014347W") (metres 15000)

--     let b = decimalDegrees 96.0217

--     let s = kilometresPerHour 124.8

--     let p1 = decimalLatLongHeight 53.1882691 0.1332741 (metres 15000)

--     position (Track p0 b s) (hours 1) r84 = p1

-- @

position :: (NTransform a) => Track a -> Duration -> Length -> a
position (Track p0 b s) d = position' p0 s (course p0 b) (toSeconds d)

-- | 'position' using the mean radius of the WGS84 reference ellipsoid.

position84 :: (NTransform a) => Track a -> Duration -> a
position84 t d = position t d r84

-- | @cpa t1 t2 r@ computes the closest point of approach between tracks @t1@ and @t2@ and using the earth radius @r@.

--

-- @

--     let p1 = decimalLatLong 20 (-60)

--     let b1 = decimalDegrees 10

--     let s1 = knots 15

--     let p2 = decimalLatLong 34 (-50)

--     let b2 = decimalDegrees 220

--     let s2 = knots 300

--     let t1 = Track p1 b1 s1

--     let t2 = Track p2 b2 s2

--     let c = cpa t1 t2 r84

--     fmap cpaTime c = Just (milliseconds 11396155)

--     fmap cpaDistance c = Just (kilometres 124.2317453)

-- @

cpa :: (Eq a, NTransform a) => Track a -> Track a -> Length -> Maybe (Cpa a)
cpa (Track p1 b1 s1) (Track p2 b2 s2) r
    | p1 == p2 = Just (Cpa zero zero p1 p2)
    | t < 0 = Nothing
    | otherwise = Just (Cpa (seconds t) d cp1 cp2)
  where
    c1 = course p1 b1
    c2 = course p2 b2
    t = timeToCpa p1 c1 s1 p2 c2 s2 r
    cp1 = position' p1 s1 c1 t r
    cp2 = position' p2 s2 c2 t r
    d = surfaceDistance cp1 cp2 r

-- | 'cpa' using the mean radius of the WGS84 reference ellipsoid.

cpa84 :: (Eq a, NTransform a) => Track a -> Track a -> Maybe (Cpa a)
cpa84 t1 t2 = cpa t1 t2 r84

-- | @intercept t p r@ computes the __minimum__ speed of interceptor at

-- position @p@ needed for an intercept with target track @t@ to take place

-- using the earth radius @r@. Intercept time, position, distance and interceptor

-- bearing are derived from this minimum speed. Returns 'Nothing' if intercept

-- cannot be achieved e.g.:

--

--     * interceptor and target are at the same position

--

--     * interceptor is on the great circle of target and behind as the minimum speed would be target speed + epsillon

--

-- @

--     let t = Track (decimalLatLong 34 (-50)) (decimalDegrees 220) (knots 600)

--     let ip = (decimalLatLong 20 (-60))

--     let i = intercept t ip r84

--     fmap interceptorSpeed i = Just (knots 52.837096)

--     fmap interceptTime i = Just (seconds 5947.698)

-- @

intercept :: (Eq a, NTransform a) => Track a -> a -> Length -> Maybe (Intercept a)
intercept t@(Track tp tb ts) p r = interceptByTime t p (seconds d) r
  where
    ct0 = course tp tb
    d = timeToIntercept tp ts ct0 p r

-- | 'intercept' using the mean radius of the WGS84 reference ellipsoid.

intercept84 :: (Eq a, NTransform a) => Track a -> a -> Maybe (Intercept a)
intercept84 t p = intercept t p r84

-- | @interceptBySpeed t p s r@ computes the time needed by interceptor at

-- position @p@ and travelling at speed @s@ to intercept target track @t@

-- using the earth radius @r@. Returns 'Nothing' if intercept

-- cannot be achieved e.g.:

