{-# LANGUAGE Safe #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses, FunctionalDependencies #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
module IntervalAlgebra.Core(
Interval
, Intervallic(..)
, ParseErrorInterval(..)
, begin
, end
, parseInterval
, beginerval
, enderval
, expand
, expandl
, expandr
, IntervalRelation(..)
, meets , metBy
, before , after
, overlaps , overlappedBy
, finishedBy , finishes
, contains , during
, starts , startedBy
, equals
, precedes, precededBy
, disjoint , notDisjoint, concur
, within, enclose, enclosedBy
, (<|>)
, predicate, unionPredicates
, disjointRelations, withinRelations
, ComparativePredicateOf1
, ComparativePredicateOf2
, beginervalFromEnd
, endervalFromBegin
, beginervalMoment
, endervalMoment
, diffFromBegin
, diffFromEnd
, momentize
, intervalRelations
, relate
, compose
, complement
, union
, intersection
, converse
, IntervalCombinable(..)
, extenterval
, IntervalSizeable(..)
) where
import Prelude ( Eq, Show, Enum(..), Bounded(..)
, Maybe(..), Either(..), String, Bool(..)
, Integer, Int, Num, Rational
, map, otherwise, show
, any, negate, not
, replicate
, fromRational
, toRational
, fromInteger
, toInteger
, (++), (==), (&&), (+), (-), (!!), realToFrac)
import Data.Function ( ($), id, (.), flip )
import Data.Functor ( Functor(fmap) )
import Data.Ord ( Ord(..), Ordering(..), min, max )
import Data.Semigroup ( Semigroup((<>)) )
import qualified Data.Set ( Set
, fromList
, difference
, intersection
, union
, map
, toList )
import Data.Tuple ( fst, snd )
import Data.Fixed ( Pico )
import Data.Time as DT ( Day
, UTCTime
, NominalDiffTime
, DiffTime
, addUTCTime
, diffUTCTime
, secondsToNominalDiffTime
, nominalDiffTimeToSeconds
, addDays
, diffDays )
import Control.Applicative ( Applicative(pure) )
newtype Interval a = Interval (a, a) deriving (Interval a -> Interval a -> Bool
(Interval a -> Interval a -> Bool)
-> (Interval a -> Interval a -> Bool) -> Eq (Interval a)
forall a. Eq a => Interval a -> Interval a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Interval a -> Interval a -> Bool
$c/= :: forall a. Eq a => Interval a -> Interval a -> Bool
== :: Interval a -> Interval a -> Bool
$c== :: forall a. Eq a => Interval a -> Interval a -> Bool
Eq)
newtype ParseErrorInterval = ParseErrorInterval String
deriving (ParseErrorInterval -> ParseErrorInterval -> Bool
(ParseErrorInterval -> ParseErrorInterval -> Bool)
-> (ParseErrorInterval -> ParseErrorInterval -> Bool)
-> Eq ParseErrorInterval
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: ParseErrorInterval -> ParseErrorInterval -> Bool
$c/= :: ParseErrorInterval -> ParseErrorInterval -> Bool
== :: ParseErrorInterval -> ParseErrorInterval -> Bool
$c== :: ParseErrorInterval -> ParseErrorInterval -> Bool
Eq, Int -> ParseErrorInterval -> ShowS
[ParseErrorInterval] -> ShowS
ParseErrorInterval -> String
(Int -> ParseErrorInterval -> ShowS)
-> (ParseErrorInterval -> String)
-> ([ParseErrorInterval] -> ShowS)
-> Show ParseErrorInterval
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [ParseErrorInterval] -> ShowS
$cshowList :: [ParseErrorInterval] -> ShowS
show :: ParseErrorInterval -> String
$cshow :: ParseErrorInterval -> String
showsPrec :: Int -> ParseErrorInterval -> ShowS
$cshowsPrec :: Int -> ParseErrorInterval -> ShowS
Show)
parseInterval :: (Show a, Ord a) => a -> a -> Either ParseErrorInterval (Interval a)
parseInterval :: a -> a -> Either ParseErrorInterval (Interval a)
parseInterval a
x a
y
| a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< a
y = Interval a -> Either ParseErrorInterval (Interval a)
forall a b. b -> Either a b
Right (Interval a -> Either ParseErrorInterval (Interval a))
-> Interval a -> Either ParseErrorInterval (Interval a)
forall a b. (a -> b) -> a -> b
$ (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
x, a
y)
| Bool
otherwise = ParseErrorInterval -> Either ParseErrorInterval (Interval a)
forall a b. a -> Either a b
Left (ParseErrorInterval -> Either ParseErrorInterval (Interval a))
-> ParseErrorInterval -> Either ParseErrorInterval (Interval a)
forall a b. (a -> b) -> a -> b
$ String -> ParseErrorInterval
ParseErrorInterval (String -> ParseErrorInterval) -> String -> ParseErrorInterval
forall a b. (a -> b) -> a -> b
$ a -> String
forall a. Show a => a -> String
show a
y String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"<=" String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show a
x
intervalBegin :: (Ord a) => Interval a -> a
intervalBegin :: Interval a -> a
intervalBegin (Interval (a, a)
x) = (a, a) -> a
forall a b. (a, b) -> a
fst (a, a)
x
intervalEnd :: (Ord a) => Interval a -> a
intervalEnd :: Interval a -> a
intervalEnd (Interval (a, a)
x) = (a, a) -> a
forall a b. (a, b) -> b
snd (a, a)
x
instance Functor Interval where
fmap :: (a -> b) -> Interval a -> Interval b
fmap a -> b
f (Interval (a
x, a
y)) = (b, b) -> Interval b
forall a. (a, a) -> Interval a
Interval (a -> b
f a
x, a -> b
f a
y)
instance (Show a, Ord a) => Show (Interval a) where
show :: Interval a -> String
show Interval a
x = String
