{-# LANGUAGE DerivingVia #-}
{-# Language DataKinds #-}
{-# Language DeriveGeneric #-}
{-# Language DerivingStrategies #-}
{-# Language FlexibleInstances #-}
{-# Language GeneralizedNewtypeDeriving #-}
{-# Language InstanceSigs #-}
{-# Language MultiParamTypeClasses #-}
{-# Language PolyKinds #-}
{-# Language ScopedTypeVariables #-}
{-# Language StandaloneDeriving #-}
{-# Language TypeApplications #-}
{-# Language TypeFamilies #-}
{-# Language TypeOperators #-}
{-# Language UndecidableInstances #-}
{-# Language EmptyDataDecls #-}
{-# Language StandaloneKindSignatures #-}
module Generic.Applicative
( LeftBias(..)
, RightBias(..)
, Idiomatically
, Generically1(..)
, NewSums(..)
, module Generic.Applicative.Idiom
, module GHC.Generics
) where
import Control.Applicative
import GHC.Generics
import Data.Functor.Sum
import Data.Kind
import Generic.Applicative.Internal
import Generic.Applicative.Idiom
type LeftBias :: tagKind -> (k -> Type) -> (k -> Type) -> (k -> Type)
newtype LeftBias tag f g a = LeftBias (Sum f g a)
deriving newtype a -> LeftBias tag f g b -> LeftBias tag f g a
(a -> b) -> LeftBias tag f g a -> LeftBias tag f g b
(forall a b. (a -> b) -> LeftBias tag f g a -> LeftBias tag f g b)
-> (forall a b. a -> LeftBias tag f g b -> LeftBias tag f g a)
-> Functor (LeftBias tag f g)
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
a -> LeftBias tag f g b -> LeftBias tag f g a
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
(a -> b) -> LeftBias tag f g a -> LeftBias tag f g b
forall a b. a -> LeftBias tag f g b -> LeftBias tag f g a
forall a b. (a -> b) -> LeftBias tag f g a -> LeftBias tag f g b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> LeftBias tag f g b -> LeftBias tag f g a
$c<$ :: forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
a -> LeftBias tag f g b -> LeftBias tag f g a
fmap :: (a -> b) -> LeftBias tag f g a -> LeftBias tag f g b
$cfmap :: forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
(a -> b) -> LeftBias tag f g a -> LeftBias tag f g b
Functor
instance Idiom tag f g => Applicative (LeftBias tag f g) where
pure :: a -> LeftBias tag f g a
pure :: a -> LeftBias tag f g a
pure = Sum f g a -> LeftBias tag f g a
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> LeftBias tag f g a
LeftBias (Sum f g a -> LeftBias tag f g a)
-> (a -> Sum f g a) -> a -> LeftBias tag f g a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. f a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (f a -> Sum f g a) -> (a -> f a) -> a -> Sum f g a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
liftA2 :: (a -> b -> c) -> (LeftBias tag f g a -> LeftBias tag f g b -> LeftBias tag f g c)
liftA2 :: (a -> b -> c)
-> LeftBias tag f g a -> LeftBias tag f g b -> LeftBias tag f g c
liftA2 a -> b -> c
(·) (LeftBias (InL f a
as)) (LeftBias (InL f b
bs)) = Sum f g c -> LeftBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> LeftBias tag f g a
LeftBias (Sum f g c -> LeftBias tag f g c)
-> Sum f g c -> LeftBias tag f g c
forall a b. (a -> b) -> a -> b
$ f c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (f c -> Sum f g c) -> f c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) f a
as f b
bs
liftA2 a -> b -> c
(·) (LeftBias (InL f a
as)) (LeftBias (InR g b
bs)) = Sum f g c -> LeftBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> LeftBias tag f g a
LeftBias (Sum f g c -> LeftBias tag f g c)
-> Sum f g c -> LeftBias tag f g c
forall a b. (a -> b) -> a -> b
$ g c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (g c -> Sum f g c) -> g c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) (f a -> g a
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag f a
as) g b
bs
liftA2 a -> b -> c
(·) (LeftBias (InR g a
as)) (LeftBias (InL f b
bs)) = Sum f g c -> LeftBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> LeftBias tag f g a
LeftBias (Sum f g c -> LeftBias tag f g c)
-> Sum f g c -> LeftBias tag f g c
forall a b. (a -> b) -> a -> b
$ g c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (g c -> Sum f g c) -> g c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) g a
as (f b -> g b
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag f b
bs)
liftA2 a -> b -> c
(·) (LeftBias (InR g a
as)) (LeftBias (InR g b
bs)) = Sum f g c -> LeftBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> LeftBias tag f g a
LeftBias (Sum f g c -> LeftBias tag f g c)
-> Sum f g c -> LeftBias tag f g c
forall a b. (a -> b) -> a -> b
$ g c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (g c -> Sum f g c) -> g c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) g a
as g b
bs
type RightBias :: tagKind -> (k -> Type) -> (k -> Type) -> (k -> Type)
newtype RightBias tag f g a = RightBias (Sum f g a)
deriving newtype a -> RightBias tag f g b -> RightBias tag f g a
(a -> b) -> RightBias tag f g a -> RightBias tag f g b
(forall a b.
