{-# OPTIONS_GHC -w #-}
{-# OPTIONS -XMagicHash -XBangPatterns -XTypeSynonymInstances -XFlexibleInstances -cpp #-}
#if __GLASGOW_HASKELL__ >= 710
{-# OPTIONS_GHC -XPartialTypeSignatures #-}
#endif
{-# OPTIONS_GHC -w #-}
{-
Copyright (C) HyLoRes 2002-2007. See AUTHORS file

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307,
USA.
-}

module HyLo.InputFile.OldParser ( parse )

where

import HyLo.InputFile.OldLexer ( Token(..), FilePos, line, col )

import HyLo.Signature.Simple ( PropSymbol(..),
                               NomSymbol(..),
                               RelSymbol(..) )

-- since ghc 6.10, "Down" is defined in GHC.Exts, that is included
-- (unqualified) in the parser. we need to use Formula.Down instead of
-- simply Down to avoid ambiguities...
import HyLo.Formula as Formula ( Formula(..) )
import qualified Data.Array as Happy_Data_Array
import qualified Data.Bits as Bits
import qualified GHC.Exts as Happy_GHC_Exts
import Control.Applicative(Applicative(..))
import Control.Monad (ap)

-- parser produced by Happy Version 1.19.9

newtype HappyAbsSyn  = HappyAbsSyn HappyAny
#if __GLASGOW_HASKELL__ >= 607
type HappyAny = Happy_GHC_Exts.Any
#else
type HappyAny = forall a . a
#endif
happyIn4 :: ([Formula NomSymbol PropSymbol RelSymbol]) -> (HappyAbsSyn )
happyIn4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn4 #-}
happyOut4 :: (HappyAbsSyn ) -> ([Formula NomSymbol PropSymbol RelSymbol])
happyOut4 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut4 #-}
happyIn5 :: ([Formula NomSymbol PropSymbol RelSymbol]) -> (HappyAbsSyn )
happyIn5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn5 #-}
happyOut5 :: (HappyAbsSyn ) -> ([Formula NomSymbol PropSymbol RelSymbol])
happyOut5 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut5 #-}
happyIn6 :: (Formula NomSymbol PropSymbol RelSymbol) -> (HappyAbsSyn )
happyIn6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyIn6 #-}
happyOut6 :: (HappyAbsSyn ) -> (Formula NomSymbol PropSymbol RelSymbol)
happyOut6 x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOut6 #-}
happyInTok :: ((Token, FilePos)) -> (HappyAbsSyn )
happyInTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyInTok #-}
happyOutTok :: (HappyAbsSyn ) -> ((Token, FilePos))
happyOutTok x = Happy_GHC_Exts.unsafeCoerce# x
{-# INLINE happyOutTok #-}


happyExpList :: HappyAddr
happyExpList = HappyA# "\x40\x00\x00\x00\x00\x01\x00\x00\x00\xe0\x1f\xfe\x03\x00\x00\x00\x00\x80\x00\x00\x00\x00\x00\x78\x00\x02\x00\x03\x00\x00\x00\x08\x00\x08\x00\x00\x00\x00\x00\x04\x00\x00\x00\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x87\xff\x00\xe0\x1f\xfe\x03\x80\x7f\xf8\x0f\x00\xfe\xe1\x3f\x00\xf8\x87\xff\x00\xe0\x1f\xfe\x03\x80\x7f\xf8\x0f\x00\xfe\xe1\x3f\x00\xf8\x87\xff\x00\xe0\x1f\xfe\x03\x00\x80\x07\x10\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf8\x87\xff\x00\xe0\x1f\xfe\x03\x00\x00\x00\x40\x00\x20\x00\x00\x00\xf8\x87\xff\x00\xe0\x1f\xfe\x03\x80\x7f\xf8\x0f\x00\xfe\xe1\x3f\x00\xf8\x87\xff\x00\xe0\x1f\xfe\x03\x80\x7f\xf8\x0f\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x00\x00\x80\x03\x00\x00\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\xe1\x3f\x00\xf8\x87\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xe0\x01\x04\x00\x00\x00\x00\x00\x00\x00"#