"(" String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show (Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
x) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
", " String -> ShowS
forall a. [a] -> [a] -> [a]
++ a -> String
forall a. Show a => a -> String
show (Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end Interval a
x) String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
")"
class (Ord a) => Intervallic i a where
getInterval :: i a -> Interval a
setInterval :: i a -> Interval a -> i a
begin, end :: Intervallic i a => i a -> a
begin :: i a -> a
begin = Interval a -> a
forall a. Ord a => Interval a -> a
intervalBegin (Interval a -> a) -> (i a -> Interval a) -> i a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. i a -> Interval a
forall (i :: * -> *) a. Intervallic i a => i a -> Interval a
getInterval
end :: i a -> a
end = Interval a -> a
forall a. Ord a => Interval a -> a
intervalEnd (Interval a -> a) -> (i a -> Interval a) -> i a -> a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. i a -> Interval a
forall (i :: * -> *) a. Intervallic i a => i a -> Interval a
getInterval
data IntervalRelation =
Before
| Meets
| Overlaps
| FinishedBy
| Contains
| Starts
| Equals
| StartedBy
| During
| Finishes
| OverlappedBy
| MetBy
| After
deriving (IntervalRelation -> IntervalRelation -> Bool
(IntervalRelation -> IntervalRelation -> Bool)
-> (IntervalRelation -> IntervalRelation -> Bool)
-> Eq IntervalRelation
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: IntervalRelation -> IntervalRelation -> Bool
$c/= :: IntervalRelation -> IntervalRelation -> Bool
== :: IntervalRelation -> IntervalRelation -> Bool
$c== :: IntervalRelation -> IntervalRelation -> Bool
Eq, Int -> IntervalRelation -> ShowS
[IntervalRelation] -> ShowS
IntervalRelation -> String
(Int -> IntervalRelation -> ShowS)
-> (IntervalRelation -> String)
-> ([IntervalRelation] -> ShowS)
-> Show IntervalRelation
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [IntervalRelation] -> ShowS
$cshowList :: [IntervalRelation] -> ShowS
show :: IntervalRelation -> String
$cshow :: IntervalRelation -> String
showsPrec :: Int -> IntervalRelation -> ShowS
$cshowsPrec :: Int -> IntervalRelation -> ShowS
Show, Int -> IntervalRelation
IntervalRelation -> Int
IntervalRelation -> [IntervalRelation]
IntervalRelation -> IntervalRelation
IntervalRelation -> IntervalRelation -> [IntervalRelation]
IntervalRelation
-> IntervalRelation -> IntervalRelation -> [IntervalRelation]
(IntervalRelation -> IntervalRelation)
-> (IntervalRelation -> IntervalRelation)
-> (Int -> IntervalRelation)
-> (IntervalRelation -> Int)
-> (IntervalRelation -> [IntervalRelation])
-> (IntervalRelation -> IntervalRelation -> [IntervalRelation])
-> (IntervalRelation -> IntervalRelation -> [IntervalRelation])
-> (IntervalRelation
-> IntervalRelation -> IntervalRelation -> [IntervalRelation])
-> Enum IntervalRelation
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
enumFromThenTo :: IntervalRelation
-> IntervalRelation -> IntervalRelation -> [IntervalRelation]
$cenumFromThenTo :: IntervalRelation
-> IntervalRelation -> IntervalRelation -> [IntervalRelation]
enumFromTo :: IntervalRelation -> IntervalRelation -> [IntervalRelation]
$cenumFromTo :: IntervalRelation -> IntervalRelation -> [IntervalRelation]
enumFromThen :: IntervalRelation -> IntervalRelation -> [IntervalRelation]
$cenumFromThen :: IntervalRelation -> IntervalRelation -> [IntervalRelation]
enumFrom :: IntervalRelation -> [IntervalRelation]
$cenumFrom :: IntervalRelation -> [IntervalRelation]
fromEnum :: IntervalRelation -> Int
$cfromEnum :: IntervalRelation -> Int
toEnum :: Int -> IntervalRelation
$ctoEnum :: Int -> IntervalRelation
pred :: IntervalRelation -> IntervalRelation
$cpred :: IntervalRelation -> IntervalRelation
succ :: IntervalRelation -> IntervalRelation
$csucc :: IntervalRelation -> IntervalRelation
Enum)
instance Bounded IntervalRelation where
minBound :: IntervalRelation
minBound = IntervalRelation
Before
maxBound :: IntervalRelation
maxBound = IntervalRelation
After
instance Ord IntervalRelation where
compare :: IntervalRelation -> IntervalRelation -> Ordering
compare IntervalRelation
x IntervalRelation
y = Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (IntervalRelation -> Int
forall a. Enum a => a -> Int
fromEnum IntervalRelation
x) (IntervalRelation -> Int
forall a. Enum a => a -> Int
fromEnum IntervalRelation
y)
meets, metBy :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
meets :: ComparativePredicateOf2 (i0 a) (i1 a)
meets i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y
metBy :: ComparativePredicateOf2 (i0 a) (i1 a)
metBy = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
meets
before, after, precedes, precededBy :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
before :: ComparativePredicateOf2 (i0 a) (i1 a)
before i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y
after :: ComparativePredicateOf2 (i0 a) (i1 a)
after = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
before
precedes :: ComparativePredicateOf2 (i0 a) (i1 a)
precedes = ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
before