(a -> b) -> RightBias tag f g a -> RightBias tag f g b)
-> (forall a b. a -> RightBias tag f g b -> RightBias tag f g a)
-> Functor (RightBias tag f g)
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
a -> RightBias tag f g b -> RightBias tag f g a
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
(a -> b) -> RightBias tag f g a -> RightBias tag f g b
forall a b. a -> RightBias tag f g b -> RightBias tag f g a
forall a b. (a -> b) -> RightBias tag f g a -> RightBias tag f g b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: a -> RightBias tag f g b -> RightBias tag f g a
$c<$ :: forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
a -> RightBias tag f g b -> RightBias tag f g a
fmap :: (a -> b) -> RightBias tag f g a -> RightBias tag f g b
$cfmap :: forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *) a b.
(Functor f, Functor g) =>
(a -> b) -> RightBias tag f g a -> RightBias tag f g b
Functor
instance Idiom tag g f => Applicative (RightBias tag f g) where
pure :: a -> RightBias tag f g a
pure :: a -> RightBias tag f g a
pure a
a = Sum f g a -> RightBias tag f g a
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> RightBias tag f g a
RightBias (g a -> Sum f g a
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (a -> g a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
a))
liftA2 :: (a -> b -> c) -> (RightBias tag f g a -> RightBias tag f g b -> RightBias tag f g c)
liftA2 :: (a -> b -> c)
-> RightBias tag f g a
-> RightBias tag f g b
-> RightBias tag f g c
liftA2 a -> b -> c
(·) (RightBias (InL f a
as)) (RightBias (InL f b
bs)) = Sum f g c -> RightBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> RightBias tag f g a
RightBias (Sum f g c -> RightBias tag f g c)
-> Sum f g c -> RightBias tag f g c
forall a b. (a -> b) -> a -> b
$ f c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (f c -> Sum f g c) -> f c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) f a
as f b
bs
liftA2 a -> b -> c
(·) (RightBias (InL f a
as)) (RightBias (InR g b
bs)) = Sum f g c -> RightBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> RightBias tag f g a
RightBias (Sum f g c -> RightBias tag f g c)
-> Sum f g c -> RightBias tag f g c
forall a b. (a -> b) -> a -> b
$ f c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (f c -> Sum f g c) -> f c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) f a
as (g b -> f b
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag g b
bs)
liftA2 a -> b -> c
(·) (RightBias (InR g a
as)) (RightBias (InL f b
bs)) = Sum f g c -> RightBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> RightBias tag f g a
RightBias (Sum f g c -> RightBias tag f g c)
-> Sum f g c -> RightBias tag f g c
forall a b. (a -> b) -> a -> b
$ f c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (f c -> Sum f g c) -> f c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) (g a -> f a
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag g a
as) f b
bs
liftA2 a -> b -> c
(·) (RightBias (InR g a
as)) (RightBias (InR g b
bs)) = Sum f g c -> RightBias tag f g c
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> RightBias tag f g a
RightBias (Sum f g c -> RightBias tag f g c)
-> Sum f g c -> RightBias tag f g c