{-# NOINLINE happyExpListPerState #-}
happyExpListPerState st =
    token_strs_expected
  where token_strs = ["error","%dummy","%start_parse","Input","Formulas","Formula","begin","end","at","at2","down","prop","nom","var","true","false","neg","and","or","dimp","imp","box","ibox","ubox","dbox","dia","idia","udia","ddia","'('","')'","';'","'.'","%eof"]
        bit_start = st * 34
        bit_end = (st + 1) * 34
        read_bit = readArrayBit happyExpList
        bits = map read_bit [bit_start..bit_end - 1]
        bits_indexed = zip bits [0..33]
        token_strs_expected = concatMap f bits_indexed
        f (False, _) = []
        f (True, nr) = [token_strs !! nr]

happyActOffsets :: HappyAddr
happyActOffsets = HappyA# "\x17\x00\x17\x00\xfd\xff\x10\x00\x2b\x00\x0e\x00\x0f\x00\x01\x00\x00\x00\x31\x00\x32\x00\x00\x00\x00\x00\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\x12\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xfd\xff\x13\x00\x2e\x00\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\xfd\xff\x00\x00\x00\x00\x24\x00\xfe\xff\x2c\x00\x00\x00\x00\x00\x00\x00\xfd\xff\xfd\xff\x00\x00\x00\x00\x00\x00\x00\x00\x16\x00\x00\x00\x00\x00"#

happyGotoOffsets :: HappyAddr
happyGotoOffsets = HappyA# "\x37\x00\x00\x00\x25\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x38\x00\x39\x00\x3a\x00\x3b\x00\x3c\x00\x3d\x00\x3e\x00\x3f\x00\x40\x00\x41\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x42\x00\x43\x00\x00\x00\x00\x00\x44\x00\x45\x00\x46\x00\x47\x00\x48\x00\x49\x00\x28\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x4a\x00\x4b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyAdjustOffset :: Happy_GHC_Exts.Int# -> Happy_GHC_Exts.Int#
happyAdjustOffset off = off

happyDefActions :: HappyAddr
happyDefActions = HappyA# "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfd\xff\x00\x00\x00\x00\xf7\xff\xf8\xff\xf9\xff\xfb\xff\xfa\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xf3\xff\xf4\xff\xf5\xff\xf6\xff\xef\xff\xf0\xff\xf1\xff\xf2\xff\xec\xff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xfe\xff\xfc\xff\xed\xff\xee\xff\xea\xff\xeb\xff\xe6\xff\xe8\xff\x00\x00\x00\x00\xe9\xff\xe7\xff\xe3\xff\xe4\xff\x00\x00\xe5\xff"#

happyCheck :: HappyAddr
happyCheck = HappyA# "\xff\xff\x04\x00\x05\x00\x06\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x08\x00\x0c\x00\x0d\x00\x0e\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x17\x00\x18\x00\x07\x00\x08\x00\x01\x00\x18\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x01\x00\x02\x00\x1a\x00\x01\x00\x02\x00\x19\x00\x1c\x00\x02\x00\x1b\x00\x19\x00\x0c\x00\x0d\x00\x0e\x00\x0f\x00\x03\x00\x03\x00\x08\x00\x00\x00\x0c\x00\xff\xff\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\x02\x00\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"#

happyTable :: HappyAddr
happyTable = HappyA# "\x00\x00\x07\x00\x08\x00\x09\x00\x0a\x00\x0b\x00\x0c\x00\x0d\x00\x0e\x00\x24\x00\x28\x00\x29\x00\x2a\x00\x0f\x00\x10\x00\x11\x00\x12\x00\x13\x00\x14\x00\x15\x00\x16\x00\x17\x00\x26\x00\x27\x00\x03\x00\x25\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x04\x00\x05\x00\x2c\x00\x2d\x00\x05\x00\x39\x00\xff\xff\x2d\x00\x36\x00\x3c\x00\x28\x00\x29\x00\x2a\x00\x2b\x00\x23\x00\x22\x00\x35\x00\x03\x00\x28\x00\x00\x00\x20\x00\x1f\x00\x1e\x00\x1d\x00\x1c\x00\x1b\x00\x1a\x00\x19\x00\x18\x00\x17\x00\x37\x00\x36\x00\x33\x00\x32\x00\x31\x00\x30\x00\x2f\x00\x2e\x00\x3a\x00\x39\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"#