--

--     * interceptor and target are at the same position

--

--     * interceptor speed is below minimum speed

interceptBySpeed :: (Eq a, NTransform a) => Track a -> a -> Speed -> Length -> Maybe (Intercept a)
interceptBySpeed t@(Track tp tb ts) p s r = interceptByTime t p (seconds d) r
  where
    ct0 = course tp tb
    d = timeToInterceptSpeed tp ts ct0 p s r

-- | 'interceptBySpeed' using the mean radius of the WGS84 reference ellipsoid.

interceptBySpeed84 :: (Eq a, NTransform a) => Track a -> a -> Speed -> Maybe (Intercept a)
interceptBySpeed84 t p s = interceptBySpeed t p s r84

-- | @interceptByTime t p d r@ computes the speed of interceptor at

-- position @p@ needed for an intercept with target track @t@ to take place

-- after duration @d@ and using the earth radius @r@. Returns 'Nothing' if

-- given duration is <= 0 or interceptor and target are at the same position.

--

-- @

--     let t = Track (decimalLatLong 34 (-50)) (decimalDegrees 220) (knots 600)

--     let ip = (decimalLatLong 20 (-60))

--     let d = seconds 2700

--     let i = interceptByTime t ip d r84

--     fmap interceptorSpeed i = Just (knots 730.959238)

--     fmap interceptorBearing i = Just (decimalDegrees 26.1199030)

--     fmap interceptPosition i = Just (decimalLatLong 28.1366797 (-55.4559475))

--     fmap interceptDistance i = Just (metres 1015302.3815)

--     fmap interceptTime i = Just (seconds 2700)

-- @

interceptByTime :: (Eq a, NTransform a) => Track a -> a -> Duration -> Length -> Maybe (Intercept a)
interceptByTime t p d r
    | toMilliseconds d <= 0 = Nothing
    | trackPos t == p = Nothing
    | otherwise = fmap (\b -> Intercept d idist ipos b is) ib
  where
    ipos = position t d r
    idist = surfaceDistance p ipos r
    ib = initialBearing p ipos <|> initialBearing p (trackPos t)
    is = metresPerSecond (toMetres idist / toSeconds d)

-- | 'interceptByTime' using the mean radius of the WGS84 reference ellipsoid.

interceptByTime84 :: (Eq a, NTransform a) => Track a -> a -> Duration -> Maybe (Intercept a)
interceptByTime84 t p d = interceptByTime t p d r84

-- | position from speed course and seconds.

position' :: (NTransform a) => a -> Speed -> Course -> Double -> Length -> a
position' p0 s c sec r = fromNVector (nvectorHeight (nvector (vx v1) (vy v1) (vz v1)) h0)
  where
    nv0 = toNVector p0
    v0 = vec . pos $nv0
    h0 = height nv0
    v1 = position'' v0 s (vec c) sec r

-- | position from speed course and seconds.

position'' :: Vector3d -> Speed -> Vector3d -> Double -> Length -> Vector3d
position'' v0 s c sec r = v1
  where
    w = toMetresPerSecond s / toMetres r
    v1 = vadd (vscale v0 (cos (w * sec))) (vscale c (sin (w * sec)))

-- | time to CPA.

timeToCpa :: (NTransform a) => a -> Course -> Speed -> a -> Course -> Speed -> Length -> Double
timeToCpa p1 c1 s1 p2 c2 s2 r = cpaNrRec v10 c10 w1 v20 c20 w2 0 0
  where
    v10 = vec . pos . toNVector $ p1
    c10 = vec c1
    rm = toMetres r
    w1 = toMetresPerSecond s1 / rm
    v20 = vec . pos . toNVector $ p2
    c20 = vec c2
    w2 = toMetresPerSecond s2 / rm

-- | time to intercept with minimum speed

timeToIntercept :: (NTransform a) => a -> Speed -> Course -> a -> Length -> Double
timeToIntercept p2 s2 c20 p1 r = intMinNrRec v10 v20 (vec c20) s2 w2 r s0 t0 0
  where
    v10 = vec . pos . toNVector $ p1
    v20 = vec . pos . toNVector $ p2
    s2mps = toMetresPerSecond s2
    rm = toMetres r
    w2 = s2mps / rm
    s0 = ad v10 v20
    t0 = rm * s0 / s2mps

