{-# LANGUAGE CPP #-} {-# LANGUAGE PatternGuards #-} {-| Module: Data.Functor.Invariant.TH Copyright: (C) 2012-2017 Nicolas Frisby, (C) 2015-2017 Ryan Scott License: BSD-style (see the file LICENSE) Maintainer: Ryan Scott Portability: Template Haskell Functions to mechanically derive 'Data.Functor.Invariant.Invariant' or 'Data.Functor.Invariant.Invariant2' instances, or to splice 'Data.Functor.Invariant.invmap' or 'Data.Functor.Invariant.invmap2' into Haskell source code. You need to enable the @TemplateHaskell@ language extension in order to use this module. -} module Data.Functor.Invariant.TH ( -- * @deriveInvariant(2)@ -- $deriveInvariant deriveInvariant , deriveInvariantOptions -- $deriveInvariant2 , deriveInvariant2 , deriveInvariant2Options -- * @makeInvmap(2)@ -- $make , makeInvmap , makeInvmapOptions , makeInvmap2 , makeInvmap2Options -- * 'Options' , Options(..) , defaultOptions ) where import Control.Monad (unless, when) import Data.Functor.Invariant.TH.Internal import Data.List import qualified Data.Map as Map ((!), fromList, keys, lookup, member, size) import Data.Maybe import Language.Haskell.TH.Datatype import Language.Haskell.TH.Datatype.TyVarBndr import Language.Haskell.TH.Lib import Language.Haskell.TH.Ppr import Language.Haskell.TH.Syntax ------------------------------------------------------------------------------- -- User-facing API ------------------------------------------------------------------------------- -- | Options that further configure how the functions in -- "Data.Functor.Invariant.TH" should behave. newtype Options = Options { emptyCaseBehavior :: Bool -- ^ If 'True', derived instances for empty data types (i.e., ones with -- no data constructors) will use the @EmptyCase@ language extension. -- If 'False', derived instances will simply use 'seq' instead. -- (This has no effect on GHCs before 7.8, since @EmptyCase@ is only -- available in 7.8 or later.) } deriving (Eq, Ord, Read, Show) -- | Conservative 'Options' that doesn't attempt to use @EmptyCase@ (to -- prevent users from having to enable that extension at use sites.) defaultOptions :: Options defaultOptions = Options { emptyCaseBehavior = False } {- $deriveInvariant 'deriveInvariant' automatically generates an 'Data.Functor.Invariant.Invariant' instance declaration for a data type, newtype, or data family instance that has at least one type variable. This emulates what would (hypothetically) happen if you could attach a @deriving 'Data.Functor.Invariant.Invariant'@ clause to the end of a data declaration. Examples: @ {-# LANGUAGE TemplateHaskell #-} import Data.Functor.Invariant.TH data Pair a = Pair a a $('deriveInvariant' ''Pair) -- instance Invariant Pair where ... newtype Alt f a = Alt (f a) $('deriveInvariant' ''Alt) -- instance Invariant f => Invariant (Alt f) where ... @ If you are using @template-haskell-2.7.0.0@ or later (i.e., GHC 7.4 or later), 'deriveInvariant' can also be used to derive 'Data.Functor.Invariant.Invariant' instances for data family instances (which requires the @-XTypeFamilies@ extension). To do so, pass the name of a data or newtype instance constructor to 'deriveInvariant'. Note that the generated code may require the @-XFlexibleInstances@ extension. Some examples: @ {-# LANGUAGE FlexibleInstances, TemplateHaskell, TypeFamilies #-} import Data.Functor.Invariant.TH class AssocClass a b where data AssocData a b instance AssocClass Int b where data AssocData Int b = AssocDataInt1 Int | AssocDataInt2 b Int $('deriveInvariant' 'AssocDataInt1) -- instance Invariant (AssocData Int) where ... -- Alternatively, one could use $(deriveInvariant 'AssocDataInt2) data family DataFam a b newtype instance DataFam () b = DataFamB b $('deriveInvariant' 'DataFamB) -- instance Invariant (DataFam ()) @ Note that there are some limitations: * The 'Name' argument to 'deriveInvariant' must not be a type synonym. * With 'deriveInvariant', the argument's last type variable must be of kind @*@. For