happyReduceArr = Happy_Data_Array.array (1, 28) [
        (1 , happyReduce_1),
        (2 , happyReduce_2),
        (3 , happyReduce_3),
        (4 , happyReduce_4),
        (5 , happyReduce_5),
        (6 , happyReduce_6),
        (7 , happyReduce_7),
        (8 , happyReduce_8),
        (9 , happyReduce_9),
        (10 , happyReduce_10),
        (11 , happyReduce_11),
        (12 , happyReduce_12),
        (13 , happyReduce_13),
        (14 , happyReduce_14),
        (15 , happyReduce_15),
        (16 , happyReduce_16),
        (17 , happyReduce_17),
        (18 , happyReduce_18),
        (19 , happyReduce_19),
        (20 , happyReduce_20),
        (21 , happyReduce_21),
        (22 , happyReduce_22),
        (23 , happyReduce_23),
        (24 , happyReduce_24),
        (25 , happyReduce_25),
        (26 , happyReduce_26),
        (27 , happyReduce_27),
        (28 , happyReduce_28)
        ]

happy_n_terms = 29 :: Int
happy_n_nonterms = 3 :: Int

happyReduce_1 = happySpecReduce_3  0# happyReduction_1
happyReduction_1 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut5 happy_x_2 of { happy_var_2 ->
        happyIn4
                 (happy_var_2
        )}

happyReduce_2 = happySpecReduce_1  1# happyReduction_2
happyReduction_2 happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        happyIn5
                 ([happy_var_1]
        )}

happyReduce_3 = happySpecReduce_3  1# happyReduction_3
happyReduction_3 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        case happyOut5 happy_x_3 of { happy_var_3 ->
        happyIn5
                 (happy_var_1:happy_var_3
        )}}

happyReduce_4 = happySpecReduce_1  2# happyReduction_4
happyReduction_4 happy_x_1
         =  happyIn6
                 (Top
        )

happyReduce_5 = happySpecReduce_1  2# happyReduction_5
happyReduction_5 happy_x_1
         =  happyIn6
                 (Bot
        )

happyReduce_6 = happySpecReduce_1  2# happyReduction_6
happyReduction_6 happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenVar happy_var_1   , _)) ->
        happyIn6
                 (Nom happy_var_1
        )}

happyReduce_7 = happySpecReduce_1  2# happyReduction_7
happyReduction_7 happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenNom happy_var_1   , _)) ->
        happyIn6
                 (Nom  happy_var_1
        )}

happyReduce_8 = happySpecReduce_1  2# happyReduction_8
happyReduction_8 happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenProp happy_var_1  , _)) ->
        happyIn6
                 (Prop happy_var_1
        )}

happyReduce_9 = happySpecReduce_2  2# happyReduction_9
happyReduction_9 happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenDia happy_var_1   , _)) ->
        case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (Diam happy_var_1 happy_var_2
        )}}

happyReduce_10 = happySpecReduce_2  2# happyReduction_10
happyReduction_10 happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenIDia happy_var_1  , _)) ->
        case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (IDiam happy_var_1 happy_var_2
        )}}

happyReduce_11 = happySpecReduce_2  2# happyReduction_11
happyReduction_11 happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (E happy_var_2
        )}

happyReduce_12 = happySpecReduce_2  2# happyReduction_12
happyReduction_12 happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (D happy_var_2
        )}

happyReduce_13 = happySpecReduce_2  2# happyReduction_13
happyReduction_13 happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenBox happy_var_1   , _)) ->
        case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (Box happy_var_1 happy_var_2
        )}}

happyReduce_14 = happySpecReduce_2  2# happyReduction_14
happyReduction_14 happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenIBox happy_var_1  , _)) ->
        case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (IBox happy_var_1 happy_var_2
        )}}

happyReduce_15 = happySpecReduce_2  2# happyReduction_15
happyReduction_15 happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (A happy_var_2
        )}

happyReduce_16 = happySpecReduce_2  2# happyReduction_16
happyReduction_16 happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (B happy_var_2
        )}

happyReduce_17 = happySpecReduce_3  2# happyReduction_17
happyReduction_17 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (happy_var_1 :<-->: happy_var_3
        )}}

happyReduce_18 = happySpecReduce_3  2# happyReduction_18
happyReduction_18 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (happy_var_1 :-->: happy_var_3
        )}}