precededBy :: ComparativePredicateOf2 (i0 a) (i1 a)
precededBy = ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
after
overlaps, overlappedBy :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
overlaps :: ComparativePredicateOf2 (i0 a) (i1 a)
overlaps i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y Bool -> Bool -> Bool
&& i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i1 a
y Bool -> Bool -> Bool
&& i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y
overlappedBy :: ComparativePredicateOf2 (i0 a) (i1 a)
overlappedBy = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlaps
starts, startedBy :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
starts :: ComparativePredicateOf2 (i0 a) (i1 a)
starts i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i0 a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y Bool -> Bool -> Bool
&& i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i1 a
y
startedBy :: ComparativePredicateOf2 (i0 a) (i1 a)
startedBy = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
starts
finishes, finishedBy :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
finishes :: ComparativePredicateOf2 (i0 a) (i1 a)
finishes i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y Bool -> Bool -> Bool
&& i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i1 a
y
finishedBy :: ComparativePredicateOf2 (i0 a) (i1 a)
finishedBy = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishes
during, contains :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
during :: ComparativePredicateOf2 (i0 a) (i1 a)
during i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
> i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y Bool -> Bool -> Bool
&& i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i1 a
y
contains :: ComparativePredicateOf2 (i0 a) (i1 a)
contains = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
during
equals :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
equals :: ComparativePredicateOf2 (i0 a) (i1 a)
equals i0 a
x i1 a
y = i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i0 a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i1 a
y Bool -> Bool -> Bool
&& i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== i1 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i1 a
y
(<|>) :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
-> ComparativePredicateOf2 (i0 a) (i1 a)
-> ComparativePredicateOf2 (i0 a) (i1 a)
<|> :: ComparativePredicateOf2 (i0 a) (i1 a)
-> ComparativePredicateOf2 (i0 a) (i1 a)
-> ComparativePredicateOf2 (i0 a) (i1 a)
(<|>) ComparativePredicateOf2 (i0 a) (i1 a)
f ComparativePredicateOf2 (i0 a) (i1 a)
g = [ComparativePredicateOf2 (i0 a) (i1 a)]
-> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b.
[ComparativePredicateOf2 a b] -> ComparativePredicateOf2 a b
unionPredicates [ComparativePredicateOf2 (i0 a) (i1 a)
f, ComparativePredicateOf2 (i0 a) (i1 a)
g]
disjointRelations :: Data.Set.Set IntervalRelation
disjointRelations :: Set IntervalRelation
disjointRelations = [IntervalRelation] -> Set IntervalRelation
toSet [IntervalRelation
Before, IntervalRelation
After, IntervalRelation
Meets, IntervalRelation
MetBy]
withinRelations :: Data.Set.Set IntervalRelation
withinRelations :: Set IntervalRelation
withinRelations = [IntervalRelation] -> Set IntervalRelation
toSet [IntervalRelation
Starts, IntervalRelation
During, IntervalRelation
Finishes, IntervalRelation
Equals]
disjoint :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
disjoint :: ComparativePredicateOf2 (i0 a) (i1 a)
disjoint = Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
predicate Set IntervalRelation
disjointRelations
notDisjoint, concur :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
notDisjoint :: ComparativePredicateOf2 (i0 a) (i1 a)
notDisjoint = Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
predicate (Set IntervalRelation -> Set IntervalRelation
complement Set IntervalRelation
disjointRelations)
concur :: ComparativePredicateOf2 (i0 a) (i1 a)
concur = ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
notDisjoint
within, enclosedBy:: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
within :: ComparativePredicateOf2 (i0 a) (i1 a)
within = Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
predicate Set IntervalRelation
withinRelations
enclosedBy :: ComparativePredicateOf2 (i0 a) (i1 a)
enclosedBy = ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
within
enclose :: (Intervallic i0 a, Intervallic i1 a)=>
ComparativePredicateOf2 (i0 a) (i1 a)
enclose :: ComparativePredicateOf2 (i0 a) (i1 a)
enclose = (i1 a -> i0 a -> Bool) -> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b c. (a -> b -> c) -> b -> a -> c
flip i1 a -> i0 a -> Bool
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
enclosedBy
intervalRelations :: Data.Set.Set IntervalRelation
intervalRelations :: Set IntervalRelation
intervalRelations = [IntervalRelation] -> Set IntervalRelation
forall a. Ord a => [a] -> Set a
Data.Set.fromList ((Int -> IntervalRelation) -> [Int] -> [IntervalRelation]
forall a b. (a -> b) -> [a] -> [b]
Prelude.map Int -> IntervalRelation