other ones, type variables of kind @* -> *@ are assumed to require an 'Data.Functor.Invariant.Invariant' context. For more complicated scenarios, use 'makeInvmap'. * If using the @-XDatatypeContexts@, @-XExistentialQuantification@, or @-XGADTs@ extensions, a constraint cannot mention the last type variable. For example, @data Illegal a where I :: Ord a => a -> Illegal a@ cannot have a derived 'Data.Functor.Invariant.Invariant' instance. * If the last type variable is used within a data field of a constructor, it must only be used in the last argument of the data type constructor. For example, @data Legal a = Legal (Either Int a)@ can have a derived 'Data.Functor.Invariant.Invariant' instance, but @data Illegal a = Illegal (Either a a)@ cannot. * Data family instances must be able to eta-reduce the last type variable. In other words, if you have a instance of the form: @ data family Family a1 ... an t data instance Family e1 ... e2 v = ... @ Then the following conditions must hold: 1. @v@ must be a type variable. 2. @v@ must not be mentioned in any of @e1@, ..., @e2@. -} -- | Generates an 'Data.Functor.Invariant.Invariant' instance declaration for the given -- data type or data family instance. deriveInvariant :: Name -> Q [Dec] deriveInvariant = deriveInvariantOptions defaultOptions -- | Like 'deriveInvariant', but takes an 'Options' argument. deriveInvariantOptions :: Options -> Name -> Q [Dec] deriveInvariantOptions = deriveInvariantClass Invariant {- $deriveInvariant2 'deriveInvariant2' automatically generates an 'Data.Functor.Invariant.Invariant2' instance declaration for a data type, newtype, or data family instance that has at least two type variables. This emulates what would (hypothetically) happen if you could attach a @deriving 'Data.Functor.Invariant.Invariant2'@ clause to the end of a data declaration. Examples: @ {-# LANGUAGE TemplateHaskell #-} import Data.Functor.Invariant.TH data OneOrNone a b = OneL a | OneR b | None $('deriveInvariant2' ''OneOrNone) -- instance Invariant2 OneOrNone where ... newtype Alt2 f a b = Alt2 (f a b) $('deriveInvariant2' ''Alt2) -- instance Invariant2 f => Invariant2 (Alt2 f) where ... @ The same restrictions that apply to 'deriveInvariant' also apply to 'deriveInvariant2', with some caveats: * With 'deriveInvariant2', the last type variables must both be of kind @*@. For other ones, type variables of kind @* -> *@ are assumed to require an 'Data.Functor.Invariant.Invariant' constraint, and type variables of kind @* -> * -> *@ are assumed to require an 'Data.Functor.Invariant.Invariant2' constraint. For more complicated scenarios, use 'makeInvmap2'. * If using the @-XDatatypeContexts@, @-XExistentialQuantification@, or @-XGADTs@ extensions, a constraint cannot mention either of the last two type variables. For example, @data Illegal2 a b where I2 :: Ord a => a -> b -> Illegal2 a b@ cannot have a derived 'Data.Functor.Invariant.Invariant2' instance. * If either of the last two type variables is used within a data field of a constructor, it must only be used in the last two arguments of the data type constructor. For example, @data Legal a b = Legal (Int, Int, a, b)@ can have a derived 'Data.Functor.Invariant.Invariant2' instance, but @data Illegal a b = Illegal (a, b, a, b)@ cannot. * Data family instances must be able to eta-reduce the last two type variables. In other words, if you have a instance of the form: @ data family Family a1 ... an t1 t2 data instance Family e1 ... e2 v1 v2 = ... @ Then the following conditions must hold: 1. @v1@ and @v2@ must be distinct type variables. 