Safe Haskell | None |
---|---|
Language | Haskell2010 |
Data structures to express IPv4, IPv6 and IP range.
- data IP
- data IPv4
- toIPv4 :: [Int] -> IPv4
- fromIPv4 :: IPv4 -> [Int]
- fromHostAddress :: HostAddress -> IPv4
- toHostAddress :: IPv4 -> HostAddress
- data IPv6
- toIPv6 :: [Int] -> IPv6
- toIPv6b :: [Int] -> IPv6
- fromIPv6 :: IPv6 -> [Int]
- fromIPv6b :: IPv6 -> [Int]
- fromHostAddress6 :: HostAddress6 -> IPv6
- toHostAddress6 :: IPv6 -> HostAddress6
- data IPRange
- data AddrRange a
- class Eq a => Addr a where
- makeAddrRange :: Addr a => a -> Int -> AddrRange a
- (>:>) :: Addr a => AddrRange a -> AddrRange a -> Bool
- isMatchedTo :: Addr a => a -> AddrRange a -> Bool
- addrRangePair :: Addr a => AddrRange a -> (a, Int)
- ipv4RangeToIPv6 :: AddrRange IPv4 -> AddrRange IPv6
- ipv4ToIPv6 :: IPv4 -> IPv6
Documentation
IP data
A unified IP data for IPv4
and IPv6
.
To create this, use the data constructors. Or use read
"192.0.2.1"
:: IP
, for example. Also, "192.0.2.1"
can be used as literal with OverloadedStrings.
>>>
(read "192.0.2.1" :: IP) == IPv4 (read "192.0.2.1" :: IPv4)
True>>>
(read "2001:db8:00:00:00:00:00:01" :: IP) == IPv6 (read "2001:db8:00:00:00:00:00:01" :: IPv6)
True
Eq IP | Equality over IP addresses. Correctly compare IPv4 and IPv4-embedded-in-IPv6 addresses.
|
Ord IP | |
Read IP | |
Show IP | |
IsString IP | |
Generic IP | |
type Rep IP |
fromHostAddress :: HostAddress -> IPv4 Source
The fromHostAddress
function converts HostAddress
to IPv4
.
toHostAddress :: IPv4 -> HostAddress Source
The toHostAddress
function converts IPv4
to HostAddress
.
The abstract data type to express an IPv6 address.
To create this, use toIPv6
. Or use read
"2001:DB8::1"
:: IPv6
, for example. Also, "2001:DB8::1"
can be used as literal with OverloadedStrings.
>>>
read "2001:db8:00:00:00:00:00:01" :: IPv6
2001:db8::1>>>
read "2001:db8:11e:c00::101" :: IPv6
2001:db8:11e:c00::101>>>
read "2001:db8:11e:c00:aa:bb:192.0.2.1" :: IPv6
2001:db8:11e:c00:aa:bb:c000:201>>>
read "2001:db8::192.0.2.1" :: IPv6
2001:db8::c000:201>>>
read "0::ffff:192.0.2.1" :: IPv6
::ffff:192.0.2.1>>>
read "0::0:c000:201" :: IPv6
::192.0.2.1>>>
read "::0.0.0.1" :: IPv6
::1
fromHostAddress6 :: HostAddress6 -> IPv6 Source
The fromHostAddress6
function converts HostAddress6
to IPv6
.
toHostAddress6 :: IPv6 -> HostAddress6 Source
The toHostAddress6
function converts IPv6
to HostAddress6
.
IP range data
A unified data for AddrRange
IPv4
and AddrRange
IPv6
.
To create this, use read
"192.0.2.0/24"
:: IPRange
.
Also, "192.0.2.0/24"
can be used as literal with OverloadedStrings.
>>>
(read "192.0.2.1/24" :: IPRange) == IPv4Range (read "192.0.2.0/24" :: AddrRange IPv4)
True>>>
(read "2001:db8:00:00:00:00:00:01/48" :: IPRange) == IPv6Range (read "2001:db8:00:00:00:00:00:01/48" :: AddrRange IPv6)
True
The Addr range consists of an address, a contiguous mask, and mask length. The contiguous mask and the mask length are essentially same information but contained for pre calculation.
To create this, use makeAddrRange
or read
"192.0.2.0/24"
:: AddrRange
IPv4
.
Also, "192.0.2.0/24"
can be used as literal with OverloadedStrings.
>>>
read "192.0.2.1/24" :: AddrRange IPv4
192.0.2.0/24>>>
read "2001:db8:00:00:00:00:00:01/48" :: AddrRange IPv6
2001:db8::/48
Address class
makeAddrRange :: Addr a => a -> Int -> AddrRange a Source
The makeAddrRange
functions takes an Addr
address and a mask
length. It creates a bit mask from the mask length and masks
the Addr
address, then returns AddrRange
made of them.
>>>
makeAddrRange (toIPv4 [127,0,2,1]) 8
127.0.0.0/8>>>
makeAddrRange (toIPv6 [0x2001,0xDB8,0,0,0,0,0,1]) 8
2000::/8
(>:>) :: Addr a => AddrRange a -> AddrRange a -> Bool Source
The >:> operator takes two AddrRange
. It returns True
if
the first AddrRange
contains the second AddrRange
. Otherwise,
it returns False
.
>>>
makeAddrRange ("127.0.2.1" :: IPv4) 8 >:> makeAddrRange "127.0.2.1" 24
True>>>
makeAddrRange ("127.0.2.1" :: IPv4) 24 >:> makeAddrRange "127.0.2.1" 8
False>>>
makeAddrRange ("2001:DB8::1" :: IPv6) 16 >:> makeAddrRange "2001:DB8::1" 32
True>>>
makeAddrRange ("2001:DB8::1" :: IPv6) 32 >:> makeAddrRange "2001:DB8::1" 16
False
isMatchedTo :: Addr a => a -> AddrRange a -> Bool Source
The toMatchedTo
function take an Addr
address and an AddrRange
,
and returns True
if the range contains the address.
>>>
("127.0.2.0" :: IPv4) `isMatchedTo` makeAddrRange "127.0.2.1" 24
True>>>
("127.0.2.0" :: IPv4) `isMatchedTo` makeAddrRange "127.0.2.1" 32
False>>>
("2001:DB8::1" :: IPv6) `isMatchedTo` makeAddrRange "2001:DB8::1" 32
True>>>
("2001:DB8::" :: IPv6) `isMatchedTo` makeAddrRange "2001:DB8::1" 128
False
addrRangePair :: Addr a => AddrRange a -> (a, Int) Source
The unmakeAddrRange
functions take a AddrRange
and
returns the network address and a mask length.
>>>
addrRangePair ("127.0.0.0/8" :: AddrRange IPv4)
(127.0.0.0,8)>>>
addrRangePair ("2000::/8" :: AddrRange IPv6)
(2000::,8)
ipv4RangeToIPv6 :: AddrRange IPv4 -> AddrRange IPv6 Source
Convert IPv4 range to IPV4-embedded-in-IPV6 range
ipv4ToIPv6 :: IPv4 -> IPv6 Source
Convert IPv4 address to IPv4-embedded-in-IPv6