forall a. Enum a => Int -> a
toEnum [Int
0..Int
12] ::[IntervalRelation])
converseRelation :: IntervalRelation -> IntervalRelation
converseRelation :: IntervalRelation -> IntervalRelation
converseRelation IntervalRelation
x = Int -> IntervalRelation
forall a. Enum a => Int -> a
toEnum (Int
12 Int -> Int -> Int
forall a. Num a => a -> a -> a
- IntervalRelation -> Int
forall a. Enum a => a -> Int
fromEnum IntervalRelation
x)
toSet :: [IntervalRelation ] -> Data.Set.Set IntervalRelation
toSet :: [IntervalRelation] -> Set IntervalRelation
toSet = [IntervalRelation] -> Set IntervalRelation
forall a. Ord a => [a] -> Set a
Data.Set.fromList
unionPredicates :: [ComparativePredicateOf2 a b] -> ComparativePredicateOf2 a b
unionPredicates :: [ComparativePredicateOf2 a b] -> ComparativePredicateOf2 a b
unionPredicates [ComparativePredicateOf2 a b]
fs a
x b
y = (ComparativePredicateOf2 a b -> Bool)
-> [ComparativePredicateOf2 a b] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (\ ComparativePredicateOf2 a b
f -> ComparativePredicateOf2 a b
f a
x b
y) [ComparativePredicateOf2 a b]
fs
toPredicate :: (Intervallic i0 a, Intervallic i1 a) =>
IntervalRelation
-> ComparativePredicateOf2 (i0 a) (i1 a)
toPredicate :: IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
toPredicate IntervalRelation
r =
case IntervalRelation
r of
IntervalRelation
Before -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
before
IntervalRelation
Meets -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
meets
IntervalRelation
Overlaps -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlaps
IntervalRelation
FinishedBy -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishedBy
IntervalRelation
Contains -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
contains
IntervalRelation
Starts -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
starts
IntervalRelation
Equals -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
equals
IntervalRelation
StartedBy -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
startedBy
IntervalRelation
During -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
during
IntervalRelation
Finishes -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
finishes
IntervalRelation
OverlappedBy -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
overlappedBy
IntervalRelation
MetBy -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
metBy
IntervalRelation
After -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
after
predicates :: (Intervallic i0 a, Intervallic i1 a)=>
Data.Set.Set IntervalRelation
-> [ComparativePredicateOf2 (i0 a) (i1 a)]
predicates :: Set IntervalRelation -> [ComparativePredicateOf2 (i0 a) (i1 a)]
predicates Set IntervalRelation
x = (IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a))
-> [IntervalRelation] -> [ComparativePredicateOf2 (i0 a) (i1 a)]
forall a b. (a -> b) -> [a] -> [b]
Prelude.map IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
toPredicate (Set IntervalRelation -> [IntervalRelation]
forall a. Set a -> [a]
Data.Set.toList Set IntervalRelation
x)
predicate :: (Intervallic i0 a, Intervallic i1 a)=>
Data.Set.Set IntervalRelation
-> ComparativePredicateOf2 (i0 a) (i1 a)
predicate :: Set IntervalRelation -> ComparativePredicateOf2 (i0 a) (i1 a)
predicate = [ComparativePredicateOf2 (i0 a) (i1 a)]
-> ComparativePredicateOf2 (i0 a) (i1 a)
forall a b.
[ComparativePredicateOf2 a b] -> ComparativePredicateOf2 a b
unionPredicates([ComparativePredicateOf2 (i0 a) (i1 a)]
-> ComparativePredicateOf2 (i0 a) (i1 a))
-> (Set IntervalRelation
-> [ComparativePredicateOf2 (i0 a) (i1 a)])
-> Set IntervalRelation
-> ComparativePredicateOf2 (i0 a) (i1 a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Set IntervalRelation -> [ComparativePredicateOf2 (i0 a) (i1 a)]
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
Set IntervalRelation -> [ComparativePredicateOf2 (i0 a) (i1 a)]
predicates
composeRelationLookup :: [[[IntervalRelation]]]
composeRelationLookup :: [[[IntervalRelation]]]
composeRelationLookup =
[ [[IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
pmosd, [IntervalRelation]
pmosd, [IntervalRelation]
pmosd, [IntervalRelation]
pmosd, [IntervalRelation]
full ]
, [[IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
m , [IntervalRelation]
m , [IntervalRelation]
m , [IntervalRelation]
osd , [IntervalRelation]
osd , [IntervalRelation]
osd , [IntervalRelation]
fef , [IntervalRelation]
dsomp]
, [[IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
pmo , [IntervalRelation]
pmo , [IntervalRelation]
pmofd, [IntervalRelation]
o , [IntervalRelation]
o , [IntervalRelation]
ofd , [IntervalRelation]
osd , [IntervalRelation]
osd , [IntervalRelation]
cncr , [IntervalRelation]
dso , [IntervalRelation]
dsomp]
, [[IntervalRelation]
p , [IntervalRelation]
m , [IntervalRelation]
o , [IntervalRelation]
f' , [IntervalRelation]
d' , [IntervalRelation]
o , [IntervalRelation]
f', [IntervalRelation]
d' , [IntervalRelation]
osd , [IntervalRelation]
fef , [IntervalRelation]
dso , [IntervalRelation]
dso , [IntervalRelation]
dsomp]
, [[IntervalRelation]
pmofd, [IntervalRelation]