2. Neither @v1@ not @v2@ must be mentioned in any of @e1@, ..., @e2@. -} -- | Generates an 'Data.Functor.Invariant.Invariant2' instance declaration for -- the given data type or data family instance. deriveInvariant2 :: Name -> Q [Dec] deriveInvariant2 = deriveInvariant2Options defaultOptions -- | Like 'deriveInvariant2', but takes an 'Options' argument. deriveInvariant2Options :: Options -> Name -> Q [Dec] deriveInvariant2Options = deriveInvariantClass Invariant2 {- $make There may be scenarios in which you want to @invmap@ over an arbitrary data type or data family instance without having to make the type an instance of 'Data.Functor.Invariant.Invariant'. For these cases, this module provides several functions (all prefixed with @make-@) that splice the appropriate lambda expression into your source code. Example: This is particularly useful for creating instances for sophisticated data types. For example, 'deriveInvariant' cannot infer the correct type context for @newtype HigherKinded f a b c = HigherKinded (f a b c)@, since @f@ is of kind @* -> * -> * -> *@. However, it is still possible to create an 'Data.Functor.Invariant.Invariant' instance for @HigherKinded@ without too much trouble using 'makeInvmap': @ {-# LANGUAGE FlexibleContexts, TemplateHaskell #-} import Data.Functor.Invariant import Data.Functor.Invariant.TH newtype HigherKinded f a b c = HigherKinded (f a b c) instance Invariant (f a b) => Invariant (HigherKinded f a b) where invmap = $(makeInvmap ''HigherKinded) @ -} -- | Generates a lambda expression which behaves like -- 'Data.Functor.Invariant.invmap' (without requiring an -- 'Data.Functor.Invariant.Invariant' instance). makeInvmap :: Name -> Q Exp makeInvmap = makeInvmapOptions defaultOptions -- | Like 'makeInvmap', but takes an 'Options' argument. makeInvmapOptions :: Options -> Name -> Q Exp makeInvmapOptions = makeInvmapClass Invariant -- | Generates a lambda expression which behaves like -- 'Data.Functor.Invariant.invmap2' (without requiring an -- 'Data.Functor.Invariant.Invariant2' instance). makeInvmap2 :: Name -> Q Exp makeInvmap2 = makeInvmap2Options defaultOptions -- | Like 'makeInvmap2', but takes an 'Options' argument. makeInvmap2Options :: Options -> Name -> Q Exp makeInvmap2Options = makeInvmapClass Invariant2 ------------------------------------------------------------------------------- -- Code generation ------------------------------------------------------------------------------- -- | Derive an Invariant(2) instance declaration (depending on the InvariantClass -- argument's value). deriveInvariantClass :: InvariantClass -> Options -> Name -> Q [Dec] deriveInvariantClass iClass opts name = do info <- reifyDatatype name case info of DatatypeInfo { datatypeContext = ctxt , datatypeName = parentName , datatypeInstTypes = instTys , datatypeVariant = variant , datatypeCons = cons } -> do (instanceCxt, instanceType) <- buildTypeInstance iClass parentName ctxt instTys variant (:[]) `fmap` instanceD (return instanceCxt) (return instanceType) (invmapDecs iClass opts parentName instTys cons) -- | Generates a declaration defining the primary function corresponding to a -- particular class (invmap for Invariant and invmap2 for Invariant2). invmapDecs :: InvariantClass -> Options -> Name -> [Type] -> [ConstructorInfo] -> [Q Dec] invmapDecs iClass opts parentName instTys cons = [ funD (invmapName iClass) [ clause [] (normalB $ makeInvmapForCons iClass opts parentName instTys cons) [] ] ] -- | Generates a lambda expression which behaves like invmap (for Invariant), -- or invmap2 (for Invariant2). makeInvmapClass :: InvariantClass -> Options -> Name -> Q Exp makeInvmapClass iClass opts name = do info <- reifyDatatype name case info of DatatypeInfo { datatypeContext = ctxt , datatypeName = parentName , datatypeInstTypes = instTys , datatypeVariant = variant , datatypeCons = cons } -> -- We force buildTypeInstance here since it performs some checks for whether -- or not the provided datatype can actually have invmap/invmap2 -- implemented for it, and produces errors if it can't. buildTypeInstance iClass parentName ctxt instTys variant >> makeInvmapForCons iClass opts parentName instTys cons -- | Generates a lambda expression for invmap(2) for the given constructors. -- All constructors must be from the same type. makeInvmapForCons :: InvariantClass -> Options -> Name -> [Type] -> [ConstructorInfo] -> Q Exp makeInvmapForCons iClass opts _parentName instTys cons = do value <- newName "value" covMaps <- newNameList "covMap" numNbs contraMaps <- newNameList "contraMap" numNbs let mapFuns = zip covMaps contraMaps lastTyVars = map varTToName $ drop (length instTys - numNbs) instTys tvMap = Map.fromList $ zip lastTyVars mapFuns argNames = concat (transpose [covMaps, contraMaps]) ++ [value] lamE (map varP argNames) . appsE $ [ varE $ invmapConstName iClass , makeFun value tvMap ] ++ map varE argNames where numNbs :: Int numNbs = fromEnum iClass makeFun :: Name -> TyVarMap -> Q Exp makeFun value tvMap = do #if MIN_VERSION_template_haskell(2,9,0) roles <- reifyRoles _parentName let rroles = roles #endif case () of _ #if MIN_VERSION_template_haskell(2,9,0) | (length rroles >= numNbs) && (all (== PhantomR) (drop (length rroles - numNbs) rroles)) -> varE coerceValName `appE` varE value #endif | null cons && emptyCaseBehavior opts && ghc7'8OrLater -> caseE (varE value) [] | null cons -> appE (varE seqValName) (varE value) `appE` appE (varE errorValName) (stringE $ "Void " ++ nameBase (invmapName iClass)) | otherwise -> caseE (varE value) (map (makeInvmapForCon iClass tvMap) cons) ghc7'8OrLater :: Bool #if __GLASGOW_HASKELL__ >= 708 ghc7'8OrLater = True #else ghc7'8OrLater = False #endif -- | Generates a match for invmap(2) for a single constructor. makeInvmapForCon :: InvariantClass -> TyVarMap -> ConstructorInfo -> Q Match makeInvmapForCon iClass tvMap con@(ConstructorInfo { constructorName = conName , constructorContext = ctxt }) = do when (any (`predMentionsName` Map.keys tvMap) ctxt || Map.size tvMap < fromEnum iClass) $ existentialContextError conName parts <- foldDataConArgs iClass tvMap ft_invmap con match_for_con conName parts where ft_invmap :: FFoldType (Exp -> Q Exp) ft_invmap = FT { ft_triv = return , ft_var = \v x -> return $ VarE (fst (tvMap Map.! v)) `AppE` x , ft_co_var = \v x -> return $ VarE (snd (tvMap Map.! v)) `AppE` x , ft_fun = \g h x -> mkSimpleLam $ \b -> do gg <- g b h $ x `AppE` gg , ft_tup = mkSimpleTupleCase match_for_con , ft_ty_app = \contravariant argGs x -> do let inspect :: (Type, Exp -> Q Exp, Exp -> Q Exp) -> [Q Exp] inspect (argTy, g, h) -- If the argument type is a bare occurrence of one -- of the data type's last type variables, then we -- can generate more efficient code. -- This was inspired by GHC#17880. | Just argVar <- varTToName_maybe argTy , Just (covMap, contraMap) <- Map.lookup argVar tvMap = map (return . VarE) $ if contravariant then [contraMap, covMap] else [covMap, contraMap] | otherwise = [mkSimpleLam g, mkSimpleLam h] appsE $ varE (invmapName (toEnum (length argGs))) : concatMap inspect argGs ++ [return x] , ft_forall = \_ g x -> g x , ft_bad_app = \_ -> outOfPlaceTyVarError conName } -- Con a1 a2 ... -> Con (f1 a1) (f2 a2) ... match_for_con :: Name -> [Exp -> Q Exp] -> Q Match match_for_con = mkSimpleConMatch $ \conName' xs -> appsE (conE conName':xs) -- Con x1 x2 .. ------------------------------------------------------------------------------- -- Template Haskell reifying and AST manipulation ------------------------------------------------------------------------------- -- For the given Types, generate an instance context and head. Coming up with -- the instance type isn't as simple as dropping the last types, as you need to -- be wary of kinds being instantiated with *. -- See Note [Type inference in derived instances] buildTypeInstance :: InvariantClass -- ^ Invariant or Invariant2 -> Name -- ^ The type constructor or data family name -> Cxt -- ^ The datatype context -> [Type] -- ^ The types to instantiate the instance with -> DatatypeVariant -- ^ Are we dealing with a data family instance or not -> Q (Cxt, Type) buildTypeInstance iClass tyConName dataCxt varTysOrig variant = do -- Make sure to expand through type/kind synonyms! Otherwise, the -- eta-reduction check might