-- | time to intercept with speed.

timeToInterceptSpeed :: (NTransform a) => a -> Speed -> Course -> a -> Speed -> Length -> Double
timeToInterceptSpeed p2 s2 c20 p1 s1 r = intSpdNrRec v10 w1 v20 (vec c20) s2 w2 r s0 t0 0
  where
    v10 = vec . pos . toNVector $ p1
    v20 = vec . pos . toNVector $ p2
    rm = toMetres r
    w2 = toMetresPerSecond s2 / rm
    w1 = toMetresPerSecond s1 / rm
    t0 = 0.1
    s0 = ad v10 v20

rx :: Angle -> [Vector3d]
rx a = [Vector3d 1 0 0, Vector3d 0 c s, Vector3d 0 (-s) c]
  where
    c = cos' a
    s = sin' a

ry :: Angle -> [Vector3d]
ry a = [Vector3d c 0 (-s), Vector3d 0 1 0, Vector3d s 0 c]
  where
    c = cos' a
    s = sin' a

rz :: Angle -> [Vector3d]
rz a = [Vector3d c s 0, Vector3d (-s) c 0, Vector3d 0 0 1]
  where
    c = cos' a
    s = sin' a

cpaA :: Vector3d -> Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double
cpaA v10 c10 w1 v20 c20 w2 = negate (vdot (vscale v10 w1) c20 + vdot (vscale v20 w2) c10)

cpaB :: Vector3d -> Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double
cpaB v10 c10 w1 v20 c20 w2 = vdot (vscale c10 w1) v20 + vdot (vscale c20 w2) v10

cpaC :: Vector3d -> Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double
cpaC v10 c10 w1 v20 c20 w2 = negate (vdot (vscale v10 w1) v20 - vdot (vscale c20 w2) c10)

cpaD :: Vector3d -> Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double
cpaD v10 c10 w1 v20 c20 w2 = vdot (vscale c10 w1) c20 - vdot (vscale v20 w2) v10

cpaFt :: Double -> Double -> Double -> Double -> Double -> Double -> Double -> Double -> Double
cpaFt cw1t cw2t sw1t sw2t a b c d =
    a * sw1t * sw2t + b * cw1t * cw2t + c * sw1t * cw2t + d * cw1t * sw2t

cpaDft ::
       Double
    -> Double
    -> Double
    -> Double
    -> Double
    -> Double
    -> Double
    -> Double
    -> Double
    -> Double
    -> Double
cpaDft w1 w2 cw1t cw2t sw1t sw2t a b c d =
    negate ((c * w2 + d * w1) * sw1t * sw2t) + (d * w2 + c * w1) * cw1t * cw2t +
    (a * w2 - b * w1) * sw1t * cw2t -
    (b * w2 - a * w1) * cw1t * sw2t

cpaStep :: Vector3d -> Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double -> Double
cpaStep v10 c10 w1 v20 c20 w2 t =
    cpaFt cw1t cw2t sw1t sw2t a b c d / cpaDft w1 w2 cw1t cw2t sw1t sw2t a b c d
  where
    cw1t = cos (w1 * t)
    cw2t = cos (w2 * t)
    sw1t = sin (w1 * t)
    sw2t = sin (w2 * t)
    a = cpaA v10 c10 w1 v20 c20 w2
    b = cpaB v10 c10 w1 v20 c20 w2
    c = cpaC v10 c10 w1 v20 c20 w2
    d = cpaD v10 c10 w1 v20 c20 w2

-- | Newton-Raphson for CPA time.

-- note: this should always converge to the minimum time given

-- that the assumptions made in the proof of quadratic convergence are met

cpaNrRec ::
       Vector3d -> Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double -> Int -> Double
cpaNrRec v10 c10 w1 v20 c20 w2 ti i
    | i == 50 = -1.0 -- no convergence

    | abs fi < 1e-12 = ti1
    | otherwise = cpaNrRec v10 c10 w1 v20 c20 w2 ti1 (i + 1)
  where
    fi = cpaStep v10 c10 w1 v20 c20 w2 ti
    ti1 = ti - fi

-- | Newton-Raphson for min speed intercept.