ofd , [IntervalRelation]
ofd , [IntervalRelation]
d' , [IntervalRelation]
d' , [IntervalRelation]
ofd , [IntervalRelation]
d', [IntervalRelation]
d' , [IntervalRelation]
cncr , [IntervalRelation]
dso , [IntervalRelation]
dso , [IntervalRelation]
dso , [IntervalRelation]
dsomp]
, [[IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
pmo , [IntervalRelation]
pmo , [IntervalRelation]
pmofd, [IntervalRelation]
s , [IntervalRelation]
s , [IntervalRelation]
ses , [IntervalRelation]
d , [IntervalRelation]
d , [IntervalRelation]
dfo , [IntervalRelation]
m' , [IntervalRelation]
p' ]
, [[IntervalRelation]
p , [IntervalRelation]
m , [IntervalRelation]
o , [IntervalRelation]
f' , [IntervalRelation]
d' , [IntervalRelation]
s , [IntervalRelation]
e , [IntervalRelation]
s' , [IntervalRelation]
d , [IntervalRelation]
f , [IntervalRelation]
o' , [IntervalRelation]
m' , [IntervalRelation]
p' ]
, [[IntervalRelation]
pmofd, [IntervalRelation]
ofd , [IntervalRelation]
ofd , [IntervalRelation]
d' , [IntervalRelation]
d' , [IntervalRelation]
ses , [IntervalRelation]
s', [IntervalRelation]
s' , [IntervalRelation]
dfo , [IntervalRelation]
o' , [IntervalRelation]
o' , [IntervalRelation]
m' , [IntervalRelation]
p' ]
, [[IntervalRelation]
p , [IntervalRelation]
p , [IntervalRelation]
pmosd, [IntervalRelation]
pmosd, [IntervalRelation]
full , [IntervalRelation]
d , [IntervalRelation]
d , [IntervalRelation]
dfomp, [IntervalRelation]
d , [IntervalRelation]
d , [IntervalRelation]
dfomp, [IntervalRelation]
p' , [IntervalRelation]
p' ]
, [[IntervalRelation]
p , [IntervalRelation]
m , [IntervalRelation]
osd , [IntervalRelation]
fef , [IntervalRelation]
dsomp, [IntervalRelation]
d , [IntervalRelation]
f , [IntervalRelation]
omp , [IntervalRelation]
d , [IntervalRelation]
f , [IntervalRelation]
omp , [IntervalRelation]
p' , [IntervalRelation]
p' ]
, [[IntervalRelation]
pmofd, [IntervalRelation]
ofd , [IntervalRelation]
cncr , [IntervalRelation]
dso , [IntervalRelation]
dsomp, [IntervalRelation]
dfo , [IntervalRelation]
o', [IntervalRelation]
omp , [IntervalRelation]
dfo , [IntervalRelation]
o' , [IntervalRelation]
omp , [IntervalRelation]
p' , [IntervalRelation]
p' ]
, [[IntervalRelation]
pmofd, [IntervalRelation]
ses , [IntervalRelation]
dfo , [IntervalRelation]
m' , [IntervalRelation]
p' , [IntervalRelation]
dfo , [IntervalRelation]
m', [IntervalRelation]
p' , [IntervalRelation]
dfo , [IntervalRelation]
m' , [IntervalRelation]
p' , [IntervalRelation]
p' , [IntervalRelation]
p' ]
, [[IntervalRelation]
full , [IntervalRelation]
dfomp, [IntervalRelation]
dfomp, [IntervalRelation]
p' , [IntervalRelation]
p' , [IntervalRelation]
dfomp, [IntervalRelation]
p', [IntervalRelation]
p' , [IntervalRelation]
dfomp, [IntervalRelation]
p' , [IntervalRelation]
p' , [IntervalRelation]
p' , [IntervalRelation]
p' ]
]
where p :: [IntervalRelation]
p = [IntervalRelation
Before]
m :: [IntervalRelation]
m = [IntervalRelation
Meets]
o :: [IntervalRelation]
o = [IntervalRelation
Overlaps]
f' :: [IntervalRelation]
f' = [IntervalRelation
FinishedBy]
d' :: [IntervalRelation]
d' = [IntervalRelation
Contains]
s :: [IntervalRelation]
s = [IntervalRelation
Starts]
e :: [IntervalRelation]
e = [IntervalRelation
Equals]
s' :: [IntervalRelation]
s' = [IntervalRelation
StartedBy]
d :: [IntervalRelation]
d = [IntervalRelation
During]
f :: [IntervalRelation]
f = [IntervalRelation
Finishes]
o' :: [IntervalRelation]
o' = [IntervalRelation
OverlappedBy]
m' :: [IntervalRelation]
m' = [IntervalRelation
MetBy]
p' :: [IntervalRelation]
p' = [IntervalRelation
After]
ses :: [IntervalRelation]
ses = [IntervalRelation]
s [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
e [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
s'
fef :: [IntervalRelation]
fef = [IntervalRelation]
f' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
e [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
f
pmo :: [IntervalRelation]
pmo = [IntervalRelation]
p [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
o
pmofd :: [IntervalRelation]
pmofd = [IntervalRelation]
pmo [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
f' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
d'
osd :: [IntervalRelation]
osd = [IntervalRelation]
o [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
s [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
d
ofd :: [IntervalRelation]
ofd = [IntervalRelation]
o [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
f' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
d'
omp :: [IntervalRelation]
omp = [IntervalRelation]
o' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
p'
dfo :: [IntervalRelation]
dfo = [IntervalRelation]
d [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
f [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
o'
dfomp :: [IntervalRelation]
dfomp = [IntervalRelation]
dfo [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
p'
dso :: [IntervalRelation]
dso = [IntervalRelation]
d' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
s' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
o'
dsomp :: [IntervalRelation]
dsomp = [IntervalRelation]