happyReduce_19 = happySpecReduce_2  2# happyReduction_19
happyReduction_19 happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (Neg happy_var_2
        )}

happyReduce_20 = happySpecReduce_3  2# happyReduction_20
happyReduction_20 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (happy_var_1 :&: happy_var_3
        )}}

happyReduce_21 = happySpecReduce_3  2# happyReduction_21
happyReduction_21 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_1 of { happy_var_1 ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (happy_var_1 :|: happy_var_3
        )}}

happyReduce_22 = happySpecReduce_3  2# happyReduction_22
happyReduction_22 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenNom happy_var_1   , _)) ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (At  happy_var_1 happy_var_3
        )}}

happyReduce_23 = happySpecReduce_3  2# happyReduction_23
happyReduction_23 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_2 of { ((TokenNom happy_var_2   , _)) ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (At  happy_var_2 happy_var_3
        )}}

happyReduce_24 = happySpecReduce_3  2# happyReduction_24
happyReduction_24 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_1 of { ((TokenVar happy_var_1   , _)) ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (At  happy_var_1 happy_var_3
        )}}

happyReduce_25 = happySpecReduce_3  2# happyReduction_25
happyReduction_25 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOutTok happy_x_2 of { ((TokenVar happy_var_2   , _)) ->
        case happyOut6 happy_x_3 of { happy_var_3 ->
        happyIn6
                 (At  happy_var_2 happy_var_3
        )}}

happyReduce_26 = happyReduce 5# 2# happyReduction_26
happyReduction_26 (happy_x_5 `HappyStk`
        happy_x_4 `HappyStk`
        happy_x_3 `HappyStk`
        happy_x_2 `HappyStk`
        happy_x_1 `HappyStk`
        happyRest)
         = case happyOutTok happy_x_3 of { ((TokenVar happy_var_3   , _)) ->
        case happyOut6 happy_x_4 of { happy_var_4 ->
        happyIn6
                 (Formula.Down happy_var_3 happy_var_4
        ) `HappyStk` happyRest}}

happyReduce_27 = happyReduce 4# 2# happyReduction_27
happyReduction_27 (happy_x_4 `HappyStk`
        happy_x_3 `HappyStk`
        happy_x_2 `HappyStk`
        happy_x_1 `HappyStk`
        happyRest)
         = case happyOutTok happy_x_2 of { ((TokenVar happy_var_2   , _)) ->
        case happyOut6 happy_x_4 of { happy_var_4 ->
        happyIn6
                 (Formula.Down happy_var_2 happy_var_4
        ) `HappyStk` happyRest}}

happyReduce_28 = happySpecReduce_3  2# happyReduction_28
happyReduction_28 happy_x_3
        happy_x_2
        happy_x_1
         =  case happyOut6 happy_x_2 of { happy_var_2 ->
        happyIn6
                 (happy_var_2
        )}

happyNewToken action sts stk [] =
        happyDoAction 28# notHappyAtAll action sts stk []

happyNewToken action sts stk (tk:tks) =
        let cont i = happyDoAction i tk action sts stk tks in
        case tk of {
        (TokenBegin    , _) -> cont 1#;
        (TokenEnd      , _) -> cont 2#;
        (TokenAt       , _) -> cont 3#;
        (TokenAt2      , _) -> cont 4#;
        (TokenDown     , _) -> cont 5#;
        (TokenProp happy_dollar_dollar  , _) -> cont 6#;
        (TokenNom happy_dollar_dollar   , _) -> cont 7#;
        (TokenVar happy_dollar_dollar   , _) -> cont 8#;
        (TokenTrue     , _) -> cont 9#;
        (TokenFalse    , _) -> cont 10#;
        (TokenNeg      , _) -> cont 11#;
        (TokenAnd      , _) -> cont 12#;
        (TokenOr       , _) -> cont 13#;
        (TokenDimp     , _) -> cont 14#;
        (TokenImp      , _) -> cont 15#;
        (TokenBox happy_dollar_dollar   , _) -> cont 16#;
        (TokenIBox happy_dollar_dollar  , _) -> cont 17#;
        (TokenUBox     , _) -> cont 18#;
        (TokenDBox     , _) -> cont 19#;
        (TokenDia happy_dollar_dollar   , _) -> cont 20#;
        (TokenIDia happy_dollar_dollar  , _) -> cont 21#;
        (TokenUDia     , _) -> cont 22#;
        (TokenDDia     , _) -> cont 23#;
        (TokenOB       , _) -> cont 24#;
        (TokenCB       , _) -> cont 25#;
        (TokenSC       , _) -> cont 26#;
        (TokenDot      , _) -> cont 27#;
        _ -> happyError' ((tk:tks), [])
        }