get tripped up over type variables in a -- synonym that are actually dropped. -- (See GHC Trac #11416 for a scenario where this actually happened.) varTysExp <- mapM resolveTypeSynonyms varTysOrig let remainingLength :: Int remainingLength = length varTysOrig - fromEnum iClass droppedTysExp :: [Type] droppedTysExp = drop remainingLength varTysExp droppedStarKindStati :: [StarKindStatus] droppedStarKindStati = map canRealizeKindStar droppedTysExp -- Check there are enough types to drop and that all of them are either of -- kind * or kind k (for some kind variable k). If not, throw an error. when (remainingLength < 0 || any (== NotKindStar) droppedStarKindStati) $ derivingKindError iClass tyConName let droppedKindVarNames :: [Name] droppedKindVarNames = catKindVarNames droppedStarKindStati -- Substitute kind * for any dropped kind variables varTysExpSubst :: [Type] varTysExpSubst = map (substNamesWithKindStar droppedKindVarNames) varTysExp remainingTysExpSubst, droppedTysExpSubst :: [Type] (remainingTysExpSubst, droppedTysExpSubst) = splitAt remainingLength varTysExpSubst -- All of the type variables mentioned in the dropped types -- (post-synonym expansion) droppedTyVarNames :: [Name] droppedTyVarNames = freeVariables droppedTysExpSubst -- If any of the dropped types were polykinded, ensure that there are of kind * -- after substituting * for the dropped kind variables. If not, throw an error. unless (all hasKindStar droppedTysExpSubst) $ derivingKindError iClass tyConName let preds :: [Maybe Pred] kvNames :: [[Name]] kvNames' :: [Name] -- Derive instance constraints (and any kind variables which are specialized -- to * in those constraints) (preds, kvNames) = unzip $ map (deriveConstraint iClass) remainingTysExpSubst kvNames' = concat kvNames -- Substitute the kind variables specialized in the constraints with * remainingTysExpSubst' :: [Type] remainingTysExpSubst' = map (substNamesWithKindStar kvNames') remainingTysExpSubst -- We now substitute all of the specialized-to-* kind variable names with -- *, but in the original types, not the synonym-expanded types. The reason -- we do this is a superficial one: we want the derived instance to resemble -- the datatype written in source code as closely as possible. For example, -- for the following data family instance: -- -- data family Fam a -- newtype instance Fam String = Fam String -- -- We'd want to generate the instance: -- -- instance C (Fam String) -- -- Not: -- -- instance C (Fam [Char]) remainingTysOrigSubst :: [Type] remainingTysOrigSubst = map (substNamesWithKindStar (union droppedKindVarNames kvNames')) $ take remainingLength varTysOrig isDataFamily :: Bool isDataFamily = case variant of Datatype -> False Newtype -> False DataInstance -> True NewtypeInstance -> True remainingTysOrigSubst' :: [Type] -- See Note [Kind signatures in derived instances] for an explanation -- of the isDataFamily check. remainingTysOrigSubst' = if isDataFamily then remainingTysOrigSubst else map unSigT remainingTysOrigSubst instanceCxt :: Cxt instanceCxt = catMaybes preds instanceType :: Type instanceType = AppT (ConT $ invariantClassName iClass) $ applyTyCon tyConName remainingTysOrigSubst' -- If the datatype context mentions any of the dropped type variables, -- we can't derive an instance, so throw an error. when (any (`predMentionsName` droppedTyVarNames) dataCxt) $ datatypeContextError tyConName instanceType -- Also ensure the dropped types can be safely eta-reduced. Otherwise, -- throw an error. unless (canEtaReduce remainingTysExpSubst' droppedTysExpSubst) $ etaReductionError instanceType return (instanceCxt, instanceType) -- | Attempt to derive a constraint on a Type. If successful, return -- Just the constraint and any kind variable names constrained to *. -- Otherwise, return Nothing and the empty list. -- -- See Note [Type inference in derived instances] for the heuristics used to -- come up with constraints. deriveConstraint :: InvariantClass -> Type -> (Maybe Pred, [Name]) deriveConstraint iClass t | not (isTyVar t) = (Nothing, []) | otherwise = case hasKindVarChain 1 t of Just ns | iClass >= Invariant -> (Just (applyClass invariantTypeName tName), ns) _ -> case hasKindVarChain 2 t of Just ns | iClass == Invariant2 -> (Just (applyClass invariant2TypeName tName), ns) _ -> (Nothing, []) where tName :: Name tName = varTToName t {- Note [Kind signatures in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ It is possible to put explicit kind signatures into the derived instances, e.g., instance C a => C (Data (f :: * -> *)) where ... But it is preferable to avoid this if possible. If we come up with an incorrect kind signature (which is entirely possible, since our type inferencer is pretty unsophisticated - see Note [Type inference in derived instances]), then GHC will flat-out reject the instance, which is quite unfortunate. Plain old datatypes have the advantage that you can avoid using any kind signatures at all in their instances. This is because a datatype declaration uses all type variables, so the types that we use in a derived instance uniquely determine their kinds. As long as we plug in the right types, the kind inferencer can do the rest of the work. For this reason, we use unSigT to remove all kind signatures before splicing in the instance context and head. Data family instances are trickier, since a data family can have two instances that are distinguished by kind alone, e.g., data family Fam (a :: k) data instance Fam (a :: * -> *) data instance Fam (a :: *) If we dropped the kind signatures for C (Fam a), then GHC will have no way of knowing which instance we are talking about. To avoid this scenario, we always include explicit kind signatures in data family instances. There is a chance that the inferred kind signatures will be incorrect, but if so, we can always fall back on the make- functions. Note [Type inference in derived instances] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Type inference is can be tricky to get right, and we want to avoid recreating the entirety of GHC's type inferencer in Template Haskell. For this reason, we will probably never come up with derived instance contexts that are as accurate as GHC's. But that doesn't mean we can't do anything! There are a couple of simple things we can do to make instance contexts that work for 80% of use cases: 1. If one of the last type parameters is polykinded, then its kind will be specialized to * in the derived instance. We note what kind variable the type parameter had and substitute it with * in the other types as well. For example, imagine you had data Data (a :: k) (b :: k) (c :: k) Then you'd want to derived instance to be: instance C (Data (a :: *)) Not: instance C (Data (a :: k)) 2. We naïvely come up with instance constraints using the following criteria: (i) If there's a type parameter n of kind k1 -> k2 (where k1/k2 are * or kind variables), then generate an Invariant n constraint, and if k1/k2 are kind variables, then substitute k1/k2 with * elsewhere in the types. We must consider the case where they are kind variables because you might have a scenario like this: newtype Compose (f :: k3 -> *) (g :: k1 -> k2 -> k3) (a :: k1) (b :: k2) = Compose (f (g a b)) Which would have a derived Invariant2 instance of: instance (Invariant f, Invariant2 g) => Invariant2 (Compose f g) where ... (ii) If there's a type parameter n of kind k1 -> k2 -> k3 (where k1/k2/k3 are * or kind variables), then generate a Invariant2 n constraint and perform kind substitution as in the other case. -} ------------------------------------------------------------------------------- -- Error messages ------------------------------------------------------------------------------- -- | Either the given data type doesn't have enough type variables, or one of -- the type variables to be eta-reduced cannot realize kind *. derivingKindError :: InvariantClass -> Name -> Q