dso [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
p'
pmosd :: [IntervalRelation]
pmosd = [IntervalRelation]
p [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
osd
cncr :: [IntervalRelation]
cncr = [IntervalRelation]
o [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
f' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
d' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
s [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
e [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
s' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
d [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
f [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
o'
full :: [IntervalRelation]
full = [IntervalRelation]
p [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
cncr [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
m' [IntervalRelation] -> [IntervalRelation] -> [IntervalRelation]
forall a. [a] -> [a] -> [a]
++ [IntervalRelation]
p'
relate :: (Intervallic i0 a, Intervallic i1 a) => i0 a -> i1 a -> IntervalRelation
relate :: i0 a -> i1 a -> IntervalRelation
relate i0 a
x i1 a
y
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`before` i1 a
y = IntervalRelation
Before
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`after` i1 a
y = IntervalRelation
After
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`meets` i1 a
y = IntervalRelation
Meets
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`metBy` i1 a
y = IntervalRelation
MetBy
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`overlaps` i1 a
y = IntervalRelation
Overlaps
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`overlappedBy` i1 a
y = IntervalRelation
OverlappedBy
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`starts` i1 a
y = IntervalRelation
Starts
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`startedBy` i1 a
y = IntervalRelation
StartedBy
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`finishes` i1 a
y = IntervalRelation
Finishes
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`finishedBy` i1 a
y = IntervalRelation
FinishedBy
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`during` i1 a
y = IntervalRelation
During
| i0 a
x ComparativePredicateOf2 (i0 a) (i1 a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`contains` i1 a
y = IntervalRelation
Contains
| Bool
otherwise = IntervalRelation
Equals
compose :: IntervalRelation
-> IntervalRelation
-> Data.Set.Set IntervalRelation
compose :: IntervalRelation -> IntervalRelation -> Set IntervalRelation
compose IntervalRelation
x IntervalRelation
y = [IntervalRelation] -> Set IntervalRelation
toSet ([[[IntervalRelation]]]
composeRelationLookup [[[IntervalRelation]]] -> Int -> [[IntervalRelation]]
forall a. [a] -> Int -> a
!! IntervalRelation -> Int
forall a. Enum a => a -> Int
fromEnum IntervalRelation
x [[IntervalRelation]] -> Int -> [IntervalRelation]
forall a. [a] -> Int -> a
!! IntervalRelation -> Int
forall a. Enum a => a -> Int
fromEnum IntervalRelation
y)
complement :: Data.Set.Set IntervalRelation -> Data.Set.Set IntervalRelation
complement :: Set IntervalRelation -> Set IntervalRelation
complement = Set IntervalRelation
-> Set IntervalRelation -> Set IntervalRelation
forall a. Ord a => Set a -> Set a -> Set a
Data.Set.difference Set IntervalRelation
intervalRelations
intersection :: Data.Set.Set IntervalRelation
-> Data.Set.Set IntervalRelation
-> Data.Set.Set IntervalRelation
intersection :: Set IntervalRelation
-> Set IntervalRelation -> Set IntervalRelation
intersection = Set IntervalRelation
-> Set IntervalRelation -> Set IntervalRelation
forall a. Ord a => Set a -> Set a -> Set a
Data.Set.intersection
union :: Data.Set.Set IntervalRelation
-> Data.Set.Set IntervalRelation
-> Data.Set.Set IntervalRelation
union :: Set IntervalRelation
-> Set IntervalRelation -> Set IntervalRelation
union = Set IntervalRelation
-> Set IntervalRelation -> Set IntervalRelation
forall a. Ord a => Set a -> Set a -> Set a
Data.Set.union
converse :: Data.Set.Set IntervalRelation
-> Data.Set.Set IntervalRelation
converse :: Set IntervalRelation -> Set IntervalRelation
converse = (IntervalRelation -> IntervalRelation)
-> Set IntervalRelation -> Set IntervalRelation
forall b a. Ord b => (a -> b) -> Set a -> Set b
Data.Set.map IntervalRelation -> IntervalRelation
converseRelation
class (Ord a, Num b, Ord b) => IntervalSizeable a b | a -> b where
moment :: b
moment = b
1
moment' :: Intervallic i a => i a -> b
moment' i a
x = forall b. IntervalSizeable a b => b
forall a b. IntervalSizeable a b => b
moment @a
duration :: Intervallic i a => i a -> b
duration i a
x = a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
diff (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i a
x) (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
x)
add :: b -> a -> a
diff :: a -> a -> b
expand :: (IntervalSizeable a b, Intervallic i a) =>
b
-> b
-> i a
-> i a
expand :: b -> b -> i a -> i a
expand b
l b
r i a
p = i a -> Interval a -> i a
forall (i :: * -> *) a. Intervallic i a => i a -> Interval a -> i a
setInterval i a
p Interval a
i
where s :: b
s = if b