-- note: this should always converge to the minimum time given

-- that the assumptions made in the proof of quadratic convergence are met

intMinNrRec ::
       Vector3d
    -> Vector3d
    -> Vector3d
    -> Speed
    -> Double
    -> Length
    -> Double
    -> Double
    -> Int
    -> Double
intMinNrRec v10 v20 c20 s2 w2 r si ti i
    | i == 50 = -1.0 -- no convergence

    | abs fi < 1e-12 = ti1
    | otherwise = intMinNrRec v10 v20 c20 s2 w2 r si1 ti1 (i + 1)
  where
    fi = intMinStep v10 v20 c20 w2 si ti
    ti1 = ti - fi
    v2t = position'' v20 s2 c20 ti1 r
    si1 = ad v10 v2t

intMinStep :: Vector3d -> Vector3d -> Vector3d -> Double -> Double -> Double -> Double
intMinStep v10 v20 c20 w2 s t =
    dsdt s w2 v10v20 v10c20 sinw2t cosw2t / d2sdt2 s w2 v10v20 v10c20 sinw2t cosw2t
  where
    cosw2t = cos (w2 * t)
    sinw2t = sin (w2 * t)
    v10v20 = vdot v10 v20
    v10c20 = vdot v10 c20

-- | Newton-Raphson for speed intercept.

-- note: this should always converge to the minimum time given

-- that the assumptions made in the proof of quadratic convergence are met

intSpdNrRec ::
       Vector3d
    -> Double
    -> Vector3d
    -> Vector3d
    -> Speed
    -> Double
    -> Length
    -> Double
    -> Double
    -> Int
    -> Double
intSpdNrRec v10 w1 v20 c20 s2 w2 r si ti i
    | i == 50 = -1.0 -- no convergence

    | abs fi < 1e-12 = ti1
    | otherwise = intSpdNrRec v10 w1 v20 c20 s2 w2 r si1 ti1 (i + 1)
  where
    fi = intSpdStep v10 w1 v20 c20 w2 si ti
    ti1 = ti - fi
    v2t = position'' v20 s2 c20 ti1 r
    si1 = ad v10 v2t

intSpdStep :: Vector3d -> Double -> Vector3d -> Vector3d -> Double -> Double -> Double -> Double
intSpdStep v10 w1 v20 c20 w2 s t = f / df
  where
    cosw2t = cos (w2 * t)
    sinw2t = sin (w2 * t)
    v10v20 = vdot v10 v20
    v10c20 = vdot v10 c20
    f = s / t - w1
    df = (1.0 / t) * (dsdt s w2 v10v20 v10c20 sinw2t cosw2t - s / t)

dsdt :: Double -> Double -> Double -> Double -> Double -> Double -> Double
dsdt s w2 v10v20 v10c20 sinw2t cosw2t =
    ((-1.0) / sin s) * ((-w2) * (v10v20 * sinw2t - v10c20 * cosw2t))

d2sdt2 :: Double -> Double -> Double -> Double -> Double -> Double -> Double
d2sdt2 s w2 v10v20 v10c20 sinw2t cosw2t =
    ((-1.0) / sin s) * (cos s / (sins * sins) * x10d2x2dt2 * x10d2x2dt2 + x10d2x2dt2)
  where
    sins = sin s
    x10d2x2dt2 = negate (w2 * w2) * (v10v20 * cosw2t + v10c20 * sinw2t)

-- | angle in radians between 2 n-vectors (as vector3d), copied from Geodetics

-- without the sign and returing radians.

ad :: Vector3d -> Vector3d -> Double
ad v1 v2 = atan2 (vnorm (vcross v1 v2)) (vdot v1 v2)