a derivingKindError iClass tyConName = fail . showString "Cannot derive well-kinded instance of form ‘" . showString className . showChar ' ' . showParen True ( showString (nameBase tyConName) . showString " ..." ) . showString "‘\n\tClass " . showString className . showString " expects an argument of kind " . showString (pprint . createKindChain $ fromEnum iClass) $ "" where className :: String className = nameBase $ invariantClassName iClass -- | The data type has a DatatypeContext which mentions one of the eta-reduced -- type variables. datatypeContextError :: Name -> Type -> Q a datatypeContextError dataName instanceType = fail . showString "Can't make a derived instance of ‘" . showString (pprint instanceType) . showString "‘:\n\tData type ‘" . showString (nameBase dataName) . showString "‘ must not have a class context involving the last type argument(s)" $ "" -- | The data type has an existential constraint which mentions one of the -- eta-reduced type variables. existentialContextError :: Name -> Q a existentialContextError conName = fail . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must be truly polymorphic in the last argument(s) of the data type" $ "" -- | The data type mentions one of the n eta-reduced type variables in a place other -- than the last nth positions of a data type in a constructor's field. outOfPlaceTyVarError :: Name -> Q a outOfPlaceTyVarError conName = fail . showString "Constructor ‘" . showString (nameBase conName) . showString "‘ must only use its last two type variable(s) within" . showString " the last two argument(s) of a data type" $ "" -- | One of the last type variables cannot be eta-reduced (see the canEtaReduce -- function for the criteria it would have to meet). etaReductionError :: Type -> Q a etaReductionError instanceType = fail $ "Cannot eta-reduce to an instance of form \n\tinstance (...) => " ++ pprint instanceType ------------------------------------------------------------------------------- -- Generic traversal for functor-like deriving ------------------------------------------------------------------------------- -- Much of the code below is cargo-culted from the TcGenFunctor module in GHC. data FFoldType a -- Describes how to fold over a Type in a functor like way = FT { ft_triv :: a -- ^ Does not contain variables , ft_var :: Name -> a -- ^ A bare variable , ft_co_var :: Name -> a -- ^ A bare variable, contravariantly , ft_fun :: a -> a -> a -- ^ Function type , ft_tup :: TupleSort -> [a] -> a -- ^ Tuple type. The [a] is the result of folding over the -- arguments of the tuple. , ft_ty_app :: Bool -> [(Type, a, a)] -> a -- ^ Type app, variables only in last argument. The [(Type, a, a)] -- represents the last argument types. That is, they form the -- argument parts of @fun_ty arg_ty_1 ... arg_ty_n@. -- -- The Bool is True if the Type is in a surrounding context that is -- contravariant, and False if the surrounding context is covariant. -- The two @a@ fields in [(Type, a, a)] represent the results of -- folding over the Type in a covariant and contravariant manner, -- respectively. , ft_bad_app :: a -- ^ Type app, variable other than in last arguments , ft_forall :: [TyVarBndrSpec] -> a -> a -- ^ Forall type } -- Note that in GHC, this function is pure. It must be monadic here since we: -- -- (1) Expand type synonyms -- (2) Detect type family applications -- -- Which require reification in Template Haskell, but are pure in Core. functorLikeTraverse :: InvariantClass -- ^ Invariant or Invariant2 -> TyVarMap -- ^ Variables to look for -> FFoldType a -- ^ How to fold -> Type -- ^ Type to process -> Q a functorLikeTraverse iClass tvMap (FT { ft_triv = caseTrivial, ft_var = caseVar , ft_co_var = caseCoVar, ft_fun = caseFun , ft_tup = caseTuple, ft_ty_app = caseTyApp , ft_bad_app = caseWrongArg, ft_forall = caseForAll }) ty = do ty' <- resolveTypeSynonyms ty (res, _) <- go False ty' return res where {- go :: Bool -- Covariant or