Copyright | (c) NoviSci Inc 2020 |
---|---|
License | BSD3 |
Maintainer | bsaul@novisci.com |
Stability | experimental |
Safe Haskell | None |
Language | Haskell2010 |
The IntervalAlgebra
module provides data types and related classes for the
interval-based temporal logic described in Allen (1983)
and axiomatized in Allen and Hayes (1987).
A good primer on Allen's algebra can be found here.
Design
The module is built around five typeclasses designed to separate concerns of
constructing, relating, and combining
s: Interval
provides an interface to the data structure of anIntervallic
, defining how anInterval
is constructed.Interval
a
provides an interface to theIntervalAlgebraic
, the workhorse of Allen's temporal logic.IntervalRelation
s
provides an interface to methods of combining twoIntervalCombinable
.Interval
s
provides methods for measuring and modifying the size of an interval.IntervalSizeable
provides methods for filteringIntervalFilterable
Filterable
collections of intervals.
An advantage of nested typeclass design is that developers can define an
of type Interval
a
with just the amount of structure that they need.
Total Ordering of Interval
s
The modules makes the (opinionated) choice of a total ordering for Intervallic
s. Namely, the ordering is based on first ordering the Interval
begin
s
then the end
s.
Development
This module is under development and the API may change in the future.
Synopsis
- class (Ord a, Show a) => Intervallic a where
- parseInterval :: a -> a -> Either String (Interval a)
- unsafeInterval :: a -> a -> Interval a
- begin, end :: Interval a -> a
- class (Eq a, Intervallic a) => IntervalAlgebraic a where
- relate :: Interval a -> Interval a -> IntervalRelation
- equals :: ComparativePredicateOf (Interval a)
- meets, metBy :: ComparativePredicateOf (Interval a)
- before, after :: ComparativePredicateOf (Interval a)
- overlaps, overlappedBy :: ComparativePredicateOf (Interval a)
- starts, startedBy :: ComparativePredicateOf (Interval a)
- finishes, finishedBy :: ComparativePredicateOf (Interval a)
- during, contains :: ComparativePredicateOf (Interval a)
- composeRelations :: [ComparativePredicateOf (Interval a)] -> ComparativePredicateOf (Interval a)
- disjoint :: ComparativePredicateOf (Interval a)
- in' :: ComparativePredicateOf (Interval a)
- class IntervalAlgebraic a => IntervalCombinable a where
- class (Intervallic a, Num b, Ord b) => IntervalSizeable a b | a -> b where
- class (Filterable f, IntervalAlgebraic a) => IntervalFilterable f a where
- filterMaker :: ComparativePredicateOf (Interval a) -> Interval a -> f (Interval a) -> f (Interval a)
- filterOverlaps :: Interval a -> f (Interval a) -> f (Interval a)
- filterOverlappedBy :: Interval a -> f (Interval a) -> f (Interval a)
- filterBefore :: Interval a -> f (Interval a) -> f (Interval a)
- filterAfter :: Interval a -> f (Interval a) -> f (Interval a)
- filterMeets :: Interval a -> f (Interval a) -> f (Interval a)
- filterMetBy :: Interval a -> f (Interval a) -> f (Interval a)
- filterDuring :: Interval a -> f (Interval a) -> f (Interval a)
- filterContains :: Interval a -> f (Interval a) -> f (Interval a)
- data Interval a
- data IntervalRelation
- type ComparativePredicateOf a = a -> a -> Bool
Classes
class (Ord a, Show a) => Intervallic a where Source #
The
typeclass specifies how an Intervallic
s is constructed.
It also includes functions for getting the Interval
a
and begin
of an end
.Interval
a
Nothing
parseInterval :: a -> a -> Either String (Interval a) Source #
Safely parse a pair of a
s to create an
.Interval
a
unsafeInterval :: a -> a -> Interval a Source #
Create a new
. This function is not safe as it does
not enforce that \(x < y\). Use with caution. It is meant to be helper
function in early prototyping of this package. This function may be
deprecated in future releases.Interval
a
begin :: Interval a -> a Source #
Access the ends of an
.Interval
a
end :: Interval a -> a Source #
Access the ends of an
.Interval
a
Instances
class (Eq a, Intervallic a) => IntervalAlgebraic a where Source #
The
typeclass specifies the functions and relational
operators for interval-based temporal logic. The typeclass defines the
relational operators for intervals, plus other useful utilities such as
IntervalAlgebraic
, disjoint
, and in'
.composeRelations
Nothing
relate :: Interval a -> Interval a -> IntervalRelation Source #
Compare two intervals to determine their IntervalRelation
.
equals :: ComparativePredicateOf (Interval a) Source #
Does x equal y?
meets :: ComparativePredicateOf (Interval a) Source #
Does x meet y? Is y metBy x?
metBy :: ComparativePredicateOf (Interval a) Source #
Does x meet y? Is y metBy x?
before :: ComparativePredicateOf (Interval a) Source #
Is x before y? Is x after y?
after :: ComparativePredicateOf (Interval a) Source #
Is x before y? Is x after y?
overlaps :: ComparativePredicateOf (Interval a) Source #
Does x overlap y? Is x overlapped by y?
overlappedBy :: ComparativePredicateOf (Interval a) Source #
Does x overlap y? Is x overlapped by y?
starts :: ComparativePredicateOf (Interval a) Source #
Does x start y? Is x started by y?
startedBy :: ComparativePredicateOf (Interval a) Source #
Does x start y? Is x started by y?
finishes :: ComparativePredicateOf (Interval a) Source #
Does x finish y? Is x finished by y?
finishedBy :: ComparativePredicateOf (Interval a) Source #
Does x finish y? Is x finished by y?
during :: ComparativePredicateOf (Interval a) Source #
Is x during y? Does x contain y?