happyError_ explist 28# tk tks = happyError' (tks, explist)
happyError_ explist _ tk tks = happyError' ((tk:tks), explist)

newtype HappyIdentity a = HappyIdentity a
happyIdentity = HappyIdentity
happyRunIdentity (HappyIdentity a) = a

instance Functor HappyIdentity where
    fmap f (HappyIdentity a) = HappyIdentity (f a)

instance Applicative HappyIdentity where
    pure  = HappyIdentity
    (<*>) = ap
instance Monad HappyIdentity where
    return = pure
    (HappyIdentity p) >>= q = q p

happyThen :: () => HappyIdentity a -> (a -> HappyIdentity b) -> HappyIdentity b
happyThen = (>>=)
happyReturn :: () => a -> HappyIdentity a
happyReturn = (return)
happyThen1 m k tks = (>>=) m (\a -> k a tks)
happyReturn1 :: () => a -> b -> HappyIdentity a
happyReturn1 = \a tks -> (return) a
happyError' :: () => ([((Token, FilePos))], [String]) -> HappyIdentity a
happyError' = HappyIdentity . (\(tokens, _) -> happyError tokens)
parse tks = happyRunIdentity happySomeParser where
 happySomeParser = happyThen (happyParse 0# tks) (\x -> happyReturn (happyOut4 x))

happySeq = happyDontSeq


happyError :: [(Token, FilePos)] -> a
happyError ((_, fp):_) = error ("Parse error near line " ++
                                   (show $ line fp) ++
                                   ", col. " ++
                                   (show $ col fp))
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
{-# LINE 1 "<built-in>" #-}
{-# LINE 1 "<command-line>" #-}
{-# LINE 10 "<command-line>" #-}
# 1 "/usr/include/stdc-predef.h" 1 3 4

# 17 "/usr/include/stdc-predef.h" 3 4














































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/usr/lib/ghc/include/ghcversion.h" #-}















{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "/tmp/ghcb5f8_0/ghc_2.h" #-}








































































































































































{-# LINE 10 "<command-line>" #-}
{-# LINE 1 "templates/GenericTemplate.hs" #-}
-- Id: GenericTemplate.hs,v 1.26 2005/01/14 14:47:22 simonmar Exp 













-- Do not remove this comment. Required to fix CPP parsing when using GCC and a clang-compiled alex.
#if __GLASGOW_HASKELL__ > 706
#define LT(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.<# m)) :: Bool)
#define GTE(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.>=# m)) :: Bool)
#define EQ(n,m) ((Happy_GHC_Exts.tagToEnum# (n Happy_GHC_Exts.==# m)) :: Bool)
#else
#define LT(n,m) (n Happy_GHC_Exts.<# m)
#define GTE(n,m) (n Happy_GHC_Exts.>=# m)
#define EQ(n,m) (n Happy_GHC_Exts.==# m)
#endif
{-# LINE 43 "templates/GenericTemplate.hs" #-}

data Happy_IntList = HappyCons Happy_GHC_Exts.Int# Happy_IntList







{-# LINE 65 "templates/GenericTemplate.hs" #-}

{-# LINE 75 "templates/GenericTemplate.hs" #-}

{-# LINE 84 "templates/GenericTemplate.hs" #-}

infixr 9 `HappyStk`
data HappyStk a = HappyStk a (HappyStk a)

-----------------------------------------------------------------------------
-- starting the parse

happyParse start_state = happyNewToken start_state notHappyAtAll notHappyAtAll

-----------------------------------------------------------------------------
-- Accepting the parse

-- If the current token is 0#, it means we've just accepted a partial
-- parse (a %partial parser).  We must ignore the saved token on the top of
-- the stack in this case.
happyAccept 0# tk st sts (_ `HappyStk` ans `HappyStk` _) =
        happyReturn1 ans
happyAccept j tk st sts (HappyStk ans _) =
        (happyTcHack j (happyTcHack st)) (happyReturn1 ans)