contravariant context -> Type -> Q (a, Bool) -- (result of type a, does type contain var) -} go co t@AppT{} | (ArrowT, [funArg, funRes]) <- unapplyTy t = do (funArgR, funArgC) <- go (not co) funArg (funResR, funResC) <- go co funRes if funArgC || funResC then return (caseFun funArgR funResR, True) else trivial go co t@AppT{} = do let (f, args) = unapplyTy t (_, fc) <- go co f (xrs, xcs) <- fmap unzip $ mapM (go co) args (contraXrs, _) <- fmap unzip $ mapM (go (not co)) args let numLastArgs, numFirstArgs :: Int numLastArgs = min (fromEnum iClass) (length args) numFirstArgs = length args - numLastArgs -- tuple :: TupleSort -> Q (a, Bool) tuple tupSort = return (caseTuple tupSort xrs, True) -- wrongArg :: Q (a, Bool) wrongArg = return (caseWrongArg, True) case () of _ | not (or xcs) -> trivial -- Variable does not occur -- At this point we know that xrs, xcs is not empty, -- and at least one xr is True | TupleT len <- f -> tuple $ Boxed len #if MIN_VERSION_template_haskell(2,6,0) | UnboxedTupleT len <- f -> tuple $ Unboxed len #endif | fc || or (take numFirstArgs xcs) -> wrongArg -- T (..var..) ty_1 ... ty_n | otherwise -- T (..no var..) ty_1 ... ty_n -> do itf <- isInTypeFamilyApp tyVarNames f args if itf -- We can't decompose type families, so -- error if we encounter one here. then wrongArg else return ( caseTyApp co $ drop numFirstArgs $ zip3 args xrs contraXrs , True ) go co (SigT t k) = do (_, kc) <- go_kind co k if kc then return (caseWrongArg, True) else go co t go co (VarT v) | Map.member v tvMap = return (if co then caseCoVar v else caseVar v, True) | otherwise = trivial go co (ForallT tvbs _ t) = do (tr, tc) <- go co t let tvbNames = map tvName tvbs if not tc || any (`elem` tvbNames) tyVarNames then trivial else return (caseForAll tvbs tr, True) go _ _ = trivial {- go_kind :: Bool -> Kind -> Q (a, Bool) -} #if MIN_VERSION_template_haskell(2,9,0) go_kind = go #else go_kind _ _ = trivial #endif -- trivial :: Q (a, Bool) trivial = return (caseTrivial, False) tyVarNames :: [Name] tyVarNames = Map.keys tvMap -- Fold over the arguments of a data constructor in a Functor-like way. foldDataConArgs :: InvariantClass -> TyVarMap -> FFoldType a -> ConstructorInfo -> Q [a] foldDataConArgs iClass tvMap ft con = do fieldTys <- mapM resolveTypeSynonyms $ constructorFields con mapM foldArg fieldTys where -- foldArg :: Type -> Q a foldArg = functorLikeTraverse iClass tvMap ft -- Make a 'LamE' using a fresh variable. mkSimpleLam :: (Exp -> Q Exp) -> Q Exp mkSimpleLam lam = do n <- newName "n" body <- lam (VarE n) return $ LamE [VarP n] body -- "Con a1 a2 a3 -> fold [x1 a1, x2 a2, x3 a3]" -- -- @mkSimpleConMatch fold conName insides@ produces a match clause in -- which the LHS pattern-matches on @extraPats@, followed by a match on the -- constructor @conName@ and its arguments. The RHS folds (with @fold@) over -- @conName@ and its arguments, applying an expression (from @insides@) to each -- of the respective arguments of @conName@. mkSimpleConMatch :: (Name -> [a] -> Q Exp) -> Name -> [Exp -> a] -> Q Match mkSimpleConMatch fold conName insides = do varsNeeded <- newNameList "_arg" $ length insides let pat = ConP conName (map VarP varsNeeded) rhs <- fold conName (zipWith (\i v -> i $ VarE v) insides varsNeeded) return $ Match pat (NormalB rhs) [] -- Indicates whether a tuple is boxed or unboxed, as well as its number of -- arguments. For instance, (a, b) corresponds to @Boxed 2@, and (# a, b, c #) -- corresponds to @Unboxed 3@. data TupleSort = Boxed Int #if MIN_VERSION_template_haskell(2,6,0) | Unboxed Int #endif -- "case x of (a1,a2,a3) -> fold [x1 a1, x2 a2, x3 a3]" mkSimpleTupleCase :: (Name -> [a] -> Q Match) -> TupleSort -> [a] -> Exp -> Q Exp mkSimpleTupleCase matchForCon tupSort insides x = do let tupDataName = case tupSort of Boxed len -> tupleDataName len #if MIN_VERSION_template_haskell(2,6,0) Unboxed len -> unboxedTupleDataName len #endif m <- matchForCon tupDataName insides return $ CaseE x [m]