l b -> b -> Bool
forall a. Ord a => a -> a -> Bool
< i a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' i a
p then b
0 else b -> b
forall a. Num a => a -> a
negate b
l
e :: b
e = if b
r b -> b -> Bool
forall a. Ord a => a -> a -> Bool
< i a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' i a
p then b
0 else b
r
i :: Interval a
i = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (b -> a -> a
forall a b. IntervalSizeable a b => b -> a -> a
add b
s (a -> a) -> a -> a
forall a b. (a -> b) -> a -> b
$ i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
p, b -> a -> a
forall a b. IntervalSizeable a b => b -> a -> a
add b
e (a -> a) -> a -> a
forall a b. (a -> b) -> a -> b
$ i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i a
p)
expandl :: (IntervalSizeable a b, Intervallic i a) => b -> i a -> i a
expandl :: b -> i a -> i a
expandl b
i = b -> b -> i a -> i a
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
b -> b -> i a -> i a
expand b
i b
0
expandr :: (IntervalSizeable a b, Intervallic i a) => b -> i a -> i a
expandr :: b -> i a -> i a
expandr = b -> b -> i a -> i a
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
b -> b -> i a -> i a
expand b
0
beginerval :: (IntervalSizeable a b) =>
b
-> a
-> Interval a
beginerval :: b -> a -> Interval a
beginerval b
dur a
x = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
x, a
y)
where i :: Interval a
i = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
x, a
x)
d :: b
d = b -> b -> b
forall a. Ord a => a -> a -> a
max (Interval a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' Interval a
i) b
dur
y :: a
y = b -> a -> a
forall a b. IntervalSizeable a b => b -> a -> a
add b
d a
x
{-# INLINABLE beginerval #-}
enderval :: (IntervalSizeable a b) =>
b
-> a
-> Interval a
enderval :: b -> a -> Interval a
enderval b
dur a
x = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (b -> a -> a
forall a b. IntervalSizeable a b => b -> a -> a
add (b -> b
forall a. Num a => a -> a
negate (b -> b) -> b -> b
forall a b. (a -> b) -> a -> b
$ b -> b -> b
forall a. Ord a => a -> a -> a
max (Interval a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' Interval a
i) b
dur) a
x, a
x)
where i :: Interval a
i = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
x, a
x)
{-# INLINABLE enderval #-}
beginervalFromEnd :: (IntervalSizeable a b, Intervallic i a) =>
b
-> i a
-> Interval a
beginervalFromEnd :: b -> i a -> Interval a
beginervalFromEnd b
d i a
i = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval b
d (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i a
i)
endervalFromBegin :: (IntervalSizeable a b, Intervallic i a) =>
b
-> i a
-> Interval a
endervalFromBegin :: b -> i a -> Interval a
endervalFromBegin b
d i a
i = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
enderval b
d (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
i)
beginervalMoment :: (IntervalSizeable a b) => a -> Interval a
beginervalMoment :: a -> Interval a
beginervalMoment a
x = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (Interval a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' Interval a
i) a
x
where i :: Interval a
i = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
x, a
x)
endervalMoment :: (IntervalSizeable a b) => a -> Interval a
endervalMoment :: a -> Interval a
endervalMoment a
x = b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
enderval (Interval a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' Interval a
i) a
x
where i :: Interval a
i = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
x, a
x)
extenterval :: Intervallic i a => i a -> i a -> Interval a
extenterval :: i a -> i a -> Interval a
extenterval i a
x i a
y = (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
s, a
e)
where s :: a
s = a -> a -> a
forall a. Ord a => a -> a -> a
min (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
x) (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
y)
e :: a
e = a -> a -> a
forall a. Ord a => a -> a -> a
max (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i a
x) (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i a
y)
diffFromBegin :: ( IntervalSizeable a b
, Functor i1
, Intervallic i0 a ) =>
i0 a -> i1 a -> i1 b
diffFromBegin :: i0 a -> i1 a -> i1 b
diffFromBegin i0 a
i = (a -> b) -> i1 a -> i1 b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
`diff` i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i0 a
i)
diffFromEnd :: ( IntervalSizeable a b
, Functor i1
, Intervallic i0 a ) =>
i0 a -> i1 a -> i1 b
diffFromEnd :: i0 a -> i1 a -> i1 b
diffFromEnd i0 a
i = (a -> b) -> i1 a -> i1 b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (a -> a -> b
forall a b. IntervalSizeable a b => a -> a -> b
`diff` i0 a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i0 a
i)
momentize :: ( IntervalSizeable a b, Intervallic i a ) =>
i a -> i a
momentize :: i a -> i a
momentize i a
i = i a -> Interval a -> i a
forall (i :: * -> *) a. Intervallic i a => i a -> Interval a -> i a
setInterval i a
i (b -> a -> Interval a
forall a b. IntervalSizeable a b => b -> a -> Interval a
beginerval (i a -> b
forall a b (i :: * -> *).