-----------------------------------------------------------------------------
-- Arrays only: do the next action



happyDoAction i tk st
        = {- nothing -}


          case action of
                0#           -> {- nothing -}
                                     happyFail (happyExpListPerState ((Happy_GHC_Exts.I# (st)) :: Int)) i tk st
                -1#          -> {- nothing -}
                                     happyAccept i tk st
                n | LT(n,(0# :: Happy_GHC_Exts.Int#)) -> {- nothing -}

                                                   (happyReduceArr Happy_Data_Array.! rule) i tk st
                                                   where rule = (Happy_GHC_Exts.I# ((Happy_GHC_Exts.negateInt# ((n Happy_GHC_Exts.+# (1# :: Happy_GHC_Exts.Int#))))))
                n                 -> {- nothing -}


                                     happyShift new_state i tk st
                                     where new_state = (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#))
   where off    = happyAdjustOffset (indexShortOffAddr happyActOffsets st)
         off_i  = (off Happy_GHC_Exts.+#  i)
         check  = if GTE(off_i,(0# :: Happy_GHC_Exts.Int#))
                  then EQ(indexShortOffAddr happyCheck off_i, i)
                  else False
         action
          | check     = indexShortOffAddr happyTable off_i
          | otherwise = indexShortOffAddr happyDefActions st




indexShortOffAddr (HappyA# arr) off =
        Happy_GHC_Exts.narrow16Int# i
  where
        i = Happy_GHC_Exts.word2Int# (Happy_GHC_Exts.or# (Happy_GHC_Exts.uncheckedShiftL# high 8#) low)
        high = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr (off' Happy_GHC_Exts.+# 1#)))
        low  = Happy_GHC_Exts.int2Word# (Happy_GHC_Exts.ord# (Happy_GHC_Exts.indexCharOffAddr# arr off'))
        off' = off Happy_GHC_Exts.*# 2#




{-# INLINE happyLt #-}
happyLt x y = LT(x,y)


readArrayBit arr bit =
    Bits.testBit (Happy_GHC_Exts.I# (indexShortOffAddr arr ((unbox_int bit) `Happy_GHC_Exts.iShiftRA#` 4#))) (bit `mod` 16)
  where unbox_int (Happy_GHC_Exts.I# x) = x






data HappyAddr = HappyA# Happy_GHC_Exts.Addr#


-----------------------------------------------------------------------------
-- HappyState data type (not arrays)

{-# LINE 180 "templates/GenericTemplate.hs" #-}

-----------------------------------------------------------------------------
-- Shifting a token

happyShift new_state 0# tk st sts stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--     trace "shifting the error token" $
     happyDoAction i tk new_state (HappyCons (st) (sts)) (stk)

happyShift new_state i tk st sts stk =
     happyNewToken new_state (HappyCons (st) (sts)) ((happyInTok (tk))`HappyStk`stk)

-- happyReduce is specialised for the common cases.

happySpecReduce_0 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_0 nt fn j tk st@((action)) sts stk
     = happyGoto nt j tk st (HappyCons (st) (sts)) (fn `HappyStk` stk)

happySpecReduce_1 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_1 nt fn j tk _ sts@((HappyCons (st@(action)) (_))) (v1`HappyStk`stk')
     = let r = fn v1 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_2 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_2 nt fn j tk _ (HappyCons (_) (sts@((HappyCons (st@(action)) (_))))) (v1`HappyStk`v2`HappyStk`stk')
     = let r = fn v1 v2 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happySpecReduce_3 i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happySpecReduce_3 nt fn j tk _ (HappyCons (_) ((HappyCons (_) (sts@((HappyCons (st@(action)) (_))))))) (v1`HappyStk`v2`HappyStk`v3`HappyStk`stk')
     = let r = fn v1 v2 v3 in
       happySeq r (happyGoto nt j tk st sts (r `HappyStk` stk'))

happyReduce k i fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyReduce k nt fn j tk st sts stk
     = case happyDrop (k Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) sts of
         sts1@((HappyCons (st1@(action)) (_))) ->
                let r = fn stk in  -- it doesn't hurt to always seq here...
                happyDoSeq r (happyGoto nt j tk st1 sts1 r)

happyMonadReduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonadReduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
          let drop_stk = happyDropStk k stk in
          happyThen1 (fn stk tk) (\r -> happyGoto nt j tk st1 sts1 (r `HappyStk` drop_stk))