forall a b. (a -> b) -> a -> b
$ g c -> Sum f g c
forall k (f :: k -> *) (g :: k -> *) (a :: k). g a -> Sum f g a
InR (g c -> Sum f g c) -> g c -> Sum f g c
forall a b. (a -> b) -> a -> b
$ (a -> b -> c) -> g a -> g b -> g c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 a -> b -> c
(·) g a
as g b
bs
data Serve tag
instance (Idiom tag l l', Idiom tag' l' r') => Idiom (Serve tag) l (LeftBias tag' l' r') where
idiom :: l ~> LeftBias tag' l' r'
idiom :: l x -> LeftBias tag' l' r' x
idiom = Sum l' r' x -> LeftBias tag' l' r' x
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> LeftBias tag f g a
LeftBias (Sum l' r' x -> LeftBias tag' l' r' x)
-> (l x -> Sum l' r' x) -> l x -> LeftBias tag' l' r' x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. l' x -> Sum l' r' x
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (l' x -> Sum l' r' x) -> (l x -> l' x) -> l x -> Sum l' r' x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
forall (f :: * -> *) (g :: * -> *). Idiom tag f g => f ~> g
idiom @_ @tag
instance (Idiom tag l l', Idiom tag' r' l') => Idiom (Serve tag) l (RightBias tag' l' r') where
idiom :: l ~> RightBias tag' l' r'
idiom :: l x -> RightBias tag' l' r' x
idiom = Sum l' r' x -> RightBias tag' l' r' x
forall tagKind k (tag :: tagKind) (f :: k -> *) (g :: k -> *)
(a :: k).
Sum f g a -> RightBias tag f g a
RightBias (Sum l' r' x -> RightBias tag' l' r' x)
-> (l x -> Sum l' r' x) -> l x -> RightBias tag' l' r' x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. l' x -> Sum l' r' x
forall k (f :: k -> *) (g :: k -> *) (a :: k). f a -> Sum f g a
InL (l' x -> Sum l' r' x) -> (l x -> l' x) -> l x -> Sum l' r' x
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
forall (f :: * -> *) (g :: * -> *). Idiom tag f g => f ~> g
idiom @_ @tag
instance (Applicative r, Idiom tag l' r, Idiom tag' r' l') => Idiom (Serve tag) (RightBias tag' l' r') r where
idiom :: RightBias tag' l' r' ~> r
idiom :: RightBias tag' l' r' x -> r x
idiom (RightBias (InL l' x
ls')) = l' x -> r x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag @l' @r l' x
ls'
idiom (RightBias (InR r' x
rs')) = l' x -> r x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag @l' @r (r' x -> l' x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag' r' x
rs')
instance (Applicative r, Idiom tag r' r, Idiom tag' l' r') => Idiom (Serve tag) (LeftBias tag' l' r') r where
idiom :: LeftBias tag' l' r' ~> r
idiom :: LeftBias tag' l' r' x -> r x
idiom (LeftBias (InL l' x
ls')) = r' x -> r x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag @r' @r (l' x -> r' x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag' @l' @r' l' x
ls')
idiom (LeftBias (InR r' x
rs')) = r' x -> r x
forall tagKind (tag :: tagKind) (f :: * -> *) (g :: * -> *).
Idiom tag f g =>
f ~> g
idiom @_ @tag @r' @r r' x
rs'
type
Served :: [SumKind k] -> [SumKind k]
type family
Served sums where
Served '[] = '[]
Served '[sum] = '[sum]
Served (LeftBias tag:sums) = LeftBias (Serve tag):Served sums
Served (RightBias tag:sums) = RightBias (Serve tag):Served sums
Served (sum:sums) = sum:Served sums
type Idiomatically :: (k -> Type) -> [SumKind k] -> (k -> Type)
type Idiomatically f sums = Generically1 (NewSums (Served sums) f)