(IntervalSizeable a b, Intervallic i a) =>
i a -> b
moment' i a
i) (i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
i))
class (Intervallic i a) => IntervalCombinable i a where
(.+.) :: i a -> i a -> Maybe (i a)
(.+.) i a
x i a
y
| i a
x ComparativePredicateOf2 (i a) (i a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`meets` i a
y = i a -> Maybe (i a)
forall a. a -> Maybe a
Just (i a -> Maybe (i a)) -> i a -> Maybe (i a)
forall a b. (a -> b) -> a -> b
$ i a -> Interval a -> i a
forall (i :: * -> *) a. Intervallic i a => i a -> Interval a -> i a
setInterval i a
y (Interval a -> i a) -> Interval a -> i a
forall a b. (a -> b) -> a -> b
$ (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (a
b, a
e)
| Bool
otherwise = Maybe (i a)
forall a. Maybe a
Nothing
where b :: a
b = i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin i a
x
e :: a
e = i a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end i a
y
{-# INLINABLE (.+.) #-}
(><) :: i a -> i a -> Maybe (i a)
(<+>):: ( Semigroup (f (i a)), Applicative f) =>
i a
-> i a
-> f (i a)
type ComparativePredicateOf1 a = (a -> a -> Bool)
type ComparativePredicateOf2 a b = (a -> b -> Bool)
instance (Ord a) => Ord (Interval a) where
<= :: Interval a -> Interval a -> Bool
(<=) Interval a
x Interval a
y
| Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
y = Bool
True
| Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
y = Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end Interval a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end Interval a
y
| Bool
otherwise = Bool
False
< :: Interval a -> Interval a -> Bool
(<) Interval a
x Interval a
y
| Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
y = Bool
True
| Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
y = Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end Interval a
x a -> a -> Bool
forall a. Ord a => a -> a -> Bool
< Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end Interval a
y
| Bool
otherwise = Bool
False
instance (Ord a) => Intervallic Interval a where
getInterval :: Interval a -> Interval a
getInterval = Interval a -> Interval a
forall a. a -> a
id
setInterval :: Interval a -> Interval a -> Interval a
setInterval Interval a
_ Interval a
x = Interval a
x
instance (Ord a) => IntervalCombinable Interval a where
>< :: Interval a -> Interval a -> Maybe (Interval a)
(><) Interval a
x Interval a
y
| Interval a
x ComparativePredicateOf2 (Interval a) (Interval a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`before` Interval a
y = Interval a -> Maybe (Interval a)
forall a. a -> Maybe a
Just (Interval a -> Maybe (Interval a))
-> Interval a -> Maybe (Interval a)
forall a b. (a -> b) -> a -> b
$ (a, a) -> Interval a
forall a. (a, a) -> Interval a
Interval (Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
end Interval a
x, Interval a -> a
forall (i :: * -> *) a. Intervallic i a => i a -> a
begin Interval a
y)
| Bool
otherwise = Maybe (Interval a)
forall a. Maybe a
Nothing
{-# INLINABLE (><) #-}
<+> :: Interval a -> Interval a -> f (Interval a)
(<+>) Interval a
x Interval a
y
| Interval a
x ComparativePredicateOf2 (Interval a) (Interval a)
forall (i0 :: * -> *) a (i1 :: * -> *).
(Intervallic i0 a, Intervallic i1 a) =>
ComparativePredicateOf2 (i0 a) (i1 a)
`before` Interval a
y = Interval a -> f (Interval a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Interval a
x f (Interval a) -> f (Interval a) -> f (Interval a)
forall a. Semigroup a => a -> a -> a
<> Interval a -> f (Interval a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure Interval a
y
| Bool
otherwise = Interval a -> f (Interval a)
forall (f :: * -> *) a. Applicative f => a -> f a
pure ( Interval a -> Interval a -> Interval a
forall (i :: * -> *) a. Intervallic i a => i a -> i a -> Interval a
extenterval Interval a
x Interval a
y )
{-# INLINABLE (<+>) #-}
instance IntervalSizeable Int Int where
moment :: Int
moment = Int
1
add :: Int -> Int -> Int
add = Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)
diff :: Int -> Int -> Int
diff = (-)
instance IntervalSizeable Integer Integer where
moment :: Integer
moment = Integer
1
add :: Integer -> Integer -> Integer
add = Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
(+)
diff :: Integer -> Integer -> Integer
diff = (-)
instance IntervalSizeable DT.Day Integer where
moment :: Integer
moment = Integer
1
add :: Integer -> Day -> Day
add = Integer -> Day -> Day
addDays
diff :: Day -> Day -> Integer
diff = Day -> Day -> Integer
diffDays
instance IntervalSizeable DT.UTCTime NominalDiffTime where
moment :: NominalDiffTime
moment = Int -> NominalDiffTime
forall a. Enum a => Int -> a
toEnum Int
1 :: NominalDiffTime
add :: NominalDiffTime -> UTCTime -> UTCTime
add = NominalDiffTime -> UTCTime -> UTCTime
addUTCTime
diff :: UTCTime -> UTCTime -> NominalDiffTime
diff = UTCTime -> UTCTime -> NominalDiffTime
diffUTCTime