happyMonad2Reduce k nt fn 0# tk st sts stk
     = happyFail [] 0# tk st sts stk
happyMonad2Reduce k nt fn j tk st sts stk =
      case happyDrop k (HappyCons (st) (sts)) of
        sts1@((HappyCons (st1@(action)) (_))) ->
         let drop_stk = happyDropStk k stk

             off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st1)
             off_i = (off Happy_GHC_Exts.+#  nt)
             new_state = indexShortOffAddr happyTable off_i




          in
          happyThen1 (fn stk tk) (\r -> happyNewToken new_state sts1 (r `HappyStk` drop_stk))

happyDrop 0# l = l
happyDrop n (HappyCons (_) (t)) = happyDrop (n Happy_GHC_Exts.-# (1# :: Happy_GHC_Exts.Int#)) t

happyDropStk 0# l = l
happyDropStk n (x `HappyStk` xs) = happyDropStk (n Happy_GHC_Exts.-# (1#::Happy_GHC_Exts.Int#)) xs

-----------------------------------------------------------------------------
-- Moving to a new state after a reduction


happyGoto nt j tk st =
   {- nothing -}
   happyDoAction j tk new_state
   where off = happyAdjustOffset (indexShortOffAddr happyGotoOffsets st)
         off_i = (off Happy_GHC_Exts.+#  nt)
         new_state = indexShortOffAddr happyTable off_i




-----------------------------------------------------------------------------
-- Error recovery (0# is the error token)

-- parse error if we are in recovery and we fail again
happyFail explist 0# tk old_st _ stk@(x `HappyStk` _) =
     let i = (case Happy_GHC_Exts.unsafeCoerce# x of { (Happy_GHC_Exts.I# (i)) -> i }) in
--      trace "failing" $ 
        happyError_ explist i tk

{-  We don't need state discarding for our restricted implementation of
    "error".  In fact, it can cause some bogus parses, so I've disabled it
    for now --SDM

-- discard a state
happyFail  0# tk old_st (HappyCons ((action)) (sts)) 
                                                (saved_tok `HappyStk` _ `HappyStk` stk) =
--      trace ("discarding state, depth " ++ show (length stk))  $
        happyDoAction 0# tk action sts ((saved_tok`HappyStk`stk))
-}

-- Enter error recovery: generate an error token,
--                       save the old token and carry on.
happyFail explist i tk (action) sts stk =
--      trace "entering error recovery" $
        happyDoAction 0# tk action sts ( (Happy_GHC_Exts.unsafeCoerce# (Happy_GHC_Exts.I# (i))) `HappyStk` stk)

-- Internal happy errors:

notHappyAtAll :: a
notHappyAtAll = error "Internal Happy error\n"

-----------------------------------------------------------------------------
-- Hack to get the typechecker to accept our action functions


happyTcHack :: Happy_GHC_Exts.Int# -> a -> a
happyTcHack x y = y
{-# INLINE happyTcHack #-}


-----------------------------------------------------------------------------
-- Seq-ing.  If the --strict flag is given, then Happy emits 
--      happySeq = happyDoSeq
-- otherwise it emits
--      happySeq = happyDontSeq

happyDoSeq, happyDontSeq :: a -> b -> b
happyDoSeq   a b = a `seq` b
happyDontSeq a b = b

-----------------------------------------------------------------------------
-- Don't inline any functions from the template.  GHC has a nasty habit
-- of deciding to inline happyGoto everywhere, which increases the size of
-- the generated parser quite a bit.


{-# NOINLINE happyDoAction #-}
{-# NOINLINE happyTable #-}
{-# NOINLINE happyCheck #-}
{-# NOINLINE happyActOffsets #-}
{-# NOINLINE happyGotoOffsets #-}
{-# NOINLINE happyDefActions #-}

{-# NOINLINE happyShift #-}
{-# NOINLINE happySpecReduce_0 #-}
{-# NOINLINE happySpecReduce_1 #-}
{-# NOINLINE happySpecReduce_2 #-}
{-# NOINLINE happySpecReduce_3 #-}
{-# NOINLINE happyReduce #-}
{-# NOINLINE happyMonadReduce #-}
{-# NOINLINE happyGoto #-}
{-# NOINLINE happyFail #-}

-- end of Happy Template.