contains :: ComparativePredicateOf (Interval a) Source #
Is x during y? Does x contain y?
composeRelations :: [ComparativePredicateOf (Interval a)] -> ComparativePredicateOf (Interval a) Source #
Compose a list of interval relations with _or_ to create a new
. For example,
ComparativePredicateOf
Interval
acomposeRelations [before, meets]
creates a predicate function determining
if one interval is either before or meets another interval.
disjoint :: ComparativePredicateOf (Interval a) Source #
in' :: ComparativePredicateOf (Interval a) Source #
Instances
class IntervalAlgebraic a => IntervalCombinable a where Source #
The
typeclass provides methods for (possibly) combining
two IntervalCombinable
.Interval
s
Nothing
(.+.) :: Interval a -> Interval a -> Maybe (Interval a) Source #
extenterval :: Interval a -> Interval a -> Interval a Source #
Creates a new Interval
spanning the extent x and y
(><) :: Interval a -> Interval a -> Maybe (Interval a) Source #
If x
is before
y
, then form a new Just Interval a
from the
interval in the "gap" between x
and y
from the end
of x
to the
begin
of y
. Otherwise, Nothing
.
(<+>) :: (Semigroup (f (Interval a)), Applicative f) => Interval a -> Interval a -> f (Interval a) Source #
If x
is before
y
, return f x
appended to f y
. Otherwise,
return extenterval
of x
and y
(wrapped in f
). This is useful for
folding over an *ordered* container of Interval
s and combining intervals
when x
is *not* before
y
.
Instances
class (Intervallic a, Num b, Ord b) => IntervalSizeable a b | a -> b where Source #
The IntervalSizeable
typeclass provides functions to determine the size of
and to resize an 'Interval a'.
duration :: Interval a -> b Source #
Determine the duration of an 'Interval a'.
Sets the length of a moment for an 'Interval a'.
Shifts an a
. Most often, the c
will be the same
type as the a
. But for example, if a
is Day
then c
would be Int
.
expand :: b -> b -> Interval a -> Interval a Source #
Resize an 'Interval a' to by expanding to "left" by max l moment
and to the "right" by min r moment
.
expandl :: b -> Interval a -> Interval a Source #
Expands an 'Interval a' to left by i.
expandr :: b -> Interval a -> Interval a Source #
Expands an 'Interval a' to right by i.
Instances
IntervalSizeable Int Int Source # | |
Defined in IntervalAlgebra | |
IntervalSizeable Integer Integer Source # | |
Defined in IntervalAlgebra duration :: Interval Integer -> Integer Source # moment :: Integer -> Integer Source # add :: Integer -> Integer -> Integer Source # expand :: Integer -> Integer -> Interval Integer -> Interval Integer Source # expandl :: Integer -> Interval Integer -> Interval Integer Source # expandr :: Integer -> Interval Integer -> Interval Integer Source # | |
IntervalSizeable Day Integer Source # | |
class (Filterable f, IntervalAlgebraic a) => IntervalFilterable f a where Source #
The
class provides functions for filtering IntervalFilterable
Filterable
s of
s based on Interval
relations.IntervalAlgebraic
Nothing
filterMaker :: ComparativePredicateOf (Interval a) -> Interval a -> f (Interval a) -> f (Interval a) Source #
Creates a function for filtering a Filterable
of Interval a
s based on a predicate
filterOverlaps :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval a
s to those that overlaps
the Interval a
in the first argument.
filterOverlappedBy :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval a
s to those overlappedBy
the Interval a
in the first argument.
filterBefore :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval as to those before
the Interval a
in the first argument.
filterAfter :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval as to those after
the Interval a
in the first argument.
filterMeets :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval as to those that meets
the Interval a
in the first argument.
filterMetBy :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval as to those metBy
the Interval a
in the first argument.
filterDuring :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval as to those during
the Interval a
in the first argument.
filterContains :: Interval a -> f (Interval a) -> f (Interval a) Source #
Filter a Filterable
of Interval as to those that contains
the Interval a
in the first argument.
Instances
Types
An
is a pair of Interval
aa
s \( (x, y) \text{ where } x < y\). The
class provides a safe Intervallic
function that returns a
parseInterval
error if \(y < x\) and Left
unsafeInterval
as constructor for creating an
interval that may not be valid.
Instances
Eq a => Eq (Interval a) Source # | |
Intervallic a => Ord (Interval a) Source # | Imposes a total ordering on |
(Intervallic a, Show a) => Show (Interval a) Source # | |
Arbitrary (Interval Int) Source # | |
Arbitrary (Interval Day) Source # | |
data IntervalRelation Source #
The IntervalRelation
type enumerates the thirteen possible ways that two
objects can relate according to the interval algebra.Interval
a
Meets, Metby
x `meets` y y `metBy` x
x: |-----| y: |-----|
Before, After
x `before` y y `after` x
x: |-----| y: |-----|
Overlaps, OverlappedBy
x `overlaps` y y `overlappedBy` x
x: |-----| y: |-----|
Starts, StartedBy
x `starts` y y `startedBy` x
x: |---| y: |-----|
Finishes, FinishedBy
x `finishes` y y `finishedBy` x
x: |---| y: |-----|
During, Contains
x `during` y y `contains` x
x: |-| y: |-----|
Equal
x `equal` y y `equal` x
x: |-----| y: |-----|
Instances
Read IntervalRelation Source # | |
Defined in IntervalAlgebra | |
Show IntervalRelation Source # | |
Defined in IntervalAlgebra showsPrec :: Int -> IntervalRelation -> ShowS # show :: IntervalRelation -> String # showList :: [IntervalRelation] -> ShowS # |
type ComparativePredicateOf a = a -> a -> Bool Source #
Defines a predicate of two objects of type a
.